

Summary of Contents

Foreword . xxi

Preface . xxiii

1. Introducing HTML5 and CSS3 . 1

2. Markup, HTML5 Style . 11

3. More HTML5 Semantics . 35

4. HTML5 Forms . 57

5. HTML5 Audio and Video . 87

6. Introducing CSS3 . 119

7. CSS3 Gradients and Multiple Backgrounds . 147

8. CSS3 Transforms and Transitions . 175

9. Embedded Fonts and Multicolumn Layouts . 197

10. Geolocation, Offline Web Apps, and Web Storage 225

11. Canvas, SVG, and Drag and Drop . 265

A. Modernizr . 313

B. WAI-ARIA . 319

C. Microdata . 323

Index . 329

HTML5 & CSS3
FOR THE REAL

WORLD
BY ALEXIS GOLDSTEIN

LOUIS LAZARIS
ESTELLE WEYL

HTML5 & CSS3 for the Real World
by Alexis Goldstein, Louis Lazaris, and Estelle Weyl

Copyright © 2011 SitePoint Pty. Ltd.

Indexer: Michele CombsProgram Director: Lisa Lang

Editor: Kelly SteeleTechnical Editor: Louis Simoneau

Cover Design: Alex WalkerExpert Reviewer: Russ Weakley

Printing History:

First Edition: May 2011

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means without the prior written permission of the publisher, except in the case

of brief quotations included in critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the information herein.

However, the information contained in this book is sold without warranty, either express or implied.

Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any

damages caused either directly or indirectly by the instructions contained in this book, or by the software

or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this book uses the names only

in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of

the trademark.

Published by SitePoint Pty. Ltd.

48 Cambridge Street, Collingwood

VIC 3066 Australia

Web: www.sitepoint.com

Email: business@sitepoint.com

ISBN 978-0-9808469-0-4

Printed and bound in the United States of America

iv

About Alexis Goldstein

Alexis Goldstein first taught herself HTML while a high school student in the mid-1990s,

and went on to get her degree in Computer Science from Columbia University. She runs her

own software development and training company, aut faciam LLC. Before striking out on

her own, Alexis spent seven years in technology on Wall Street, where she worked in both

the cash equity and equity derivative spaces at three major firms, and learned to love daily

code reviews. She is a teacher and co-organizer of Girl Develop It, a group that conducts low-

cost programming classes for women, and a very proud member of the NYC Resistor hacker-

space in Brooklyn, NY. You can find Alexis at her website, http://alexisgo.com/.

About Louis Lazaris

Louis Lazaris is a freelance web designer and front-end developer based in Toronto, Canada

who has been involved in the web design industry since 2000. Louis has been working on

websites ever since the days when table layouts and one-pixel GIFs dominated the industry.

Over the past five years he has transitioned to embrace web standards while endeavoring to

promote best practices that help both developers and their clients reach practical goals for

their projects. Louis writes regularly for a number of top web design blogs including his own

site, Impressive Webs (http://www.impressivewebs.com/.

About Estelle Weyl

Estelle Weyl is a front-end engineer from San Francisco who has been developing standards-

based accessible websites since 1999. Estelle began playing with CSS3 when the iPhone was

released in 2007, and after four years of web application development for mobile WebKit,

she knows (almost) every CSS3 quirk on WebKit, and has vast experience implementing

components of HTML5. She writes two popular technical blogs with tutorials and detailed

grids of CSS3 and HTML5 browser support (http://www.standardista.com/). Estelle’s passion

is teaching web development, where you’ll find her speaking on CSS3, HTML5, JavaScript,

and mobile web development at conferences around the USA (and, she hopes, the world).

About the Expert Reviewer

Russ Weakley has worked in the design field for over 18 years, primarily in web design and

development, and web training. Russ co-chairs the Web Standards Group and is a founding

committee member of the Web Industry Professionals Association of Australia (WIPA). Russ

has produced a series of widely acclaimed CSS tutorials, and is internationally recognized

for his presentations and workshops. He manages Max Design (http://maxdesign.com.au/).

v

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for web

professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,

and community forums.

vi

To my parents, who always

encourage and believe in me.

And to my talented, prolific, and

loving Grandma Joan. You always

keep me painting, no matter what

else I may be doing.

—Alexis

To Melanie, the best cook in the

world.

And to my parents, for funding

the original course that got me

into this unique industry.

—Louis

To Amie, for putting up with me,

and to Spazzo and Puppers, for

snuggling with me as I worked

away.

—Estelle

Table of Contents

Foreword . xxi

Preface . xxiii

Who Should Read This Book . xxiii

What’s in This Book . xxiv

Where to Find Help . xxvii

The SitePoint Forums . xxvii

The Book’s Website . xxvii

The SitePoint Newsletters . xxviii

The SitePoint Podcast . xxviii

Your Feedback . xxviii

Acknowledgments . xxix

Alexis Goldstein . xxix

Louis Lazaris . xxix

Estelle Weyl . xxix

Conventions Used in This Book . xxx

Code Samples . xxx

Tips, Notes, and Warnings . xxxi

Chapter 1 Introducing HTML5 and CSS3 1

What is HTML5? . 1

How did we get here? . 3

Would the real HTML5 spec please stand up? 3

Why should I care about HTML5? . 5

What is CSS3? . 5

Why should I care about CSS3? . 6

What do we mean by the “real world”? . 7

The Varied Browser Market . 8

The Growing Mobile Market . 9

On to the Real Stuff . 10

Chapter 2 Markup, HTML5 Style 11

Introducing The HTML5 Herald . 11

A Basic HTML5 Template . 13

The Doctype . 14

The html Element . 15

The head Element . 15

Leveling the Playing Field . 16

The Rest is History . 18

HTML5 FAQ . 19

Why do these changes still work in older browsers? 19

Shouldn’t all tags be closed? . 21

What about other XHTML-based syntax customs? 22

Defining the Page’s Structure . 24

The header Element . 24

The section Element . 25

The article Element . 27

The nav Element . 27

The aside Element . 29

The footer Element . 30

Structuring The HTML5 Herald . 31

Wrapping Things Up . 34

Chapter 3 More HTML5 Semantics 35

A New Perspective on Types of Content . 35

The Document Outline . 37

x

Breaking News . 39

The hgroup Element . 40

More New Elements . 42

The figure and figcaption Elements . 42

The mark Element . 43

The progress and meter Elements . 44

The time Element . 45

Changes to Existing Features . 47

The Word “Deprecated” is Deprecated . 47

Block Elements Inside Links . 47

Bold Text . 48

Italicized Text . 48

Big and Small Text . 49

A cite for Sore Eyes . 50

Description (not Definition) Lists . 50

Other New Elements and Features . 50

The details Element . 51

Customized Ordered Lists . 52

Scoped Styles . 52

The async Attribute for Scripts . 52

Validating HTML5 Documents . 53

Summary . 55

Chapter 4 HTML5 Forms . 57

Dependable Tools in Our Toolbox . 58

HTML5 Form Attributes . 59

The required Attribute . 60

The placeholder Attribute . 64

The pattern Attribute . 67

The disabled Attribute . 69

xi

The readonly Attribute . 69

The multiple Attribute . 69

The form Attribute . 70

The autocomplete Attribute . 70

The datalist Element and the list Attribute 71

The autofocus Attribute . 72

HTML5 New Form Input Types . 72

Search . 73

Email Addresses . 74

URLs . 75

Telephone Numbers . 76

Numbers . 76

Ranges . 78

Colors . 79

Dates and Times . 79

Other New Form Controls in HTML5 . 83

The output Element . 83

The keygen Element . 83

Changes to Existing Form Controls and Attributes 84

The form Element . 84

The optgroup Element . 84

The textarea Element . 84

In Conclusion . 85

Chapter 5 HTML5 Audio and Video 87

A Bit of History . 87

The Current State of Play . 88

Video Container Formats . 89

Video Codecs . 89

Audio Codecs . 89

xii

What combinations work in current browsers? 89

The Markup . 90

Enabling Native Controls . 91

The autoplay Attribute . 92

The loop Attribute . 93

The preload Attribute . 93

The poster Attribute . 94

The audio Attribute . 94

Adding Support for Multiple Video Formats 95

source Order . 96

What about Internet Explorer 6–8? . 97

MIME Types . 99

Encoding Video Files for Use on the Web . 100

Creating Custom Controls . 101

Some Markup and Styling to Get Us Started 101

Introducing the Media Elements API . 103

Playing and Pausing the Video . 105

Muting and Unmuting the Video’s Audio Track 108

Responding When the Video Ends Playback 110

Updating the Time as the Video Plays . 110

Further Features of the Media Elements API 113

What about audio? . 115

Accessible Media . 116

It’s Showtime . 117

Chapter 6 Introducing CSS3 . 119

Getting Older Browsers on Board . 119

CSS3 Selectors . 120

Relational Selectors . 121

Attribute Selectors . 122

xiii

Pseudo-classes . 124

Structural Pseudo-classes . 126

Pseudo-elements and Generated Content 129

CSS3 Colors . 131

RGBA . 131

HSL and HSLA . 132

Opacity . 133

Putting It into Practice . 134

Rounded Corners: border-radius . 136

Drop Shadows . 140

Inset and Multiple Shadows . 143

Text Shadow . 144

More Shadows . 145

Up Next . 146

Chapter 7 CSS3 Gradients and Multiple
Backgrounds . 147

Linear Gradients . 148

The W3C Syntax . 150

The Old WebKit Syntax . 154

Putting It All Together . 156

Linear Gradients with SVG . 158

Linear Gradients with IE Filters . 160

Tools of the Trade . 161

Radial Gradients . 161

The W3C Syntax . 162

The Old WebKit Syntax . 164

Putting it All Together . 166

Repeating Gradients . 168

Multiple Background Images . 169

xiv

Background Size . 172

In the Background . 174

Chapter 8 CSS3 Transforms and
Transitions . 175

Transforms . 175

Translation . 176

Scaling . 178

Rotation . 180

Skew . 181

Changing the Origin of the Transform . 182

Support for Internet Explorer 8 and Earlier 182

Transitions . 183

transition-property . 184

transition-duration . 186

transition-timing-function . 187

transition-delay . 187

The transition Shorthand Property . 188

Multiple Transitions . 189

Animations . 190

Keyframes . 191

Animation Properties . 192

Moving On . 196

Chapter 9 Embedded Fonts and Multicolumn
Layouts . 197

Web Fonts with @font-face . 197

Implementing @font-face . 199

Declaring Font Sources . 200

xv

Font Property Descriptors . 203

Unicode Range . 204

Applying the Font . 205

Legal Considerations . 205

Creating Various Font File Types: Font Squirrel 206

Other Considerations . 210

CSS3 Multicolumn Layouts . 211

The column-count Property . 211

The column-gap Property . 212

The column-width Property . 213

The columns Shorthand Property . 215

Columns and the height Property . 215

Other Column Features . 216

Other Considerations . 218

Progressive Enhancement . 219

Media Queries . 220

What are Media Queries? . 220

Syntax . 221

Flexibility of Media Queries . 222

Browser Support . 222

Further Reading . 223

Living in Style . 224

Chapter 10 Geolocation, Offline Web Apps,
and Web Storage . 225

Geolocation . 226

Privacy Concerns . 227

Geolocation Methods . 227

Checking for Support with Modernizr . 228

Retrieving the Current Position . 229

xvi

Geolocation’s Position Object . 229

Grabbing the Latitude and Longitude . 231

Loading a Map . 232

A Final Word on Older Mobile Devices . 236

Offline Web Applications . 237

How It Works: the HTML5 Application Cache 237

Setting Up Your Site to Work Offline . 238

Getting Permission to Store the Site Offline 241

Going Offline to Test . 241

Making The HTML5 Herald Available Offline 243

Limits to Offline Web Application Storage 245

The Fallback Section . 245

Refreshing the Cache . 247

Are we online? . 248

Further Reading . 249

Web Storage . 250

Two Kinds of Storage . 250

What Web Storage Data Looks Like . 252

Getting and Setting Our Data . 252

Converting Stored Data . 253

The Shortcut Way . 253

Removing Items and Clearing Data . 254

Storage Limits . 254

Security Considerations . 255

Adding Web Storage to The HTML5 Herald 256

Viewing Our Web Storage Values with the Web Inspector 260

Additional HTML5 APIs . 261

Web Workers . 261

Web Sockets . 262

Web SQL and IndexedDB . 263

xvii

Back to the Drawing Board . 264

Chapter 11 Canvas, SVG, and Drag and
Drop . 265

Canvas . 265

A Bit of Canvas History . 266

Creating a canvas Element . 266

Drawing on the Canvas . 268

Getting the Context . 268

Filling Our Brush with Color . 269

Drawing a Rectangle to the Canvas . 270

The Canvas Coordinate System . 271

Variations on fillStyle . 271

Drawing Other Shapes by Creating Paths . 275

Saving Canvas Drawings . 278

Drawing an Image to the Canvas . 280

Manipulating Images . 282

Converting an Image from Color to Black and White 284

Security Errors with getImageData . 286

Manipulating Video with Canvas . 287

Displaying Text on the Canvas . 290

Accessibility Concerns . 294

Further Reading . 294

SVG . 295

Drawing in SVG . 296

Using Inkscape to Create SVG Images . 299

SVG Filters . 299

Using the Raphaël Library . 301

Canvas versus SVG . 303

Drag and Drop . 304

xviii
D

ow
nl

oa
d

fr
om

 W
ow

!
eB

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Feeding the WAI-ARIA Cat . 305

Making Elements Draggable . 306

The DataTransfer Object . 307

Accepting Dropped Elements . 308

Further Reading . 311

That’s All, Folks! . 312

Appendix A Modernizr . 313

Using Modernizr with CSS . 313

Using Modernizr with JavaScript . 315

Support for Styling HTML5 Elements in IE8 and Earlier 317

Further Reading . 317

Appendix B WAI-ARIA . 319

How WAI-ARIA Complements Semantics . 319

The Current State of WAI-ARIA . 320

Further Reading . 321

Appendix C Microdata . 323

Aren’t HTML5’s semantics enough? . 324

The Microdata Syntax . 324

Understanding Name-Value Pairs . 325

Microdata Namespaces . 326

Further Reading . 327

Index . 329

xix

Foreword
Heard of Sjoerd Visscher? I’d venture to guess you haven’t, but what he considered

a minor discovery is at the foundation of our ability to use HTML5 today.

Back in 2002, in The Hague, Netherlands, Mr. Visscher was attempting to improve

the performance of his XSL output. He switched from createElement calls to setting

the innerHTML property, and then realized that all the unknown, non-HTML elements

were no longer able to be styled by CSS.

Fast forward to 2008, and HTML5 is gaining momentum. New elements have been

specified, but in practice Internet Explorer versions 6-8 pose a problem, as they fail

to recognize unknown elements; the new elements are unable to hold children and

CSS has no effect on them. This depressing fact was posing quite a hindrance to

HTML5 adoption.

Now, half a decade after his discovery, Sjoerd innocently mentions this trick in a

comment on the blog of the W3C HTML Working Group co-chair, Sam Ruby: “BTW,

if you want CSS rules to apply to unknown elements in IE, you just have to do

document.createElement(elementName). This somehow lets the CSS engine know

that elements with that name exist.”

Ian Hickson, lead editor of the HTML5 spec, was as surprised as the rest of the Web.

Having never heard of this trick before, he was happy to report: “This piece of in-

formation makes building an HTML5 compatibility shim for IE7 far easier than had

previously been assumed.”

A day later, John Resig wrote the post that coined the term “HTML5 shiv.” Here’s

a quick timeline of what followed:

■ January 2009: Remy Sharp creates the first distributable script for enabling

HTML5 element use in IE.

■ June 2009: Faruk Ateş includes the HTML5 shiv in Modernizr’s initial release.

■ February 2010: A ragtag team of superstar JavaScript developers including Remy,

Kangax, John-David Dalton, and PorneL collaborate and drop the file size of the

script.

■ March 2010: Mathias Bynens and others notice that the shiv doesn’t affect pages

printed from IE. It was a sad day. I issue an informal challenge to developers to

find a solution.

■ April 2010: Jonathan Neal answers that challenge with the IE Print Protector

(IEPP), which captured the scope of the HTML5 shiv but added in support for

printing the elements as well.

■ April 2010: Remy replaces the legacy HTML5 shiv solution with the new IEPP.

■ February 2011: Alexander Farkas carries the torch, moving the IEPP project to

GitHub, adding a test suite, fixing bugs, and improving performance.

■ April 2011: IEPP v2 comes out. Modernizr and the HTML5 shiv inherit the latest

code while developers everywhere continue to use HTML5 elements in a cross-

browser fashion without worry.

The tale of the HTML5 shiv is just one example of community contribution that

helps to progress the open web movement. It’s not just the W3C or the browsers

who directly affect how we work on the Web, but people like you and me. I hope

this book encourages you to contribute in a similar manner; the best way to further

your craft is to actively share what you learn.

Adopting HTML5 and CSS3 today is easier than ever, and seriously fun. This book

presents a wealth of practical information that gives you what you need to know to

take advantage of HTML5 now. The authors—Alexis, Louis, and Estelle—are well-

respected web developers who present a realistic learning curve for you to absorb

the best practices of HTML5 development easily.

I trust this book is able to serve you well, and that you’ll be as excited about the

next generation of the Web as I am.

—

Paul Irish

jQuery Dev Relations,

Lead Developer of Modernizr and HTML5 Boilerplate

April 2011

xxii

Preface
Welcome to HTML5 & CSS3 for the Real World. We’re glad you’ve decided to join

us on this journey of discovering some of the latest and the greatest in front-end

website building technology.

If you’ve picked up a copy of this book, it’s likely that you’ve dabbled to some degree

in HTML and CSS. You might even be a bit of a seasoned pro in certain areas of

markup, styling, or scripting, and now want to extend those skills further by dipping

into the new features and technologies associated with HTML5 and CSS3.

Learning a new task can be difficult. You may have limited time to invest in poring

over the official documentation and specifications for these web-based languages.

You also might be turned off by some of the overly technical books that work well

as references but provide little in the way of real-world, practical examples.

To that end, our goal with this book is to help you learn through hands-on, practical

instruction that will assist you to tackle the real-world problems you face in building

websites today—with a specific focus on HTML5 and CSS3.

But this is more than just a step-by-step tutorial. Along the way, we’ll provide plenty

of theory and technical information to help fill in any gaps in your understand-

ing—the whys and hows of these new technologies—while doing our best not to

overwhelm you with the sheer volume of cool new stuff. So let’s get started!

Who Should Read This Book
This book is aimed at web designers and front-end developers who want to learn

about the latest generation of browser-based technologies. You should already have

at least intermediate knowledge of HTML and CSS, as we won’t be spending any

time covering the basics of markup and styles. Instead, we’ll focus on teaching you

what new powers are available to you in the form of HTML5 and CSS3.

The final two chapters of this book cover some of the new JavaScript APIs that have

come to be associated with HTML5. These chapters, of course, require some basic

familiarity with JavaScript—but they’re not critical to the rest of the book. If you’re

unfamiliar with JavaScript, there’s no harm in skipping over them for now, returning

later when you’re better acquainted with it.

What’s in This Book
This book comprises eleven chapters and three appendices. Most chapters follow

on from each other, so you’ll probably get the most benefit reading them in sequence,

but you can certainly skip around if you only need a refresher on a particular topic.

Chapter 1: Introducing HTML5 and CSS3

Before we tackle the hands-on stuff, we’ll present you with a little bit of history,

along with some compelling reasons to start using HTML5 and CSS3 today.

We’ll also look at the current state of affairs in terms of browser support, and

argue that a great deal of these new technologies are ready to be used today—so

long as they’re used wisely.

Chapter 2: Markup, HTML5 Style

In this chapter, we’ll show you some of the new structural and semantic elements

that are new in HTML5. We’ll also be introducing The HTML5 Herald, a demo

site we’ll be working on throughout the rest of the book. Think divs are boring?

So do we. Good thing HTML5 now provides an assortment of options: article,

section, nav, footer, aside, and header!

Chapter 3: More HTML5 Semantics

Continuing on from the previous chapter, we turn our attention to the new way

in which HTML5 constructs document outlines. Then we look at a plethora of

other semantic elements that let you be a little more expressive with your

markup.

Chapter 4: HTML5 Forms

Some of the most useful and currently applicable features in HTML5 pertain to

forms. A number of browsers now support native validation on email types like

emails and URLs, and some browsers even support native date pickers, sliders,

and spinner boxes. It’s almost enough to make you enjoy coding forms! This

chapter covers everything you need to know to be up to speed writing HTML5

forms, and provides scripted fallbacks for older browsers.

xxiv

Chapter 5: HTML5 Audio and Video

HTML5 is often touted as a contender for the online multimedia content crown,

long held by Flash. The new audio and video elements are the reason—they

provide native, scriptable containers for your media without relying on a third-

party plugin like Flash. In this chapter, you’ll learn all the ins and outs of putting

these new elements to work.

Chapter 6: Introducing CSS3

Now that we’ve covered just about all of HTML5, it’s time to move onto its close

relative CSS3. We’ll start our tour of CSS3 by looking at some of the new selectors

that let you target elements on the page with unprecedented flexibility. Then

we’ll follow up with a look at some new ways of specifying color in CSS3, in-

cluding transparency. We’ll close the chapter with a few quick wins—cool CSS3

features that can be added to your site with a minimum of work: text shadows,

drop shadows, and rounded corners.

Chapter 7: CSS3 Gradients and Multiple Backgrounds

When was the last time you worked on a site that didn’t have a gradient or a

background image on it? CSS3 provides some overdue support to developers

spending far too much time wrangling with Photoshop, trying to create the

perfect background gradients and images without breaking the bandwidth bank.

Now you can specify linear or radial gradients right in your CSS without images,

and you can give an element any number of background images. Time to ditch

all those spare divs you’ve been lugging around.

Chapter 8: CSS3 Transforms and Transitions

Animation has long been seen as the purview of JavaScript, but CSS3 lets you

offload some of the heavy lifting to the browser. Transforms let you rotate, flip,

skew, and otherwise throw your elements around. Transitions can add some

subtlety to the otherwise jarring all-on or all-off state changes we see on our

sites. We wrap up this chapter with a glimpse of the future; while CSS keyframe

animations still lack widespread support, we think you’ll agree they’re pretty

sweet.

Chapter 9: Embedded Fonts and Multicolumn Layouts

Do you prefer Arial or Verdana? Georgia or Times? How about none of those?

In this chapter, we’ll look at how we can move past the “web-safe” fonts of

yesteryear and embed any fonts right into our pages for visitors to download

xxv

along with our stylesheets and images. We’ll also look at a promising new CSS

feature that allows us to lay out content across multiple columns without using

extra markup or the dreaded float.

Chapter 10: Geolocation, Offline Web Apps, and Web Storage

The latest generation of browsers come equipped with a wide selection of new

standard JavaScript APIs. Many of these are specifically geared towards mobile

browsers, but still carry benefits for desktop users. In this chapter, we’ll look

at three of the most exciting: Geolocation, Offline Web Apps, and Web Storage.

We’ll also touch briefly on some of the APIs that we won’t be covering in de-

tail—either because they’re poorly supported, or have limited use cases—and

give you some pointers should you want to investigate further.

Chapter 11: Canvas, SVG, and Drag and Drop

We devote the book’s final chapter to, first of all, covering two somewhat com-

peting technologies for drawing and displaying graphics. Canvas is new to

HTML5, and provides a pixel surface and a JavaScript API for drawing shapes

to it. SVG, on the other hand, has been around for years, but is now achieving

very good levels of browser support, so it’s an increasingly viable alternative.

Finally, we’ll cover one more new JavaScript API—Drag and Drop—which

provides native handling of drag-and-drop interfaces.

Appendix A: Modernizr

A key tool in any HTML5 superhero’s utility belt, Modernizr is a nifty little

JavaScript library that detects support for just about every HTML5 and CSS3

feature, allowing you to selectively style your site or apply fallback strategies.

We’ve included a quick primer on how to use Modernizr in this appendix, even

though Modernizr is used throughout the book. This way, you have a ready

reference available in one place, while the other chapters focus on the meat of

HTML5 and CSS3.

Appendix B: WAI-ARIA

A separate specification that’s often mentioned in the same breath as HTML5,

WAI-ARIA is the latest set of tools to help make sophisticated web applications

accessible to users of assistive technology. While a whole book could be devoted

to WAI-ARIA, we thought it beneficial to include a quick summary of what it

is, as well as some pointers to places where you can learn more.

xxvi

Appendix C: Microdata

Microdata is part of the HTML5 specification that deals with annotating markup

with machine-readable labels. It’s still somewhat in flux, but we thought it was

worthwhile to get you up to speed with a few examples.

Where to Find Help
SitePoint has a thriving community of web designers and developers ready and

waiting to help you out if you run into trouble. We also maintain a list of known

errata for the book, which you can consult for the latest updates.

The SitePoint Forums
The SitePoint Forums1 are discussion forums where you can ask questions about

anything related to web development. You may, of course, answer questions too.

That’s how a forum site works—some people ask, some people answer, and most

people do a bit of both. Sharing your knowledge benefits others and strengthens

the community. A lot of interesting and experienced web designers and developers

hang out there. It’s a good way to learn new stuff, have questions answered in a

hurry, and generally have a blast.

The Book’s Website
Located at http://sitepoint.com/books/rw1/, the website that supports this book will

give you access to the following facilities:

The Code Archive
As you progress through this book, you’ll note a number of references to the code

archive. This is a downloadable ZIP archive that contains every line of example

source code printed in this book. If you want to cheat (or save yourself from carpal

tunnel syndrome), go ahead and download the archive.2

Updates and Errata
No book is perfect, and we expect that watchful readers will be able to spot at least

one or two mistakes before the end of this one. The Errata page3 on the book’s

1 http://www.sitepoint.com/forums/
2 http://www.sitepoint.com/books/rw1/code.php
3 http://www.sitepoint.com/books/rw1/errata.php

xxvii

website will always have the latest information about known typographical and

code errors.

The SitePoint Newsletters
In addition to books like this one, SitePoint publishes free email newsletters, such

as the SitePoint Tech Times, SitePoint Tribune, and SitePoint Design View, to name

a few. In them, you’ll read about the latest news, product releases, trends, tips, and

techniques for all aspects of web development. Sign up to one or more SitePoint

newsletters at http://www.sitepoint.com/newsletter/.

The SitePoint Podcast
Join the SitePoint Podcast team for news, interviews, opinion, and fresh thinking

for web developers and designers. We discuss the latest web industry topics, present

guest speakers, and interview some of the best minds in the industry. You can catch

up on the latest and previous podcasts at http://www.sitepoint.com/podcast/, or

subscribe via iTunes.

Your Feedback
If you’re unable to find an answer through the forums, or if you wish to contact us

for any other reason, the best place to write is books@sitepoint.com. We have a

well-staffed email support system set up to track your inquiries, and if our support

team members can’t answer your question, they’ll send it straight to us. Suggestions

for improvements, as well as notices of any mistakes you may find, are especially

welcome.

xxviii

Acknowledgments
Alexis Goldstein
Thank you to Lisa Lang, Russ Weakley, and Louis Simoneau. Your attention to detail,

responsiveness, and impressive technical expertise made this book an absolute joy

to work on. Thank you to my co-authors, Louis and Estelle, who never failed to

impress me with their deep knowledge, vast experience, and uncanny ability to

find bugs in the latest browsers. A special thank you to Estelle for the encouragement,

for which I am deeply grateful. Finally, thank you to my girlfriend Tabatha, who

now knows more about HTML5’s JavaScript APIs than most of my nerdy friends.

Thank you for your patience, your feedback, and all your support. You help me

take things less seriously, which, as anyone who knows me knows, is a monumental

task. Thank you for always making me laugh.

Louis Lazaris
Thank you to my wife for putting up with my odd work hours while I took part in

this great project. Thanks to my talented co-authors, Estelle and Alexis, for gracing

me with the privilege of having my name alongside theirs, and, of course, to our

expert reviewer Russ for his great technical insight during the writing process. And

special thanks to the talented staff at SitePoint for their super-professional handling

of this project and everything that goes along with such an endeavor.

Estelle Weyl
Thank you to the entire open source community. With the option to “view source,”

I have learned from every developer who opted for markup rather than plugins. I

would especially like to thank Jen Mei Wu and Sandi Watkins, who helped point

me in the right direction when I began my career. Thank you to Dave Gregory and

Laurie Voss who have always been there to help me find the words when they es-

caped me. Thank you to Stephanie Sullivan for brainstorming over code into the

wee hours of the morning. And thank you to my developer friends at Opera, Mozilla,

and Google for creating awesome browsers, providing us with the opportunity to

not just play with HTML5 and CSS, but also to write this book.

xxix

Conventions Used in This Book
You’ll notice that we’ve used certain typographic and layout styles throughout the

book to signify different types of information. Look out for the following items:

Code Samples
Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
 background-color: #CCC;
 border-top: 1px solid #333;
}

If only part of the file is displayed, this is indicated by the word excerpt:

example.css (excerpt)

 border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

xxx

Where existing code is required for context, rather than repeat all the code, a vertical

ellipsis will be displayed:

function animate() {
 ⋮
 return new_variable;
}

Some lines of code are intended to be entered on one line, but we’ve had to wrap

them because of page constraints. A ➥ indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
➥ets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

Ahem, Excuse Me …

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Make Sure You Always …

… pay attention to these important points.

Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

xxxi

Chapter1
Introducing HTML5 and CSS3
This chapter gives a basic overview of how we arrived where we are today, why

HTML5 and CSS3 are so important to modern websites and web apps, and how

using these technologies will be invaluable to your future as a web professional.

Of course, if you’d prefer to just get into the meat of the project that we’ll be building,

and start learning how to use all the new bells and whistles that HTML5 and CSS3

bring to the table, you can always skip ahead to Chapter 2 and come back later.

What is HTML5?
What we understand today as HTML5 has had a relatively turbulent history. You

probably already know that HTML is the predominant markup language used to

describe content, or data, on the World Wide Web. HTML5 is the latest iteration of

that markup language, and includes new features, improvements to existing features,

and scripting-based APIs.

That said, HTML5 is not a reformulation of previous versions of the language—it

includes all valid elements from both HTML4 and XHTML 1.0. Furthermore, it’s

been designed with some primary principles in mind to ensure it works on just

about every platform, is compatible with older browsers, and handles errors grace-

fully. A summary of the design principles that guided the creation of HTML5 can

be found on the W3C’s HTML Design Principles page1.

First and foremost, HTML5 includes redefinitions of existing markup elements, and

new elements that allow web designers to be more expressive in the semantics of

their markup. Why litter your page with divs when you can have articles, sections,

headers, footers, and more?

The term “HTML5” has additionally been used to refer to a number of other new

technologies and APIs. Some of these include drawing with the <canvas> element,

offline storage, the new <video> and <audio> elements, drag-and-drop functionality,

Microdata, embedded fonts, and others. In this book, we’ll be covering a number

of those technologies, and more.

What’s an API?

API stands for Application Programming Interface. Think of an API the same way

you think of a graphical user interface—except that instead of being an interface

for humans, it’s an interface for your code. An API provides your code with a set

of “buttons” (predefined methods) that it can press to elicit the desired behavior

from the system, software library, or browser.

API-based commands are a way of abstracting the more complex stuff that’s done

in the background (or sometimes by third-party software). Some of the HTML5-

related APIs will be introduced and discussed in later sections of this book.

Overall, you shouldn’t be intimidated if you’ve had little experience with JavaScript

or any scripting-related APIs. While it would certainly be beneficial to have some

experience with JavaScript, it isn’t mandatory.

Whatever the case, we’ll walk you through the scripting parts of our book gradually,

to ensure you’re not left scratching your head!

It should also be noted that some of the technologies that were once part of HTML5

have been separated from the specification, so technically, they no longer fall under

the “HTML5” umbrella. Certain other technologies were never part of HTML5, yet

have at times been lumped in under the same label. This has instigated the use of

1 http://www.w3.org/TR/html-design-principles/

HTML5 & CSS3 for the Real World2

broad, all-encompassing expressions such as “HTML5 and related technologies.”

Bruce Lawson even half-jokingly proposed the term “NEWT” (New Exciting Web

Technologies)2 as an alternative.

However, in the interest of brevity—and also at the risk of inciting heated argu-

ments—we’ll generally refer to these technologies collectively as “HTML5.”

How did we get here?
The web design industry has evolved in a relatively short time period. Twelve years

ago, a website that included images and an eye-catching design was considered

“top of the line” in terms of web content.

Now, the landscape is quite different. Simple, performance-driven, Ajax-based web

apps that rely on client-side scripting for critical functionality are becoming more

and more common. Websites today often resemble standalone software applications,

and an increasing number of developers are viewing them as such.

Along the way, web markup evolved. HTML4 eventually gave way to XHTML,

which is really just HTML 4 with strict XML-style syntax. Currently, both HTML 4

and XHTML are in general use, but HTML5 is gaining headway.

HTML5 originally began as two different specifications: Web Forms 2.0 and Web

Apps 1.0. Both were a result of the changed web landscape, and the need for faster,

more efficient, maintainable web applications. Forms and app-like functionality

are at the heart of web apps, so this was the natural direction for the HTML5 spec

to take. Eventually, the two specs were merged to form what we now call HTML5.

During the time that HTML5 was in development, so was XHTML 2.0. That project

has since been abandoned to allow focus on HTML5.

Would the real HTML5 spec please stand up?
Because the HTML5 specification is being developed by two different bodies (the

WHATWG and the W3C), there are two different versions of the spec. The W3C (or

World Wide Web Consortium) you’re probably familiar with: it’s the organization

that maintains the original HTML and CSS specifications, as well as a host of other

2 http://www.brucelawson.co.uk/2010/meet-newt-new-exciting-web-technologies/

3Introducing HTML5 and CSS3

web-related standards, such as SVG (scalable vector graphics) and WCAG (web

content accessibility guidelines.)

The WHATWG (aka the Web Hypertext Application Technology Working Group),

on the other hand, might be new to you. It was formed by a group of people from

Apple, Mozilla, and Opera after a 2004 W3C meeting left them disheartened. They

felt that the W3C was ignoring the needs of browser makers and users by focusing

on XHTML 2.0, instead of working on a backwards-compatible HTML standard. So

they went off on their own and developed the Web Apps and Web Forms specifica-

tions discussed above, which were then merged into a spec they called HTML5. On

seeing this, the W3C eventually gave in and created its own HTML5 specification

based on the WHATWG’s spec.

This can seem a little confusing. Yes, there are some politics behind the scenes that

we, as designers and developers, have no control over. But should it worry us that

there are two versions of the spec? In short, no.

The WHATWG’s version of the specification can be found at

http://www.whatwg.org/html/, and has recently been renamed “HTML” (dropping

the “5”). It’s now called a “living standard,” meaning that it will be in constant de-

velopment and will no longer be referred to using incrementing version numbers.3

The WHATWG version contains information covering HTML-only features, including

what’s new in HTML5. Additionally, there are separate specifications being de-

veloped by the WHATWG that cover the related technologies. These specifications

include Microdata, Canvas 2D Context, Web Workers, Web Storage, and others.4

The W3C’s version of the spec can be found at http://dev.w3.org/html5/spec/, and

the separate specifications for the other technologies can be accessed through

http://dev.w3.org/html5/.

So what’s the difference between the W3C spec and that of WHATWG? Briefly, the

WHATWG version is a little more informal and experimental (and, some might argue,

more forward-thinking). But overall, they’re very similar, so either one can be used

as a basis for studying new HTML5 elements and related technologies.

3 See http://blog.whatwg.org/html-is-the-new-html5/ for an explanation of this change.
4 For details, see http://wiki.whatwg.org/wiki/FAQ#What_are_the_various_versions_of_the_spec.3F.

HTML5 & CSS3 for the Real World4

Why should I care about HTML5?
As mentioned, at the core of HTML5 are a number of new semantic elements, as

well as several related technologies and APIs. These additions and changes to the

language have been introduced with the goal of web pages being easier to code, use,

and access.

These new semantic elements, along with other standards like WAI-ARIA and Mi-

crodata (which we cover in Appendix B and Appendix C respectively), help make

our documents more accessible to both humans and machines—resulting in benefits

for both accessibility and search engine optimization.

The semantic elements, in particular, have been designed with the dynamic web

in mind, with a particular focus on making pages more modular and portable. We’ll

go into more detail on this in later chapters.

Finally, the APIs associated with HTML5 help improve on a number of techniques

that web developers have been using for years. Many common tasks are now simpli-

fied, putting more power in developers’ hands. Furthermore, the introduction of

HTML5-based audio and video means there will be less dependence on third-party

software and plugins when publishing rich media content on the Web.

Overall, there is good reason to start looking into HTML5’s new features and APIs,

and we’ll discuss more of those reasons as we go through this book.

What is CSS3?
Another separate—but no less important—part of creating web pages is Cascading

Style Sheets (CSS). As you probably know, CSS is a style language that describes

how HTML markup is presented or styled. CSS3 is the latest version of the CSS

specification. The term “CSS3” is not just a reference to the new features in CSS,

but the third level in the progress of the CSS specification.5

CSS3 contains just about everything that’s included in CSS2.1 (the previous version

of the spec). It also adds new features to help developers solve a number of problems

without the need for non-semantic markup, complex scripting, or extra images.

5 http://www.w3.org/Style/CSS/current-work.en.html

5Introducing HTML5 and CSS3

New features in CSS3 include support for additional selectors, drop shadows,

rounded corners, multiple backgrounds, animation, transparency, and much more.

CSS3 is distinct from HTML5. In this publication, we’ll be using the term CSS3 to

refer to the third level of the CSS specification, with a particular focus on what’s

new in CSS3. Thus, CSS3 is separate from HTML5 and its related APIs.

Why should I care about CSS3?
Later in this book, we’ll look in greater detail at what’s new in CSS3. In the mean-

time, we’ll give you a taste of why CSS3’s new techniques are so exciting to web

designers.

Some design techniques find their way into almost every project. Drop shadows,

gradients, and rounded corners are three good examples. We see them everywhere.

When used appropriately, and in harmony with a site’s overall theme and purpose,

these enhancements can make a design flourish.

Perhaps you’re thinking: we’ve been creating these design elements using CSS for

years now. But have we?

In the past, in order to create gradients, shadows, and rounded corners, web designers

have had to resort to a number of tricky techniques. Sometimes extra HTML elements

were required. In cases where the HTML is kept fairly clean, scripting hacks were

required. In the case of gradients, the use of extra images was inevitable. We put

up with these workarounds, because there was no other way of accomplishing those

designs.

CSS3 allows you to include these and other design elements in a forward-thinking

manner that leads to so many benefits: clean markup that is accessible to humans

and machines, maintainable code, fewer extraneous images, and faster loading

pages.

HTML5 & CSS3 for the Real World6

A Note on Vendor Prefixes

In order to use many of the new CSS3 features today, you’ll be required to include

quite a few extra lines of code. This is because browser vendors have implemented

many of the new features in CSS3 using their own “prefixed” versions of a property.

For example, to transform an element in Firefox, you need to use the

-moz-transform property; to do the same in WebKit-based browsers such as

Safari and Google Chrome, you have to use -webkit-transform. In some cases,

you’ll need up to four lines of code for a single CSS property. This can seem to

nullify some of the benefits gained from avoiding hacks, images, and nonsemantic

markup.

But browser vendors have implemented features this way for a good reason: the

specifications are yet to be final, and early implementations tend to be buggy. So,

for the moment, you provide values to current implementations using the vendor

prefixes, and also provide a perennial version of each property using an unprefixed

declaration. As the specs become finalized and the implementations refined,

browser prefixes will eventually be dropped.

Even though it may seem like a lot of work to maintain code with all these prefixes,

the benefits of using CSS3 today still outweigh the drawbacks. Despite having to

change a number of prefixed properties just to alter one design element, maintain-

ing a CSS3-based design is still easier than, say, making changes to background

images through a graphics program, or dealing with the drawbacks of extra markup

and hacky scripts. And, as we have mentioned, your code is much less likely to

become outdated or obsolete.

What do we mean by the “real world”?
In the real world, we don’t create a website and then move on to the next project

while leaving previous work behind. We create web applications and we update

them, fine-tune them, test them for potential performance problems, and continually

tweak their design, layout, and content.

In other words, in the real world, we don’t write code that we have no intention of

revisiting. We write code using the most reliable, maintainable, and effective

methods available, with every intention of returning to work on that code again to

make any necessary improvements or alterations. This is evident not only in websites

and web apps that we build and maintain on our own, but also in those we create

and maintain for our clients.

7Introducing HTML5 and CSS3

We need to continually search out new and better ways to write our code. HTML5

and CSS3 are a big step in that direction.

The Varied Browser Market
Although HTML5 is still in development, and does present significant changes in

the way content is marked up, it’s worth noting that those changes won’t cause

older browsers to choke, or result in layout problems or page errors.

What this means is that you could take any of your current projects containing

valid HTML4 or XHTML markup, change the doctype to HTML5 (which we’ll cover

in Chapter 2), and the page will still validate and appear the same as it did before.

The changes and additions in HTML5 have been implemented into the language in

such a way so as to ensure backwards compatibility with older browsers—even IE6!

But that’s just the markup. What about all the other features of HTML5, CSS3, and

related technologies? According to one set of statistics,6 about 47% of users are on

a version of Internet Explorer that has no support for most of these new features.

As a result, developers have come up with various solutions to provide the equivalent

experience to those users, all while embracing the exciting new possibilities offered

by HTML5 and CSS3. Sometimes this is as simple as providing fallback content,

like a Flash video player to browsers without native video support. At other times,

though, it’s been necessary to use scripting to mimic support for new features. These

“gap-filling” techniques are referred to as polyfills. Relying on scripts to emulate

native features isn’t always the best approach when building high-performance web

apps, but it’s a necessary growing pain as we evolve to include new enhancements

and features, such as the ones we’ll be discussing in this book.

So, while we’ll be recommending fallback options and polyfills to plug the gaps in

browser incompatibilities, we’ll also try to do our best in warning you of potential

drawbacks and pitfalls associated with using these options.

Of course, it’s worth noting that sometimes no fallbacks or polyfills are required at

all: for example, when using CSS3 to create rounded corners on boxes in your design,

there’s often no harm in users of older browsers seeing square boxes instead. The

6 http://gs.statcounter.com/#browser_version-ww-monthly-201011-201101-bar

HTML5 & CSS3 for the Real World8

functionality of the site isn’t degraded, and those users will be none the wiser about

what they’re missing.

With all this talk of limited browser support, you might be feeling discouraged.

Don’t be! The good news is that more than 40% of worldwide users are on a browser

that does offer support for a lot of the new stuff we’ll discuss in this book. And this

support is growing all the time, with new browser versions (such as Internet Explorer

9) continuing to add support for many of these new features and technologies.

As we progress through the lessons, we’ll be sure to inform you where support is

lacking, so you’ll know how much of what you create will be visible to your audience

in all its HTML5 and CSS3 glory. We’ll also discuss ways you can ensure that

nonsupporting browsers have an acceptable experience, even without all the bells

and whistles that come with HTML5 and CSS3.

The Growing Mobile Market
Another compelling reason to start learning and using HTML5 and CSS3 today is

the exploding mobile market.

According to StatCounter, in 2009, just over 1% of all web usage was mobile.7 In

less than two years, that number has quadrupled to over 4%.8 Some reports have

those numbers even higher, depending on the kind of analysis being done. Whatever

the case, it’s clear that the mobile market is growing at an amazing rate.

4% of total usage may seem small, and in all fairness, it is. But it’s the growth rate

that makes that number so significant—400% in two years! So what does this mean

for those learning HTML5 and CSS3?

HTML5, CSS3, and related cutting-edge technologies are very well supported in

many mobile web browsers. For example, mobile Safari on iOS devices like the

iPhone and iPad, Opera Mini and Opera Mobile, as well as the Android operating

system’s web browser all provide strong levels of HTML5 and CSS3 support. New

features and technologies supported by some of those browsers include CSS3 colors

and opacity, the Canvas API, Web Storage, SVG, CSS3 rounded corners, Offline

Web Apps, and more.

7 http://gs.statcounter.com/#mobile_vs_desktop-ww-monthly-200901-200912-bar
8 http://gs.statcounter.com/#mobile_vs_desktop-ww-monthly-201011-201101-bar

9Introducing HTML5 and CSS3

In fact, some of the new technologies we’ll be introducing in this book have been

specifically designed with mobile devices in mind. Technologies like Offline Web

Apps and Web Storage have been designed, in part, because of the growing number

of people accessing web pages with mobile devices. Such devices can often have

limitations with online data usage, and thus benefit greatly from the ability to access

web applications offline.

We’ll be touching on those subjects in Chapter 10, as well as others throughout the

course of the book that will provide the tools you need to create web pages for a

variety of devices and platforms.

On to the Real Stuff
It’s unrealistic to push ahead into new technologies and expect to author pages and

apps for only one level of browser. In the real world, and in a world where we desire

HTML5 and CSS3 to make further inroads, we need to be prepared to develop pages

that work across a varied landscape. That landscape includes modern browsers,

older versions of Internet Explorer, and an exploding market of mobile devices.

Yes, in some ways, supplying a different set of instructions for different user agents

resembles the early days of the Web with its messy browser sniffing and code forking.

But this time around, the new code is future-proof, so that when the older browsers

fall out of general use, all you need to do is remove the fallbacks and polyfills,

leaving only the code base that’s aimed at modern browsers.

HTML5 and CSS3 are the leading technologies ushering in a much more exciting

world of web page authoring. Because all modern browsers (including IE9) provide

significant levels of support for a number of HTML5 and CSS3 features, creating

powerful, easy-to-maintain, future-proof web pages is more accessible to web de-

velopers than ever before.

As the market share of older browsers declines, the skills you gain today in under-

standing HTML5 and CSS3 will become that much more valuable. By learning these

technologies today, you’re preparing for a bright future in web design. So, enough

about the “why,” let’s start digging into the “how”!

HTML5 & CSS3 for the Real World10

Chapter2
Markup, HTML5 Style
Now that we’ve given you a bit of a history primer, along with some compelling

reasons to learn HTML5 and start using it in your projects today, it’s time to intro-

duce you to the sample site that we’ll be progressively building in this book.

After we briefly cover what we’ll be building, we’ll discuss some HTML5 syntax

basics, along with some suggestions for best practice coding. We’ll follow that with

some important info on cross-browser compatibility, and the basics of page structure

in HTML5. Lastly, we’ll introduce some specific HTML5 elements and see how

they’ll fit into our layout.

So let’s get into it!

Introducing The HTML5 Herald
For the purpose of this book, we’ve put together a sample website project that we’ll

be building from scratch.

The website is already built—check it out now at http://thehtml5herald.com/. It’s

an old-time newspaper-style website called The HTML5 Herald. The home page of

the site contains some media in the form of video, images, articles, and advertise-

ments. There’s also another page comprising a registration form.

Go ahead and view the source, and try some of the functionality if you like. As we

proceed through the book, we’ll be working through the code that went into making

the site. We’ll avoid discussing every detail of the CSS involved, as most of it should

already be familiar to you: float layouts, absolute and relative positioning, basic

font styling, and the like. We’ll primarily focus on the new HTML5 elements, along

with the APIs, plus all the new CSS3 techniques being used to add styles and inter-

activity to the various elements.

Figure 2.1 shows a bit of what the finished product looks like.

Figure 2.1. The front page of The HTML5 Herald

While we build the site, we’ll do our best to explain the new HTML5 elements,

APIs, and CSS3 features, and we’ll try to recommend some best practices. Of course,

many of these technologies are still new and in development, so we’ll try not to be

too dogmatic about what you can and can’t do.

HTML5 & CSS3 for the Real World12

A Basic HTML5 Template
As you learn HTML5 and add new techniques to your toolbox, you’re likely going

to want to build yourself a blueprint, or boilerplate, from which you can begin all

your HTML5-based projects. In fact, you’ve probably already done something sim-

ilar for your existing XHTML or HTML 4.0 projects. We encourage this, and you

may also consider using one of the many online sources that provide a basic HTML5

starting point for you.1

In this project, however, we want to build our code from scratch and explain each

piece as we go along. Of course, it would be impossible for even the most fantastical

and unwieldy sample site we could dream up to include every new element or

technique, so we’ll also explain some new features that don’t fit into the project.

This way, you’ll be familiar with a wide set of options when deciding how to build

your HTML5 and CSS3 websites and web apps, so you’ll be able to use this book

as a quick reference for a number of techniques.

Let’s start simple, with a bare-bones HTML5 page:

index.html (excerpt)

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">

 <title>The HTML5 Herald</title>
 <meta name="description" content="The HTML5 Herald">
 <meta name="author" content="SitePoint">

 <link rel="stylesheet" href="css/styles.css?v=1.0">

 <!--[if lt IE 9]>
 <script src="http://html5shiv.googlecode.com/svn/trunk/html5.js">
➥</script>
 <![endif]-->
</head>
<body>

1 A few you might want to look into can be found at http://www.html5boilerplate.com/ and

http://html5reset.org/.

13Markup, HTML5 Style

 <script src="js/scripts.js"></script>
</body>
</html>

Look closely at the above markup. If you’re making the transition to HTML5 from

XHTML or HTML 4, then you’ll immediately notice quite a few areas in which

HTML5 differs.

The Doctype
First, we have the Document Type Declaration, or doctype. This is simply a way to

tell the browser—or any other parsers—what type of document they’re looking at.

In the case of HTML files, it means the specific version and flavor of HTML. The

doctype should always be the first item at the top of all your HTML files. In the

past, the doctype declaration was an ugly and hard-to-remember mess. For XHTML

1.0 Strict:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

And for HTML4 Transitional:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">

Over the years, code editing software began to provide HTML templates with the

doctype already included, or else they offered a way to automatically insert one.

And naturally, a quick web search will easily bring up the code to insert whatever

doctype you require.

Although having that long string of text at the top of our documents hasn’t really

hurt us (other than forcing our sites’ viewers to download a few extra bytes), HTML5

has done away with that indecipherable eyesore. Now all you need is this:

 <!doctype html>

Simple, and to the point. You’ll notice that the “5” is conspicuously missing from

the declaration. Although the current iteration of web markup is known as “HTML5,”

it really is just an evolution of previous HTML standards—and future specifications

HTML5 & CSS3 for the Real World14

will simply be a development of what we have today. Because browsers have to

support all existing content on the Web, there’s no reliance on the doctype to tell

them which features should be supported in a given document.

The html Element
Next up in any HTML document is the html element, which has not changed signi-

ficantly with HTML5. In our example, we’ve included the lang attribute with a

value of en, which specifies that the document is in English. In XHTML-based

syntax, you’d be required to include an xmlns attribute. In HTML5, this is no longer

needed, and even the lang attribute is unnecessary for the document to validate or

function correctly.

So here’s what we have so far, including the closing </html> tag:

<!doctype html>
<html lang="en">

</html>

The head Element
The next part of our page is the <head> section. The first line inside the head is the

one that defines the character encoding for the document. This is another element

that’s been simplified. Here’s how you used to do this:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

HTML5 improves on this by reducing the character encoding <meta> tag to the bare

minimum:

<meta charset="utf-8">

In nearly all cases, utf-8 is the value you’ll be using in your documents. A full ex-

planation of character encoding is beyond the scope of this chapter, and it probably

won’t be that interesting to you, either. Nonetheless, if you want to delve a little

deeper, you can read up on the topic on the W3C’s site.2

2 http://www.w3.org/TR/html-markup/syntax.html#character-encoding

15Markup, HTML5 Style

Get In Early

To ensure that all browsers read the character encoding correctly, the entire

character encoding declaration must be included somewhere within the first 512

characters of your document. It should also appear before any content-based ele-

ments (like the <title> element that follows it in our example site).

There’s much more we could write about this subject, but we want to keep you

awake—so we’ll spare you those details! For now, we’re content to accept this

simplified declaration and move on to the next part of our document:

<title>The HTML5 Herald</title>
<meta name="description" content="The HTML5 Herald">
<meta name="author" content="SitePoint">

<link rel="stylesheet" href="css/styles.css?v=1.0">

In these lines, HTML5 barely differs from previous syntaxes. The page title is de-

clared the same as it always was, and the <meta> tags we’ve included are merely

optional examples to indicate where these would be placed; you could put as many

meta elements here as you like.

The key part of this chunk of markup is the stylesheet, which is included using the

customary link element. At first glance, you probably didn’t notice anything differ-

ent. But customarily, link elements would include a type attribute with a value of

text/css. Interestingly, this was never required in XHTML or HTML 4—even when

using the Strict doctypes. HTML5-based syntax encourages you to drop the type

attribute completely, since all browsers recognize the content type of linked

stylesheets without requiring the extra attribute.

Leveling the Playing Field
The next element in our markup requires a bit of background information before it

can be introduced.

HTML5 includes a number of new elements, such as article and section, which

we’ll be covering later on. You might think this would be a major problem for older

browsers, but you’d be wrong. This is because the majority of browsers don’t actually

care what tags you use. If you had an HTML document with a <recipe> tag (or even

HTML5 & CSS3 for the Real World16

a <ziggy> tag) in it, and your CSS attached some styles to that element, nearly every

browser would proceed as if this were totally normal, applying your styling without

complaint.

Of course, this hypothetical document would fail to validate, but it would render

correctly in almost all browsers—the exception being Internet Explorer. Prior to

version 9, IE prevented unrecognized elements from receiving styling. These mystery

elements were seen by the rendering engine as “unknown elements,” so you were

unable to change the way they looked or behaved. This includes not only our ima-

gined elements, but also any elements which had yet to be defined at the time those

browser versions were developed. That means (you guessed it) the new HTML5

elements.

At the time of writing, Internet Explorer 9 has only just been released (and adoption

will be slow), so this is a bit of a problem. We want to start using the shiny new

tags, but if we’re unable to attach any CSS rules to them, our designs will fall apart.

Fortunately, there’s a solution: a very simple piece of JavaScript, originally developed

by John Resig, can magically make the new HTML5 elements visible to older versions

of IE.

We’ve included this so-called “HTML5 shiv”3 in our markup as a <script> tag

surrounded by conditional comments. Conditional comments are a proprietary

feature implemented by Microsoft in Internet Explorer. They provide you with the

ability to target specific versions of that browser with scripts or styles.4 This condi-

tional comment is telling the browser that the enclosed markup should only appear

to users viewing the page with Internet Explorer prior to version 9:

<!--[if lt IE 9]>
<script src="http://html5shiv.googlecode.com/svn/trunk/html5.js">
➥</script>
<![endif]-->

It should be noted that if you’re using a JavaScript library that deals with HTML5

features or the new APIs, it’s possible that it will already have the HTML5 enabling

3 You might be more familiar with its alternative name: the HTML5 shim. Whilst there are identical

code snippets out there that go by both names, we’ll be referring to all instances as the HTML5 shiv, its

original name.
4 For more information see http://reference.sitepoint.com/css/conditionalcomments

17Markup, HTML5 Style

script present; in this case, you could remove reference to Remy Sharp’s script. One

example of this would be Modernizr,5 a JavaScript library that detects modern

HTML and CSS features—and which we cover in Appendix A. Modernizr includes

code that enables the HTML5 elements in older versions of IE, so Remy’s script

would be redundant.

What about users on IE 6-8 who have JavaScript disabled?

Of course, there’s still a group of users who won’t benefit from Remy’s HTML5

shiv: those who have, for one reason or another, disabled JavaScript. As web de-

signers, we’re constantly told that the content of our sites should be fully accessible

to all users, even those without JavaScript. When between 40% and 75% of your

audience uses Internet Explorer, this can seem like a serious concern.

But it’s not as bad as it seems. A number of studies have shown that the number

of users that have JavaScript disabled is low enough to be of little concern.

In one study6 conducted on the Yahoo network, published in October 2010, users

with JavaScript disabled amounted to around 1% of total traffic worldwide. An-

other study7 indicated a similar number across a billion visitors. In both studies,

the US had the highest number of visitors with JavaScript disabled in comparison

to other parts of the world.

There are ways to use HTML5’s new elements without requiring JavaScript for

the elements to appear styled in nonsupporting browsers. Unfortunately, those

methods are rather impractical and have other drawbacks.

If you’re still concerned about these users, it might be worth considering a hybrid

approach; for example, use the new HTML5 elements where the lack of styles

won’t be overly problematic, while relying on traditional elements like divs for

key layout containers.

The Rest is History
Looking at the rest of our starting template, we have the usual body element along

with its closing tag and the closing </html> tag. We also have a reference to a

JavaScript file inside a script element.

5 http://www.modernizr.com/
6 http://developer.yahoo.com/blogs/ydn/posts/2010/10/how-many-users-have-javascript-disabled/
7 http://visualrevenue.com/blog/2007/08/eu-and-us-javascript-disabled-index.html

HTML5 & CSS3 for the Real World18

Much like the link element discussed earlier, the <script> tag does not require

that you declare a type attribute. In XHTML, to validate a page that contains external

scripts, your <script> tag should look like this:

<script src="js/scripts.js" type="text/javascript"></script>

Since JavaScript is, for all practical purposes, the only real scripting language used

on the Web, and since all browsers will assume that you’re using JavaScript even

when you don’t explicitly declare that fact, the type attribute is unnecessary in

HTML5 documents:

<script src="js/scripts.js"></script>

We’ve put the script element at the bottom of our page to conform to best practices

for embedding JavaScript. This has to do with the page loading speed; when a

browser encounters a script, it will pause downloading and rendering the rest of

the page while it parses the script. This results in the page appearing to load much

more slowly when large scripts are included at the top of the page before any content.

This is why most scripts should be placed at the very bottom of the page, so that

they’ll only be parsed after the rest of the page has loaded.

In some cases (like the HTML5 shiv) the script may need to be placed in the head

of your document, because you want it to take effect before the browser starts ren-

dering the page.

HTML5 FAQ
After this quick introduction to HTML5 markup, you probably have a bunch of

questions swirling inside your head. Here are some answers to a few of the likely

ones.

Why do these changes still work in older browsers?
This is what a lot of developers seem to have trouble accepting. To understand why

this isn’t a problem, we can compare HTML5 to some of the new features added in

CSS3, which we’ll be discussing in later chapters.

In CSS, when a new feature is added (for example, the border-radius property that

adds rounded corners to elements), it also has to be added to browsers’ rendering

19Markup, HTML5 Style

engines, so older browsers won’t recognize it. So if a user is viewing the page on a

browser with no support for border-radius, the rounded corners will appear square.

Other CSS3 features behave similarly, causing the experience to be degraded to

some degree.

Many developers expect that HTML5 will work in a similar way. While this might

be true for some of the advanced features and APIs we’ll be considering later in the

book, it’s not the case with the changes we’ve covered so far; that is, the simpler

syntax, the reduced redundancies, and the new doctype.

HTML5’s syntax was defined after a careful study of what older browsers can and

can’t handle. For example, the 15 characters that comprise the doctype declaration

in HTML5 are the minimum characters required to get every browser to display a

page in standards mode.

Likewise, while XHTML required a lengthier character-encoding declaration and

an extra attribute on the html element for the purpose of validation, browsers never

required them in order to display a page correctly. Again, the behavior of older

browsers was carefully examined, and it was determined that the character encoding

could be simplified and the xmlns attribute be removed—and browsers would still

see the page the same way.

The simplified script and link elements also fall into this category of “simplifying

without breaking older pages.” The same goes for the Boolean attributes we saw

above; browsers have always ignored the values of attributes like checked and

disabled, so why insist on providing them?

Thus, as mentioned in Chapter 1, you shouldn’t be afraid to use HTML5 today. The

language was designed with backwards compatibility in mind, with the goal of

trying to support as much existing content as possible.

Unlike changes to CSS3 and JavaScript, where additions are only supported when

browser makers actually implement them, there’s no need to wait for new browser

versions to be released before using HTML5’s syntax. And when it comes to using

the new semantic elements, a small snippet of JavaScript is all that’s required to

bring older browsers into line.

HTML5 & CSS3 for the Real World20

What is standards mode?

When standards-based web design was in its infancy, browser makers were faced

with a problem: supporting emerging standards would, in many cases, break

backwards compatibility with existing web pages that were designed to older,

nonstandard browser implementations. Browser makers needed a signal indicating

that a given page was meant to be rendered according to the standards. They found

such a signal in the doctype: new, standards-compliant pages included a correctly

formatted doctype, while older, nonstandard pages generally didn’t.

Using the doctype as a signal, browsers could switch between standards mode

(in which they try to follow standards to the letter in the way they render elements)

and quirks mode (where they attempt to mimic the “quirky” rendering capabilities

of older browsers to ensure that the page renders how it was intended).

It’s safe to say that in the current development landscape, nearly every web page

has a proper doctype, and thus will render in standards mode; it’s therefore un-

likely that you’ll ever have to deal with a page being rendered in quirks mode. Of

course, if a user is viewing a web page using a very old browser (like IE4), the

page will be rendered using that browser’s rendering mode. This is what quirks

mode mimics, and it will do so regardless of the doctype being used.

Although the XHTML and older HTML doctypes include information about the

exact version of the specification they refer to, browsers have never actually made

use of that information. As long as a seemingly correct doctype is present, they’ll

render the page in standards mode. Consequently, HTML5’s doctype has been

stripped down to the bare minimum required to trigger standards mode in any

browser.

Further information, along with a chart that outlines what will cause different

browsers to render in quirks mode, can be found on Wikipedia.8 You can also

read a good overview of standards and quirks mode on SitePoint’s CSS reference.9

Shouldn’t all tags be closed?
In XHTML-based syntax, all elements need to be closed—either with a corresponding

closing tag (like </html>) or in the case of void elements, a forward slash at the end

8 http://en.wikipedia.org/wiki/Quirks_mode/
9 http://reference.sitepoint.com/css/doctypesniffing/

21Markup, HTML5 Style

of the tag. The latter are elements that can’t contain child elements (such as input,

img, or link).

You can still use that style of syntax in HTML5—and you might prefer it for consist-

ency and maintainability reasons—but it’s no longer required to add a trailing slash

to void elements for validation. Continuing with the theme of “cutting the fat,”

HTML5 allows you to omit the trailing slash from such elements, arguably leaving

your markup cleaner and less cluttered.

It’s worth noting that in HTML5, most elements that can contain nested elements

—but simply happen to be empty—still need to be paired with a corresponding

closing tag. There are exceptions to this rule, but it’s simpler to assume that it’s

universal.

What about other XHTML-based syntax customs?
While we’re on the subject, omitting closing slashes is just one aspect of HTML5-

based syntax that differs from XHTML. In fact, syntax style issues are completely

ignored by the HTML5 validator, which will only throw errors for code mistakes

that threaten to disrupt your document in some way.

What this means is that through the eyes of the validator, the following five lines

of markup are identical:

<link rel="stylesheet" href="css/styles.css" />
<link rel="stylesheet" href="css/styles.css">
<LINK REL="stylesheet" HREF="css/styles.css">
<Link Rel="stylesheet" Href="css/styles.css">
<link rel=stylesheet href=css/styles.css>

In HTML5, you can use lowercase, uppercase, or mixed-case tag names or attributes,

as well as quoted or unquoted attribute values (as long as those values don’t contain

spaces or other reserved characters)—and it will all validate just fine.

In XHTML, all attributes have to have values, even if those values are redundant.

For example, you’d often see markup like this:

<input type="text" disabled="disabled" />

HTML5 & CSS3 for the Real World22

In HTML5, attributes that are either “on” or “off” (called Boolean attributes) can

simply be specified with no value. So, the above input element could now be

written as follows:

<input type="text" disabled>

Hence, HTML5 has much looser requirements for validation, at least as far as syntax

is concerned. Does this mean you should just go nuts and use whatever syntax you

want on any given element? No, we certainly don’t recommend that.

We encourage developers to choose a syntax style and stick to it—especially if you

are working in a team, where code maintenance and readability are crucial. We also

recommend (though this is certainly not required) that you choose a minimalist

coding style while staying consistent.

Here are some guidelines that you can consider using:

■ Use lowercase for all elements and attributes, as you would in XHTML.

■ Despite some elements not requiring closing tags, we recommend that all elements

that contain content be closed (as in <p>Text</p>).

■ Although you can leave attribute values unquoted, it’s highly likely that you’ll

have attributes that require quotes (for example, when declaring multiple classes

separated by spaces, or when appending a query string value to a URL). As a

result, we suggest that you always use quotes for the sake of consistency.

■ Omit the trailing slash from elements that have no content (like meta or input).

■ Avoid providing redundant values for Boolean attributes (for instance, use <input

type="checkbox" checked> rather than <input type="checkbox"

checked="checked">).

Again, the recommendations above are by no means universally accepted. But we

believe they’re reasonable syntax suggestions for achieving clean, easy-to-read

maintainable markup.

If you run amok with your code style, including too much that’s unnecessary, you

run the risk of negating the strides taken by the creators of HTML5 in trying to

simplify the language.

23Markup, HTML5 Style

Defining the Page’s Structure
Now that we’ve broken down the basics of our template, let’s start adding some

meat to the bones, and give our page some basic structure.

Later in the book, we’re going to specifically deal with adding CSS3 features and

other HTML5 goodness; for now, we’ll consider what elements we want to use in

building our site’s overall layout. We’ll be covering a lot in this section, and

throughout the coming chapters, about semantics. When we use this term, we’re

referring to the way a given HTML element describes the meaning of its content.

Because HTML5 includes a wider array of semantic elements, you might find

yourself spending a bit more time thinking about your content’s structure and

meaning than you’ve done in the past with HTML 4 or XHTML. That’s great! Under-

standing what your content means is what writing good markup is all about.

If you look back at the screenshot of The HTML5 Herald (or view the site online),

you’ll see that it’s divided up as follows:

■ header section with a logo and title
■ navigation bar
■ body content divided into three columns
■ articles and ad blocks within the columns
■ footer containing some author and copyright information

Before we decide which elements are appropriate for these different parts of our

page, let’s consider some of our options. First of all, we’ll introduce you to some of

the new HTML5 semantic elements that could be used to help divide our page up

and add more meaning to our document’s structure.

The header Element
Naturally, the first element we’ll look at is the header element. The WHATWG spec

describes it succinctly as “a group of introductory or navigational aids.”10 Essentially,

this means that whatever content you were accustomed to including inside of <div

id="header">, you would now include in the header.

10 http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-header-element

HTML5 & CSS3 for the Real World24

But there’s a catch that differentiates header from the customary div element that’s

often used for a site’s header: there’s no restriction to using it just once per page.

Instead, you can include a new header element to introduce each section of your

content. When we use the word “section” here, we’re not limiting ourselves to the

actual section element described below; technically, we’re referring to what HTML5

calls “sectioning content.” This will be covered in greater detail in the next chapter;

for now, you can safely understand it to mean any chunk of content that might need

its own header.

A header element can be used to include introductory content or navigational aids

that are specific to any single section of a page, or that apply to the entire page—or

both.

While a header element will frequently be placed at the top of a page or section, its

definition is independent from its position. Your site’s layout might call for the title

of an article or blog post to be off to the left, right, or even below the content; regard-

less, you can still use header to describe this content.

The section Element
The next element you should become familiar with is HTML5’s section element.

The WHATWG spec defines section as follows:11

The section element represents a generic section of a document or

application. A section, in this context, is a thematic grouping of

content, typically with a heading.

It further explains that a section shouldn’t be used as a generic container that exists

for styling or scripting purposes only. If you’re unable to use section as a generic

container—for example, in order to achieve your desired CSS layout—then what

should you use? Our old friend, the div—which is semantically meaningless.

Going back to the definition from the spec, the section element’s content should

be “thematic,” so it would be incorrect to use it in a generic way to wrap unrelated

pieces of content.

11 http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-section-element

25Markup, HTML5 Style

Some examples of acceptable uses for section elements include:

■ individual sections of a tabbed interface

■ segments of an “About” page; for example, a company’s “About” page might

include sections on the company’s history, its mission statement, and its team

■ different parts of a lengthy “terms of service” page

■ various sections of an online news site; for example, articles could be grouped

into sections covering sports, world affairs, and economic news

Semantics!

Every time new semantic markup is made available to web designers, there will

be debate over what constitutes correct use of these elements, what the spec’s in-

tention was, and so on. You may remember discussions about the appropriate use

of the dl element in previous HTML specifications. Unsurprisingly, therefore,

HTML5 has not been immune to this phenomenon—particularly when it comes

to the section element.

Even Bruce Lawson, a well-respected authority on HTML5, has admitted to using

section incorrectly in the past. For a bit of clarity, Bruce’s post12 explaining his

error is well worth the read. In short:

■ section is generic, so if a more specific semantic element is appropriate (like

article, aside, or nav), use that instead.

■ section has semantic meaning; it implies that the content it contains is related

in some way. If you’re unable to succinctly describe all the content you’re

trying to put in a section using just a few words, it’s likely you need a se-

mantically neutral container instead: the humble div.

That said, as is always the case with semantics, it’s open to interpretation in some

instances. If you feel you can make a case for why you’re using a given element

rather than another, go for it. In the unlikely event that anyone ever calls you on

it, the resulting discussion can be both entertaining and enriching for everyone

involved, and might even contribute to the wider community’s understanding of

the specification.

12 http://html5doctor.com/the-section-element/

HTML5 & CSS3 for the Real World26

Keep in mind, also, that you’re permitted to nest section elements inside existing

section elements, if it’s appropriate. For example, for an online news website, the

world news section might be further subdivided into a section for each major

global region.

The article Element
The article element is similar to the section element, but there are some notable

differences. Here’s the definition according to WHATWG:13

The article element represents a self-contained composition in a

document, page, application, or site and that is, in principle, inde-

pendently distributable or reusable, e.g. in syndication.

The key terms in that definition are self-contained composition and independently

distributable. Whereas a section can contain any content that can be grouped

thematically, an article must be a single piece of content that can stand on its

own. This distinction can be hard to wrap your head around—so when in doubt,

try the test of syndication: if a piece of content can be republished on another site

without being modified, or pushed out as an update via RSS, or on social media

sites like Twitter or Facebook, it has the makings of an article.

Ultimately, it’s up to you to decide what constitutes an article, but here are some

suggestions:

■ forum posts
■ magazine or newspaper articles
■ blog entries
■ user-submitted comments

Finally, just like section elements, article elements can be nested inside other

article elements. You can also nest a section inside an article, and vice versa.

The nav Element
It’s safe to assume that this element will appear in virtually every project. nav rep-

resents exactly what it implies: a group of navigation links. Although the most

common use for nav will be for wrapping an unordered list of links, there are other

13 http://www.whatwg.org/specs/web-apps/current-work/multipage/sections.html#the-article-element

27Markup, HTML5 Style

options. You could also wrap the nav element around a paragraph of text that con-

tained the major navigation links for a page or section of a page.

In either case, the nav element should be reserved for navigation that is of primary

importance. So, it’s recommended that you avoid using nav for a brief list of links

in a footer, for example.

nav and Accessibility

A design pattern you may have seen implemented on many sites is the “skip

navigation” link. The idea is to allow users of screen readers to quickly skip past

your site’s main navigation if they’ve already heard it—after all, there’s no point

listening to a large site’s entire navigation menu every time you click through to

a new page!

The nav element has the potential to eliminate this need; if a screen reader sees

a nav element, it could allow its users to skip over the navigation without requiring

an additional link. The specification states:

User agents (such as screen readers) that are targeted at users

who can benefit from navigation information being omitted in

the initial rendering, or who can benefit from navigation inform-

ation being immediately available, can use this element as a way

to determine what content on the page to initially skip and/or

provide on request.

Current screen readers fail to recognize nav, but this doesn’t mean you shouldn’t

use it. Assistive technology will continue to evolve, and it’s likely your page will

be on the Web well into the future. By building to the standards now, you ensure

that as screen readers improve, your page will become more accessible over time.

What’s a user agent?

You’ll encounter the term user agent a lot when browsing through specifications.

Really, it’s just a fancy term for a browser—a software “agent” that a user employs

to access the content of a page. The reason the specs don’t simply say “browser”

is that user agents can include screen readers, or any other technological means

to read a web page.

You can use nav more than once on a given page. If you have a primary navigation

bar for the site, this would call for a nav element.

HTML5 & CSS3 for the Real World28

Additionally, if you had a secondary set of links pointing to different parts of the

current page (using in-page anchors), this too could be wrapped in a nav element.

As with section, there’s been some debate over what constitutes acceptable use of

nav and why it isn’t recommended in some circumstances (such as inside a footer).

Some developers believe this element is appropriate for pagination or breadcrumb

links, or for a search form that constitutes a primary means of navigating a site (as

is the case on Google).

This decision will ultimately be up to you, the developer. Ian Hickson, the primary

editor of WHATWG’s HTML5 specification, responded to the question directly:

“use [it] whenever you would have used class=nav”.14

The aside Element
This element represents a part of the page that’s “tangentially related to the content

around the aside element, and which could be considered separate from that con-

tent.”15

The aside element could be used to wrap a portion of content that is tangential to:

■ a specific standalone piece of content (such as an article or section)

■ an entire page or document, as is customarily done when adding a “sidebar” to

a page or website

The aside element should never be used to wrap sections of the page that are part

of the primary content; in other words, it’s not meant to be parenthetical. The aside

content could stand on its own, but it should still be part of a larger whole.

Some possible uses for aside include a sidebar, a secondary lists of links, or a block

of advertising. It should also be noted that the aside element (as in the case of

header) is not defined by its position on the page. It could be on the “side,” or it

could be elsewhere. It’s the content itself, and its relation to other elements, that

defines it.

14 See http://html5doctor.com/nav-element/#comment-213
15 http://dev.w3.org/html5/spec/Overview.html#the-aside-element

29Markup, HTML5 Style

The footer Element
The final element we’ll discuss in this chapter is the footer element. As with

header, you can have multiple footers on a single page, and you should use footer

to wrap the section of your page that you would normally wrap inside of <div

id="footer">.

A footer element, according to the spec, represents a footer for the section of content

that is its nearest ancestor. The “section” of content could be the entire document,

or it could be a section, article, or aside element.

Often a footer will contain copyright information, lists of related links, author in-

formation, and similar content that you normally think of as coming at the end of

a block of content. However, much like aside and header, a footer element is not

defined in terms of its position on the page; hence, it does not have to appear at the

end of a section, or at the bottom of a page. Most likely it will, but this is not required.

For example, information about the author of a blog post might be displayed above

the post instead of below it, and still be considered footer information.

How did HTML5’s creators decide which new elements to include?

You might wonder how the creators of the language came up with new semantic

elements. After all, you could feasibly have dozens more semantic elements—why

not have a comment element for user-submitted comments, or an ad element

specifically for advertisements?

The creators of HTML5 ran tests to search through millions of web pages to see

what kinds of elements were most commonly being used. The elements were de-

cided based on the id and class attributes of the elements being examined. The

results helped guide the introduction of a number of new HTML semantic elements.

Thus, instead of introducing new techniques that might be rejected or go unused,

the editors of HTML5 are endeavoring to include elements that work in harmony

with what web page authors are already doing. In other words, if it’s common for

most web pages to include a div element with an id of header, it makes sense

to include a new element called header.

HTML5 & CSS3 for the Real World30
D

ow
nl

oa
d

fr
om

 W
ow

!
eB

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Structuring The HTML5 Herald
Now that we’ve covered the basics of page structure and the elements in HTML5

that will assist in this area, it’s time to start building the parts of our page that will

hold the content.

Let’s start from the top, with a header element. It makes sense to include the logo

and title of the paper in here, as well as the tagline. We can also add a nav element

for the site navigation.

After the header, the main content of our site is divided into three columns. While

you might be tempted to use section elements for these, stop and think about the

content. If each column contained a separate “section” of information (like a sports

section and an entertainment section), that would make sense. As it is, though, the

separation into columns is really only a visual arrangement—so we’ll use a plain

old div for each column.

Inside those divs, we have newspaper articles; these, of course, are perfect candidates

for the article element.

The column on the far right, though, contains three ads in addition to an article.

We’ll use an aside element to wrap the ads, with each ad placed inside an article

element. This may seem odd, but look back at the description of article: “a self-

contained composition […] that is, in principle, independently distributable or re-

usable.” An ad fits the bill almost perfectly, as it’s usually intended to be reproduced

across a number of websites without modification.

Next up, we’ll add another article element for the final article that appears below

the ads. That final article will not be included in the aside element that holds the

three ads. To belong in the aside, the article would need to be tangentially related

to the page’s content. This isn’t the case: the article is part of the page’s main

content, so it would be wrong to include it in the aside.

Now the third column consists of two elements: an aside and an article, stacked

one on top of the other. To help hold them together and make them easier to style,

we’ll wrap them in a div. We’re not using a section, or any other semantic markup,

because that would imply that the article and the aside were somehow topically

related. They’re not—it’s just a feature of our design that they happen to be in the

same column together.

31Markup, HTML5 Style

We’ll also have the entire upper section below the header wrapped in a generic div

for styling purposes.

Finally, we have a footer in its traditional location, at the bottom of the page. Be-

cause it contains a few different chunks of content, each of which forms a self-

contained and topically related unit, we’ve split them out into section elements.

The author information will form one section, with each author sitting in their

own nested section. Then there’s another section for the copyright and additional

information.

Let’s add the new elements to our page, so that we can see where our document

stands:

index.html (excerpt)

<body>

<header>
 <nav></nav>
</header>

<div id="main">
 <div id="primary">
 <article></article>
 ⋮
 </div>
 <div id="secondary">
 <article></article>
 ⋮
 </div>
 <div id="tertiary">
 <aside>
 <article></article>
 ⋮
 </aside>
 <article></article>
 </div>
</div><!-- #main -->

<footer>
 <section id="authors">
 <section></section>
 </section>

HTML5 & CSS3 for the Real World32

 <section id="copyright"></section>
</footer>

<script src="js/scripts.js"></script>
</body>

Figure 2.2 shows a screenshot that displays our page with some labels indicating

the major structural elements we’ve used.

Figure 2.2. The HTML5 Herald, broken into structural HTML5 elements

We now have a structure that can serve as a solid basis for the content.

33Markup, HTML5 Style

Wrapping Things Up
That’s it for this chapter. We’ve learned some of the basics of content structure in

HTML5, and we’ve started to build our sample project using the knowledge we’ve

gained.

In the next chapter, we’ll have a more in-depth look at how HTML5 deals with

different types of content. Then, we’ll continue to add semantics to our page when

we deal with more new HTML elements.

HTML5 & CSS3 for the Real World34

Chapter3
More HTML5 Semantics
Our sample site is coming along nicely. We’ve given it some basic structure, along

the way learning more about marking up content using HTML5’s new elements.

In this chapter, we’ll discuss even more new elements, along with some changes

and improvements to familiar elements. We’ll also add some headings and basic

text to our project, and we’ll discuss the potential impact of HTML5 on SEO and

accessibility.

Before we dive into that, though, let’s take a step back and examine a few new—and

a little tricky—concepts that HTML5 brings to the table.

A New Perspective on Types of Content
For layout and styling purposes, developers have become accustomed to thinking

of elements in an HTML page as belonging to one of two categories: block and inline.

Although elements are still rendered as either block or inline by browsers, the

HTML5 spec takes the categorization of content a step further. The specification

now defines a set of more granular content models. These are broad definitions

about the kind of content that should be found inside a given element. Most of the

time they’ll have little impact on the way you write your markup, but it’s worth

having a passing familiarity with them, so let’s have a quick look.

Metadata content

This category is what it sounds like: data that’s not present on the page itself,

but affects the page’s presentation or includes other information about the page.

This includes elements like title, link, meta, and style.

Flow content

Flow content includes just about every element that’s used in the body of an

HTML document, including elements like header, footer, and even p. The only

elements excluded are those that have no effect on the document’s flow: script,

link, and meta elements in the page’s head, for example.

Sectioning content

This is the most interesting—and for our purposes, most relevant—type of

content in HTML5. In the last chapter, we often found ourselves using the gen-

eric term “section” to refer to a block of content that could contain a heading,

footer, or aside. In fact, what we were actually referring to was sectioning content.

In HTML5, this includes article, aside, nav, and section. We’ll talk about

sectioning content and how it can affect the way you write your markup in more

detail very shortly.

Heading content

This type of content defines the header of a given section, and includes the

various levels of heading (h1, h2, and so on), as well as the new hgroup element,

which we’ll cover a bit later.

Phrasing content

This category is roughly the equivalent to what you’re used to thinking of as

inline content, it includes elements like em, strong, cite, and the like.

Embedded content

This one’s fairly straightforward, and includes elements that are, well, embedded

into a page, such as img, object, embed, video, canvas, and others.

HTML5 & CSS3 for the Real World36

Interactive content

This category includes any content with which users can interact. It consists

mainly of form elements, as well as links and other elements that are interactive

only when certain attributes are present.

As you might gather from reading the list above, some elements can belong to more

than one category. There are also some elements that fail to fit into any category.

Don’t worry if this seems confusing: just remember that these distinctions exist—that

should be more than enough.

The Document Outline
In previous versions of HTML, you could draw up an outline of any given document

by looking at the various levels of headings (h1 through to h6) contained in the page.

Each time a new level of heading was added, you’d go one step deeper into the

hierarchy of your outline. For example, take this markup:

<h1>Title</h1>
⋮
<h2>Subtitle</h2>
⋮
<h3>Another level</h3>
⋮
<h2>Another subtitle</h2>

This would produce the document outline shown in Figure 3.1.

Figure 3.1. A simple document outline

It was preferred that each page have a single h1 element, with other headings fol-

lowing sequentially.

37More HTML5 Semantics

In order to make content easier to syndicate and more portable, the HTML5 specific-

ation provides a clear algorithm for constructing the outline of an HTML document.

Each element that falls under the category of “sectioning content” creates a new

node in the document outline. Heading (h1–h6) elements within a block of sectioning

content also create “implied” sections—this is actually what was happening in our

simple outline above.

This all sounds more complicated than it is. To start to gain an understanding of it,

let’s look at how the above example could be rewritten using some additional HTML5

elements:

<section>
 <h1>Title</h1>
 ⋮
 <article>
 <h1>Article Title</h1>
 ⋮
 <h2>Article Subtitle</h2>
 ⋮
 </article>
 <article>
 <h1>Another subtitle</h1>
 ⋮
 </article>
</section>

This results in exactly the same document outline as above: each piece of sectioning

content (the article elements in this example) creates a new branch in the document

tree, and so can have its own h1. This way, each section has its own mini document

outline.

The advantage of the new outlining algorithm is that it allows us to move an entire

section to a completely different document while preserving the same markup. Be-

forehand, a post’s title on that post’s page might have been an h1, but the same post’s

title on the home page or a category page listing might have been an h2 or h3. Now,

you can just keep the same markup, as long as the headings are grouped together

in a sectioning content element.

HTML5 & CSS3 for the Real World38

Testing Document Outlines

Getting a document’s outline right in HTML5 can be tricky at first. If you’re having

trouble, you can use a handy JavaScript bookmarklet called h5o1 to show the

outline of any document you’re viewing with the HTML5 outline algorithm. The

resulting display will reveal your document’s hierarchy in accordance with the

HTML5 standard, so you can make corrections as needed.

To install it in your browser, download the HTML file from the site and open it

in your browser; then drag the link to your favorites or bookmarks bar. Now you

can use the h5o link to display a document outline for any page you’re viewing.

It’s important to note that the old way of coding and structuring content, with a

single h1 on each page, is still valid HTML5. Your pages will still be valid, even

though you’ll miss out on the portability and syndication benefits.

Understanding Sectioning Roots

Distinct from—but similar to—sectioning content, HTML5 also defines a type of

element called a sectioning root. These include blockquote, body, details,

fieldset, figure, and td. What makes the sectioning root elements distinct is

that, although they may individually have their own outlines, the sectioning

content and headings inside these elements do not contribute to the overall docu-

ment outline (with the exception of body, the outline of which is the document’s

outline).

Breaking News
Now that we’ve got a solid handle on HTML5’s content types and document outlines,

it’s time to dive back into The HTML5 Herald and add some headings for our articles.

For brevity, we’ll deal with each section individually. Let’s add a title and subtitle

to our header, just above the navigation:

<header>

 <hgroup>
 <h1>The HTML5 Herald</h1>

1 http://code.google.com/p/h5o/

39More HTML5 Semantics

 <h2>Produced With That Good Ol’ Timey HTML5 & CSS3</h2>
 </hgroup>
 <nav>
 ⋮
 </nav>

</header>

The hgroup Element
You’ll notice we have introduced three elements into our markup: the title of the

website, which is marked up with the customary h1 element; a tagline immediately

below the primary page title, marked up with an h2; and a new HTML5 element

that wraps our title and tagline, the hgroup element.

To understand the purpose of the hgroup element, consider again how a page’s

outline is built. Let’s take our heading markup without the hgroup element:

<h1>The HTML5 Herald</h1>
<h2>Produced With That Good Ol’ Timey HTML5 & CSS3</h2>

This would produce the document outline shown in Figure 3.2.

Figure 3.2. A subtitle generates an unwanted node in the document outline

The h2 element creates a new, implicit section: all content that follows is logically

grouped under a subsection created by that tagline—and that’s not what we want

at all. Furthermore, if we have additional headings (for example, for article titles)

that use h2, those new headings will be hierarchically on the same level as our

tagline; this is also incorrect, as shown in Figure 3.3.

HTML5 & CSS3 for the Real World40

Figure 3.3. Other headlines in the content wrongly appear grouped with the tagline

Well, we could mark up subsequent headings starting with h3, right? But again, this

causes problems in our document’s outline. Now, the headings beginning with h3

will become subsidiary to our tagline, as Figure 3.4 shows.

Figure 3.4. Using further nested heading levels fails to solve the problem

That’s also undesirable; we want the new headings to be subsections of our primary

heading, the h1 element.

What if, instead, we opted to mark up our tagline using a generic element like a p

or span:

<h1>HTML5 Herald</h1>
<p id="tagline">Produced With That Good Ol’ Timey HTML5 & CSS3
➥</p>

While this does avoid cluttering up the document outline with a superfluous branch,

it’s a little lacking in terms of semantics. You might be thinking that the id attribute

helps define the element’s meaning by using a value of tagline. But the id attribute

cannot be used by the browser to infer meaning for the element in question—it adds

nothing to the document’s semantics.

This is where the hgroup element comes in. The hgroup element tells the user agent

that the headings nested within it form a composite heading (a heading group, as

it were), with the h1 being the primary parent element. This prevents our document

41More HTML5 Semantics

outline from becoming jumbled, and it helps us avoid using nonsemantic elements

in our page.

So any time you want to include a subheading without affecting the document’s

outline, just wrap the headings in an hgroup element; this will resolve the problem

without resorting to undesirable methods. Figure 3.5 shows the outline produced

for the header, with the hgroup wrapping the two headings.

Figure 3.5. hgroup to the rescue

Much better!

More New Elements
In addition to the structural elements we saw in Chapter 2 and the hgroup element

we’ve just covered, HTML5 introduces a number of new semantic elements. Let’s

examine some of the more useful ones.

The figure and figcaption Elements
The figure and figcaption elements are another pair of new HTML5 elements

that contribute to the improved semantics in HTML5. The figure element is ex-

plained in the spec as follows:

The element can […] be used to annotate illustrations, diagrams,

photos, code listings, etc, that are referred to from the main content

of the document, but that could, without affecting the flow of the

document, be moved away from that primary content, e.g. to the

side of the page, to dedicated pages, or to an appendix.

Think of charts, graphs, images to accompany text, or example code. All those types

of content might be good places to use figure and potentially figcaption.

The figcaption element is simply a way to mark up a caption for a piece of content

that appears inside of a figure.

HTML5 & CSS3 for the Real World42

In order to use the figure element, the content being placed inside it must have

some relation to the main content in which the figure appears. If you can completely

remove it from a document, and the document’s content can still be fully understood,

you probably shouldn’t be using figure; you might, however, need to use aside or

another alternative. Likewise, if the image or listing forms part of the flow of the

document, and the text would need rewording if you moved it, it’s probably best

to use another option.

Let’s look at how we’d mark up a figure inside an article:

<article>
 <hgroup>
 <h1>WAI-ARIA</h1>
 <h2>Web App Accessibility</h2>
 </hgroup>

 <p>Lorem ipsum dolor … </p>

 <p>As you can see in Figure 1,

 <figure id="fig1">
 <figcaption>Screen Reader Support for WAI-ARIA</figcaption>

 </figure>

 <p>Lorem ipsum dolor … </p>
</article>

The mark Element
The mark element “indicates a part of the document that has been highlighted due

to its likely relevance to the user’s current activity.” Admittedly, there are very few

uses we can think of for the mark element. The most common is in the context of a

search, where the keywords that were searched for are highlighted in the results.

Avoid confusing mark with em or strong; those elements add contextual importance,

whereas mark separates the targeted content based on a user’s current browsing or

search activity.

43More HTML5 Semantics

For example, if a user has arrived at an article on your site from a Google search for

the word “HTML5,” you might highlight words in the article using the mark element,

like this:

<h1>Yes, You Can Use <mark>HTML5</mark> Today!</h1>

The mark element can be added to the document either using server-side code, or

JavaScript once the page has loaded.

The progress and meter Elements
Two new elements added in HTML5 allow for marking up of data that’s being

measured or gauged in some way. The difference between them is fairly subtle:

progress is used to describe the current status of a changing process that’s headed

for completion, regardless of whether the completion state is defined. The traditional

download progress bar is a perfect example of progress.

The meter element, meanwhile, represents an element whose range is known,

meaning it has definite minimum and maximum values. The spec gives the examples

of disk usage, or a fraction of a voting population—both of which have a definite

maximum value. Therefore, it’s likely you wouldn’t use meter to indicate an age,

height, or weight—all of which normally have unknown maximum values.

Let’s first look at progress. The progress element can have a max attribute to indicate

the point at which the task will be complete, and a value attribute to indicate the

task’s status. Both of these attributes are optional. Here’s an example:

<h1>Your Task is in Progress</h1>
<p>Status: <progress min="0" max="100" value="0">0%
➥</progress></p>

This element would best be used (along with some JavaScript) to dynamically change

the value of the percentage as the task progresses. You’ll notice that the code includes

 tags, isolating the number value; this facilitates targeting the number directly

from your script when you need to update it.

The meter element has six associated attributes. In addition to max and value, it

also allows use of min, high, low, and optimum.

HTML5 & CSS3 for the Real World44

The min and max attributes reference the lower and upper boundaries of the range,

while value indicates the current specified measurement. The high and low attrib-

utes indicate thresholds for what is considered “high” or “low” in the context. For

example, your grade on a test can range from 0% to 100% (max), but anything below

60% is considered low and anything above 85% is considered high. optimum refers

to the ideal value. In the case of a test score, the value of optimum would be 100.

Here’s an example of meter, using the premise of disk usage:

<p>Total current disk usage: <meter value="63" min="0" max="320"
➥low="10" high="300" title="gigabytes">63 GB</meter>

The time Element
Dates and times are invaluable components of web pages. Search engines are able

to filter results based on time, and in some cases, a specific search result can receive

more or less weight by a search algorithm depending on when it was first published.

The time element has been specifically designed to deal with the problem of humans

reading dates and times differently from machines. Take the following example:

<p>We'll be getting together for our next developer conference on
➥12 October of this year.</p>

While humans reading this paragraph will understand when the event will take

place, it would be less clear to a machine attempting to parse the information.

Here’s the same paragraph with the time element introduced:

<p>We’ll be getting together for our next developer conference on
➥<time datetime="2011-10-12">12 October of this year</time>.</p>

The time element also allows you to express dates and times in whichever format

you like while retaining an unambiguous representation of the date and time behind

the scenes, in the datetime attribute. This value could then be converted into a

localized or preferred form using JavaScript, or by the browser itself, though currently

no browsers implement any special handling of the time element.

If you want to include a time along with the date, you would do it like this:

45More HTML5 Semantics

<time datetime="2011-10-12T16:24:34.014Z">12 October of this year.
➥</time>

In the above example, the T character is used to indicate the start of the time. The

format is HH:MM:SS with milliseconds after the decimal point. The Z character is

optional and indicates that the time zone is Coordinated Universal Time (UTC). To

indicate a time zone offset (instead of UTC), you would append it with a plus or

minus, like this:

<time datetime="2011-10-12T16:24:34.014-04:00">12 October of
this year</time>

In addition to the datetime attribute shown in the above examples, the time element

allows use of the pubdate attribute. This is a Boolean attribute, and its existence

indicates that the content within the closest ancestor article element was published

on the specified date. If there’s no article element, the pubdate attribute would

apply to the entire document.

For example, in the header of The HTML5 Herald, the issue’s publication date is a

perfect candidate for the time element with a pubdate attribute:

index.html (excerpt)

<p id="issue"><time datetime="1904-06-04" pubdate>June 4, 1904
➥</time></p>

Because this element indicates the publication date of our newspaper, we’ve added

the pubdate attribute. Any other dates referred to on the page—in the text of articles,

for example—would omit this attribute.

The time element has some associated rules and guidelines:

■ You should not use time to encode unspecified dates or times (for example,

“during the ice age” or “last winter”).

■ The date represented cannot be “BC” or “BCE” (before the common era); it must

be a date on the Gregorian Calendar.

■ The datetime attribute has to be a valid date string.

HTML5 & CSS3 for the Real World46

■ If the time element lacks a datetime attribute, the element’s text content

(whatever appears between the opening and closing tags) needs to be a valid

date string.

The uses for the time element are endless: calendar events, publication dates (for

blog posts, videos, press releases, and so forth), historic dates, transaction records,

article or content updates, and much more.

Changes to Existing Features
While new elements and APIs have been the primary focus of HTML5, this latest

iteration of web markup has also brought with it changes to existing elements. For

the most part, any changes that have been made have been done with backwards

compatibility in mind, to ensure that the markup of existing content is still usable.

We’ve already considered some of the changes (the doctype declaration, character

encoding, content types, and the document outline, for example). Let’s look at other

significant changes introduced in the HTML5 spec.

The Word “Deprecated” is Deprecated
In previous versions of HTML and XHTML, elements that were no longer recom-

mended for use (and so removed from the spec), were considered “deprecated.” In

HTML5, there is no longer any such thing as a deprecated element; the term now

used is “obsolete.”

This may seem like an insignificant change, but the difference is important: while

a deprecated element would be removed from the specification, an obsolete element

will remain there. This is so that browser makers still have a standard way of ren-

dering these elements consistently, even if their use is no longer recommended. For

example, you can view information in the W3C’s specification on frames (an obsolete

feature) at http://dev.w3.org/html5/spec/Overview.html#frames.

Block Elements Inside Links
Although most browsers handled this situation just fine in the past, it was never

actually valid to place a block-level element inside an a element. Instead, to produce

valid HTML, you’d have to use multiple a elements and style the group to appear

as a single block.

47More HTML5 Semantics

In HTML5, you’re now permitted to wrap almost anything—other than form elements

or other links—in an a element without having to worry about validation errors.

Bold Text
A few changes have been made in the way that bold text is semantically defined in

HTML5. There are essentially two ways to make text bold in most browsers: using

the b element, or using the strong element.

Although the b element was never deprecated, before HTML5 it was discouraged

in favor of strong. The b element previously was a way of saying “make this text

appear in boldface.” Since HTML markup is supposed to be all about the meaning

of the content, leaving the presentation to CSS, this was unsatisfactory.

In HTML5, the b element has been redefined to represent a section of text that is

“stylistically offset from the normal prose without conveying any extra importance.”

The strong element, meanwhile, still conveys more or less the same meaning. In

HTML5, it represents “strong importance for its contents.” Interestingly, the HTML5

spec allows for nesting of strong elements. So, if an entire sentence consisted of

an important warning, but certain words were of even greater importance, the sen-

tence could be wrapped in one strong element, and each important word could be

wrapped in its own nested strong.

Italicized Text
Along with the modifications to the b and strong elements, changes have been

made in the way the i element is defined in HTML5.

Previously, the i element was used to simply render italicized text. As with b, this

definition was unsatisfactory. In HTML5, the definition has been updated to “a span

of text in an alternate voice or mood, or otherwise offset from the normal prose.”

So the appearance of the text has nothing to do with the semantic meaning, although

it may very well still be italic—that’s up to you.

An example of content that can be offset using i tags might be an idiomatic phrase

from another language, such as reductio ad absurdum, a latin phrase meaning “re-

duction to the point of absurdity.” Other examples could be text representing a

dream sequence in a piece of fiction, or the scientific name of a species in a journal

article.

HTML5 & CSS3 for the Real World48

The em element is unchanged, but its definition has been expanded to clarify its

use. It still refers to text that’s emphasized, as would be the case colloquially. For

example, the following two phrases have the exact same wording, but their meanings

change because of the different use of em:

<p>Harry’s Grill is the best burger joint in town.</p>
<p>Harry’s Grill is the best burger joint in town.</p>

In the first sentence, because the word “burger” is emphasized, the meaning of the

sentence focuses on the type of “joint” being discussed. In the second sentence, the

emphasis is on the word “is,” thus moving the sentence focus to the question of

whether Harry’s Grill really is the best of all burger joints in town.

Neither i nor em should be used to mark up a publication title; instead, use cite

(see the section called “A cite for Sore Eyes”).

Of all the four elements discussed here (b, i, em, and strong), the only one that

gives contextual importance to its content is the strong element.

Big and Small Text
The big element was previously used to represent text displayed in a large font.

The big element is now obsolete and should not be used. The small element,

however, is still valid, but has a different meaning.

Previously, small was intended to describe “text in a small font.” In HTML5, it

represents “side comments such as small print.” Some examples where small might

be used include information in footer text, fine print, and terms and conditions.

The small element should only be used for short runs of text.

Although the presentational implications of small have been removed from the

definition, text inside small tags will more than likely still appear in a smaller font

than the rest of the document.

For example, the footer of The HTML5 Herald includes a copyright notice. Since

this is essentially legal fine print, it’s perfect for the small element:

<small>© SitePoint Pty. Ltd.</small>

49More HTML5 Semantics

A cite for Sore Eyes
The cite element is another one that’s been redefined in HTML5, accompanied by

a fair bit of controversy. In HTML4, the cite element represented “a citation or a

reference to other sources.” Within the scope of that definition, the spec permitted

a person’s name to be marked up with cite (in the case of a quotation attributed to

an individual, for example).

HTML5 expressly forbids the use of cite for a person’s name, seemingly going

against the principle of backwards compatibility. Now the spec describes cite as

“the title of a work,” and gives a whole slew of examples, including a book, a song,

a TV show, and a theatre production.

Some notable web standards advocates (including Jeremy Keith and Bruce Lawson)

have opposed this new definition forbidding people’s names within cite. For more

information on the ongoing debate, see the page on this topic on the WHATWG

Wiki.2

Description (not Definition) Lists
The existing dl (definition list) element, along with its associated dt (term) and dd

(description) children, has been redefined in the HTML5 spec. Previously, in addition

to terms and definitions, the spec allowed the dl element to mark up dialogue, but

the spec now prohibits this.

In HTML5, these lists are no longer called “definition lists”; they’re now the more

generic-sounding “description lists.” They should be used to mark up any kind of

name-value pairs, including terms and definitions, metadata topics and values, and

questions and answers.

Other New Elements and Features
We’ve introduced you to and expounded upon some of the more practical new

elements and features. Now, in this section, we’ll touch on lesser-known elements,

attributes, and features that have been added to the HTML5 spec.

2 http://wiki.whatwg.org/wiki/Cite_element

HTML5 & CSS3 for the Real World50

The details Element
This new element helps mark up a section of the document that’s hidden, but can

be expanded to reveal additional information. The aim of the element is to provide

native support for a feature common on the Web—a collapsible box that has a title,

and more info or functionality hidden away.

Normally this kind of widget is created using a combination of markup and scripting.

The inclusion of it in HTML5 intends to remove the scripting requirements and

simplify its implementation for web authors.

Here’s how it might look:

<details>
 <summary>Some Magazines of Note</summary>

 <cite>Bird Watchers Digest</cite>
 <cite>Rowers Weekly</cite>
 <cite>Fishing Monthly</cite>

</details>

The example above would cause the contents of the summary element to appear to

the user, with the rest of the content hidden. Upon clicking summary, the hidden

content appears.

If details lacks a defined summary, the user agent will define a default summary

(for example, “Details”). If you want the hidden content to be visible by default,

you can use the Boolean open attribute.

The summary element can only be used as a child of details, and it must be the

first child, if used.

So far, details has little to no support in browsers. A couple of JavaScript-based

polyfills are available, including one by Mathias Bynens.3

3 http://mathiasbynens.be/notes/html5-details-jquery

51More HTML5 Semantics

Customized Ordered Lists
Ordered lists, using the ol element, are quite common in web pages. HTML5 intro-

duces a new Boolean attribute called reversed that, when present, reverses the order

of the list items.

While we’re on the topic of ordered lists, HTML5 has brought back the start attrib-

ute, deprecated in HTML4. The start attribute lets you specify with which number

your list should begin.

Support is good for start, but reversed has yet to be implemented in most browsers.

Scoped Styles
The style element, used for embedding styles directly in your pages, now allows

use of a Boolean attribute called scoped. Take the following code example:

<h1>Page Title</h1>
<article>
 <style scoped>
 h1 { color: blue; }
 </style>
 <h1>Article Title</h1>
 <p>Article content.</p>
</article>

Because the scoped attribute is present, the styles declared inside the style element

will only apply to the parent element and its children (if cascading rules permit),

instead of the entire document. This allows specific sections inside documents (like

the article in the above example) to be easily portable along with their associated

styles.

This is certainly a handy new feature, but as of this writing, no browser supports

the scoped attribute. As a temporary solution, a jQuery-based polyfill is available

at https://github.com/thingsinjars/jQuery-Scoped-CSS-plugin.

The async Attribute for Scripts
The script element now allows the use of the async attribute, which is similar to

the existing defer attribute. Using defer specifies that the browser should wait

until the page’s markup is parsed before loading the script. The new async attribute

HTML5 & CSS3 for the Real World52

allows you to specify that a script should load asynchronously (meaning it should

load as soon as it’s available), without causing other elements on the page to delay

while it loads. Both defer and async are Boolean attributes.

These attributes must only be used when the script element defines an external

file. For legacy browsers, you can include both async and defer to ensure that one

or the other is used, if necessary. In practice, both attributes will have the effect of

not pausing the browser’s rendering of the page while scripts are downloaded;

however, async can often be more advantageous, as it will load the script “in the

background” while other rendering tasks are taking place, and execute the script as

soon as it’s available.

The async attribute is particularly useful if the script you’re loading has no other

dependencies, and it would benefit the user experience if the script is loaded as

soon as possible, rather than after the page loads.

Validating HTML5 Documents
In chapter two, we introduced you to a number of syntax changes in HTML5, and

touched on some issues related to validation. Let’s expand upon those concepts a

little more so that you can better understand how validating pages has changed.

The HTML5 validator is no longer concerned with code style. You can use uppercase,

lowercase, omit quotes from attributes, leave tags open, and be as inconsistent as

you like, and your page will often still be valid.

So, you ask, what does count as an error for the HTML5 validator? It will alert you

to incorrect use of elements, elements included where they shouldn’t be, missing

required attributes, incorrect attribute values, and the like. In short, the validator

will let you know if your markup conflicts with the specification, so it’s still an

extremely valuable tool when developing your pages.

However, since many of us are accustomed to the stricter validation rules imposed

on XHTML documents, let’s go through some specifics. This way, you can under-

stand what is considered valid in HTML5 that was invalid when checking XHTML-

based pages:

53More HTML5 Semantics

■ Some elements that were required in XHTML-based syntax are no longer required

for a document to pass HTML5 validation; examples include the html and body

elements.

■ Void elements, or elements that stand alone and don’t contain any content, are

not required to be closed using a closing slash; examples include <meta> and

.

■ Elements and attributes can be in uppercase, lowercase, or mixed case.

■ Quotes are unnecessary around attribute values, unless multiple space-delimited

values are used, or a URL appears as a value and contains a query string with

an equals (=) character in it.

■ Some attributes that were required in XHTML-based syntax are no longer required

in HTML5; examples include the type attribute for the script element, and the

xmlns attribute for the html element.

■ Some elements that were deprecated and thus invalid in XHTML are now valid;

one example is the embed element.

■ Stray text that doesn’t appear inside any element would invalidate an XHTML

document; this is not the case in HTML5.

■ Some elements that needed to be closed in XHTML can be left open without

causing validation errors in HTML5; examples include p, li, and dt.

■ The form element isn’t required to have an action attribute.

■ Form elements, such as input , can be placed as direct children of the form

element; in XHTML, another element (such as fieldset or div) was required

to wrap form elements.

■ The textarea element is not required to have rows and cols attributes.

■ The target attribute, deprecated and thus invalid in XHTML, is now valid in

HTML5.

■ Block elements can be placed inside a elements.

HTML5 & CSS3 for the Real World54

■ The ampersand character (&) doesn’t need to be encoded as & if it appears

as text on the page.

That’s a fairly comprehensive, though hardly exhaustive, list of differences between

XHTML and HTML5 validation. Some are style choices, so you’re encouraged to

choose a style and be consistent. We outlined some preferred style choices in the

previous chapter, and you’re welcome to incorporate some if not all of those sugges-

tions in your own HTML5 projects.

Lint Tools

If you want to validate your markup’s syntax style using stricter guidelines, you

can use an HTML5 lint tool, such as http://lint.brihten.com/html/. At the time of

writing, it’s still in development, but it works well. You can use it to check that

your attributes and tags are lowercase, that void tags are self-closed, that Boolean

attributes omit their value, that closing tags are never omitted—or any combination

of these style rules. It can even ensure that your markup is indented consistently!

Summary
By now, we’ve gotten our heads around just about all the new semantic and syntactic

changes in HTML5. Some of this information may be a little hard to digest straight

away, but don’t worry! The best way to become familiar with HTML5 is to use

it—you can start with your next project. Try using some of the structural elements

we covered in the last chapter, or some of the text-level semantics we saw in this

chapter. If you’re unsure about how exactly an element is meant to be used, go back

and read the section about it, or better yet, read the specification itself. While the

language is certainly drier than the text in this book (at least, we hope it is!), the

specifications can give you a more complete picture of how a given element is in-

tended to be used. Remember that the HTML5 specification is still in development,

so some of what we’ve covered is still subject to change. The specifications will

always contain the most up-to-date information.

In the next chapter, we’ll look at a crucial segment of new functionality introduced

in HTML5: forms and form-related features.

55More HTML5 Semantics

Chapter4
HTML5 Forms
We’ve coded most of the page, and you now know most of what there is to know

about new HTML5 elements and their semantics. But before we start work on the

look of the site—which we do in Chapter 6—we’ll take a quick detour away from

The HTML5 Herald’s front page to have a look at the sign-up page. This will illustrate

what HTML5 has to offer in terms of web forms.

HTML5 web forms have introduced new form elements, input types, attributes, and

other features. Many of these features we’ve been using in our interfaces for years:

form validation, combo boxes, placeholder text, and the like. The difference is that

where before we had to resort to JavaScript to create these behaviors, they’re now

available directly in the browser; all you need to do is set an attribute in your markup

to make them available.

HTML5 not only makes marking up forms easier on the developer, it’s also better

for the user. With client-side validation being handled natively by the browser,

there will be greater consistency across different sites, and many pages will load

faster without all that redundant JavaScript.

Let’s dive in!

Dependable Tools in Our Toolbox
Forms are often the last thing developers include in their pages—many developers

find forms just plain boring. The good news is that HTML5 injects a little bit more

joy into coding forms. By the end of this chapter, we hope you’ll look forward to

employing form elements, as appropriate, in your markup.

Let’s start off our sign-up form with plain, old-fashioned HTML:

register.html (excerpt)

<form id="register" method="post">
 <hgroup>
 <h1>Sign Me Up!</h1>
 <h2>I would like to receive your fine publication.</h2>
 </hgroup>

 <label for="register-name">My name is:</label>
 <input type="text" id="register-name" name="name">

 <label for="address">My email address is:</label>
 <input type="text" id="address" name="address">

 <label for="url">My website is located at:</label>
 <input type="text" id="url" name="url">

 <label for="password">I would like my password to be:</label>
 <p>(at least 6 characters, no spaces)</p>
 <input type="password" id="password" name="password">

 <label for="rating">On a scale of 1 to 10, my knowledge of
➥HTML5 is:</label>
 <input type="text" name="rating" id=rating">

 <label for="startdate">Please start my subscription on:
➥</label>
 <input type="text" id="startdate" name="startdate">

HTML5 & CSS3 for the Real World58

 <label for="quantity">I would like to receive <input
➥type="text" name="quantity" id="quantity"> copies of <cite>
➥The HTML5 Herald</cite>.</label>

 <label for="upsell">Also sign me up for <cite>The CSS3
➥Chronicle</cite></label>
 <input type="checkbox" id="upsell" name="upsell">

 <input type="submit" id="register-submit" value="Send Post
➥Haste">

</form>

This sample registration form uses form elements that have been available since

the earliest versions of HTML. This form provides clues to users about what type

of data is expected in each field via the label and p elements, so even your users

on Netscape 4.7 and IE5 (kidding!) can understand the form. It works, but it can

certainly be improved upon.

In this chapter we’re going to enhance this form to include HTML5’s features.

HTML5 provides new input types specific to email addresses, URLs, numbers, dates,

and more. In addition to those new input types, HTML5 also introduces attributes

that can be used with both new and existent input types. These allow you to provide

placeholder text, mark fields as required, and declare what type of data is accept-

able—all without JavaScript.

We’ll cover all the newly added input types later in the chapter. Before we do that,

let’s take a look at the new form attributes HTML5 provides.

HTML5 Form Attributes
For years, developers have written (or copied and pasted) snippets of JavaScript to

validate the information users entered into form fields: what elements are required,

what type of data is accepted, and so on. HTML5 provides us with several attributes

that allow us to dictate what is an acceptable value, and inform the user of errors,

all without the use of any JavaScript.

59HTML5 Forms

Browsers that support these HTML5 attributes will compare data entered by the

user against regular expression patterns provided by the developer (you). Then they

check to see if all required fields are indeed filled out, enable multiple values if al-

lowed, and so on. Even better, including these attributes won’t harm older browsers;

they’ll simply ignore the attributes they don’t understand. In fact, you can use these

attributes and their values to power your scripting fallbacks, instead of hardcoding

validation patterns into your JavaScript code, or adding superfluous classes to your

markup. We’ll look at how this is done a bit later; for now, let’s go through each of

the new attributes.

The required Attribute
The Boolean required attribute tells the browser to only submit the form if the field

in question is filled out correctly. Obviously, this means that the field can’t be left

empty, but it also means that, depending on other attributes or the field’s type, only

certain types of values will be accepted. Later in the chapter, we’ll be covering dif-

ferent ways of letting browsers know what kind of data is expected in a form.

If a required field is empty or invalid, the form will fail to submit, and focus will

move to the first invalid form element. Opera, Firefox, and Chrome provide the user

with error messages; for example, “Please fill out this field” or “You have to specify

a value” if left empty, and “Please enter an email address” or “xyz is not in the

format this page requires” when the data type or pattern is wrong.

Out of focus?

Time for a quick refresher: a form element is focused either when a user clicks on

the field with their mouse, or tabs to it with their keyboard. For input elements,

typing with the keyboard will enter data into that element.

In JavaScript terminology, the focus event will fire on a form element when it

receives focus, and the blur event will fire when it loses focus.

In CSS, the :focus pseudo-class can be used to style elements that currently have

focus.

The required attribute can be set on any input type except button, range, color,

and hidden, all of which generally have a default value. As with other Boolean at-

HTML5 & CSS3 for the Real World60

tributes we’ve seen so far, the syntax is either simply required, or required="re-

quired" if you’re using XHTML syntax.

Let’s add the required attribute to our sign-up form. We’ll make the name, email

address, password, and subscription start date fields required:

register.html (excerpt)

 <label for="register-name">My name is:</label>
 <input type="text" id="register-name" name="name"
➥required aria-required="true">

 <label for="email">My email address is:</label>
 <input type="text" id="email" name="email"
➥required aria-required="true">

 <label for="url">My website is located at:</label>
 <input type="text" id="url" name="url">

 <label for="password">I would like my password to be:</label>
 <p>(at least 6 characters, no spaces)</p>
 <input type="password" id="password" name="password"
➥required aria-required="true">

 <label for="rating">On a scale of 1 to 10, my knowledge of
➥HTML5 is:</label>
 <input type="text" name="rating" type="range">

 <label for="startdate">Please start my subscription on:
➥</label>
 <input type="text" id="startdate" name="startdate"
➥required aria-required="true">

 <label for="quantity">I would like to receive <input
➥type="text" name="quantity" id="quantity"> copies of <cite>
➥The HTML5 Herald</cite></label>

61HTML5 Forms
D

ow
nl

oa
d

fr
om

 W
ow

!
eB

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

 <label for="upsell">Also sign me up for <cite>The CSS3
➥Chronicle</cite></label>
 <input type="checkbox" id="upsell" name="upsell">

 <input type="submit" id="register-submit" value="Send Post
➥Haste">

For improved accessibility, whenever the required attribute is included, add the

ARIA attribute aria-required="true". Many screen readers lack support for the

new HTML5 attributes, but many do have support for WAI-ARIA roles, so there’s

a chance that adding this role could let a user know that the field is required—see

Appendix B for a brief introduction to WAI-ARIA.

Figure 4.1, Figure 4.2, and Figure 4.3 show the behavior of the required attribute

when you attempt to submit the form.

Figure 4.1. The required field validation message in Firefox 4

Figure 4.2. How it looks in Opera …

HTML5 & CSS3 for the Real World62

Figure 4.3. … and in Google Chrome

Styling Required Form Fields
You can style required form elements with the :required pseudo-class. You can

also style valid or invalid fields with the :valid and :invalid pseudo-classes. With

these pseudo-classes and a little CSS magic, you can provide visual cues to sighted

users indicating which fields are required, and also give feedback for successful

data entry:

input:required {
 background-image: url('../images/required.png');
}
input:focus:invalid {
 background-image: url('../images/invalid.png');
}
input:focus:valid {
 background-image: url('../images/valid.png');
}

We’re adding a background image (an asterisk) to required form fields. We’ve also

added separate background images to valid and invalid fields. The change is only

apparent when the form element has focus, to keep the form from looking too

cluttered.

Beware Default Styles

Note that Firefox 4 applies its own styles to invalid elements (a red shadow), as

shown in Figure 4.1 earlier. You may want to remove the native drop shadow

with the following CSS:

:invalid { box-shadow: none; }

63HTML5 Forms

Backwards Compatibility

Older browsers mightn’t support the :required pseudo-class, but you can still

provide targeted styles using the attribute selector:

input:required,
input[required] {
 background-image: url('../images/required.png');
}

You can also use this attribute as a hook for form validation in browsers without

support for HTML5. Your JavaScript code can check for the presence of the

required attribute on empty elements, and fail to submit the form if any are

found.

The placeholder Attribute
The placeholder attribute allows a short hint to be displayed inside the form ele-

ment, space permitting, telling the user what data should be entered in that field.

The placeholder text disappears when the field gains focus, and reappears on blur

if no data was entered. Developers have provided this functionality with JavaScript

for years, but in HTML5 the placeholder attribute allows it to happen natively, with

no JavaScript required.

For The HTML5 Herald’s sign-up form, we’ll put a placeholder on the website URL

and start date fields:

register.html (excerpt)

 <label for="url">My website is located at:</label>
 <input type="text" id="url" name="url"
➥placeholder="http://example.com">

⋮

 <label for="startdate">Please start my subscription on:</label>
 <input type="text" id="startdate" name="startdate" required
➥aria-required="true" placeholder="1911-03-17">

HTML5 & CSS3 for the Real World64

Because support for the placeholder attribute is still restricted to the latest crop of

browsers, you shouldn’t rely on it as the only way to inform users of requirements.

If your hint exceeds the size of the field, describe the requirements in the input’s

title attribute or in text next to the input element.

Currently, Safari, Chrome, Opera, and Firefox 4 support the placeholder attribute.

Polyfilling Support with JavaScript
Like everything else in this chapter, it won’t hurt nonsupporting browsers to include

the placeholder attribute.

As with the required attribute, you can make use of the placeholder attribute and

its value to make older browsers behave as if they supported it—all by using a little

JavaScript magic.

Here’s how you’d go about it: first, use JavaScript to determine which browsers lack

support. Then, in those browsers, use a function that creates a “faux” placeholder.

The function needs to determine which form fields contain the placeholder attrib-

ute, then temporarily grab that attribute’s content and put it in the value attribute.

Then you need to set up two event handlers: one to clear the field’s value on focus,

and another to replace the placeholder value on blur if the form control’s value is

still null or an empty string. If you do use this trick, make sure that the value of

your placeholder attribute isn’t one that users might actually enter, and remember

to clear the faux placeholder when the form is submitted. Otherwise, you’ll have

lots of “(XXX) XXX-XXXX” submissions!

Let’s look at a sample JavaScript snippet (using the jQuery JavaScript library for

brevity) to progressively enhance our form elements using the placeholder attribute.

jQuery

In the code examples that follow, and throughout the rest of the book, we’ll be

using the jQuery1 JavaScript library. While all the effects we’ll be adding could

be accomplished with plain JavaScript, we find that jQuery code is generally more

readable; thus, it helps to illustrate what we want to focus on—the HTML5

APIs—rather than spending time explaining a lot of hairy JavaScript.

1 http://jquery.com/

65HTML5 Forms

Here’s our placeholder polyfill:

register.html (excerpt)

<script>
if(!Modernizr.input.placeholder) {

 $("input[placeholder], textarea[placeholder]").each(function() {
 if($(this).val()==""){
 $(this).val($(this).attr("placeholder"));
 $(this).focus(function(){
 if($(this).val()==$(this).attr("placeholder")) {
 $(this).val("");
 $(this).removeClass('placeholder');
 }
 });
 $(this).blur(function(){
 if($(this).val()==""){
 $(this).val($(this).attr("placeholder"));
 $(this).addClass('placeholder');
 }
 });
 }
 });

 $('form').submit(function(){
 // first do all the checking for required
 // element and form validation.
 // Only remove placeholders before final submission
 var placeheld = $(this).find('[placeholder]');
 for(var i=0; i<placeheld.length; i++){
 if($(placeheld[i]).val() ==
➥$(placeheld[i]).attr('placeholder')) {
 // if not required, set value to empty before submitting
 $(placeheld[i]).attr('value','');
 }
 }
 });
}
</script>

The first point to note about this script is that we’re using the Modernizr2 JavaScript

library to detect support for the placeholder attribute. There’s more information

2 http://www.modernizr.com/

HTML5 & CSS3 for the Real World66

about Modernizr in Appendix A, but for now it’s enough to understand that it

provides you with a whole raft of true or false properties for the presence of given

HTML5 and CSS3 features in the browser. In this case, the property we’re using is

fairly self-explanatory. Modernizr.input.placeholder will be true if the browser

supports placeholder, and false if it doesn’t.

If we’ve determined that placeholder support is absent, we grab all the input and

textarea elements on the page with a placeholder attribute. For each of them, we

check that the value isn’t empty, then replace that value with the value of the

placeholder attribute. In the process, we add the placeholder class to the element,

so you can lighten the color of the font in your CSS, or otherwise make it look more

like a native placeholder. When the user focuses on the input with the faux place-

holder, the script clears the value and removes the class. When the user removes

focus, the script checks to see if there is a value. If not, we add the placeholder text

and class back in.

This is a great example of an HTML5 polyfill: we use JavaScript to provide support

only for those browsers that lack native support, and we do it by leveraging the

HTML5 elements and attributes already in place, rather than resorting to additional

classes or hardcoded values in our JavaScript.

The pattern Attribute
The pattern attribute enables you to provide a regular expression that the user’s

input must match in order to be considered valid. For any input where the user

can enter free-form text, you can limit what syntax is acceptable with the pattern

attribute.

The regular expression language used in patterns is the same Perl-based regular

expression syntax as JavaScript, except that the pattern attribute must match the

entire value, not just a subset. When including a pattern, you should always indicate

to users what is the expected (and required) pattern. Since browsers currently show

the value of the title attribute on hover like a tooltip, include pattern instructions

that are more detailed than placeholder text, and which form a coherent statement.

67HTML5 Forms

The Skinny on Regular Expressions

Regular expressions are a feature of most programming languages that allow de-

velopers to specify patterns of characters and check to see if a given string matches

the pattern. Regular expressions are famously indecipherable to the uninitiated.

For instance, one possible regular expression to check if a string is formatted as

an email address looks like this: [A-Z0-9._%+-]+@[A-Z0-9.-]+\.[A-Z]{2,4}.

A full tutorial on the syntax of regular expressions is beyond the scope of this

book, but there are plenty of great resources and tutorials available online if you’d

like to learn. Alternately, you can search the Web or ask around on forums for a

pattern that will serve your purposes.

For a simple example, let’s add a pattern attribute to the password field in our

form. We want to enforce the requirement that the password be at least six characters

long, with no spaces:

register.html (excerpt)

 <label for="password">I would like my password to be:</label>
 <p>(at least 6 characters, no spaces)</p>
 <input type="password" id="password" name="password" required
➥pattern="\S{6,}">

\S refers to “any nonwhitespace character,” and {6,} means “at least six times.” If

you wanted to stipulate the maximum amount of characters, the syntax would be,

for example, \S{6,10} for between six and ten characters.

As with the required attribute, the pattern attribute will prevent the form being

submitted if the pattern isn’t matched, and will provide an error message.

If your pattern is not a valid regular expression, it will be ignored for the purposes

of validation. Note also that similar to the placeholder and required attributes,

you can use the value of this attribute to provide the basis for your JavaScript valid-

ation code for nonsupporting browsers.

HTML5 & CSS3 for the Real World68

The disabled Attribute
The Boolean disabled attribute has been around longer than HTML5, but it has

been expanded on, to a degree. It can be used with any form control except the new

output element—and unlike previous versions of HTML, HTML5 allows you to set

the disabled attribute on a fieldset and have it apply to all the form elements

contained in that fieldset.

Generally, form elements with the disabled attribute have the content grayed out

in the browser—the text is lighter than the color of values in enabled form controls.

Browsers will prohibit the user from focusing on a form control that has the disabled

attribute set. This attribute is often used to disable the submit button until all fields

are correctly filled out, for example.

You can employ the :disabled pseudo-class in your CSS to style disabled form

controls.

Form controls with the disabled attribute aren’t submitted along with the form; so

their values will be inaccessible to your form processing code on the server side. If

you want a value that users are unable to edit, but can still see and submit, use the

readonly attribute.

The readonly Attribute
The readonly attribute is similar to the disabled attribute: it makes it impossible

for the user to edit the form field. Unlike disabled, however, the field can receive

focus, and its value is submitted with the form.

In a comments form, we may want to include the URL of the current page or the

title of the article that is being commented on, letting the user know that we are

collecting this data without allowing them to change it:

<label for="about">Article Title</label>
<input type="text" name="about" id="about" readonly>

The multiple Attribute
The multiple attribute, if present, indicates that multiple values can be entered in

a form control. While it has been available in previous versions of HTML, it only

applied to the select element. In HTML5, it can be added to email and file input

69HTML5 Forms

types as well. If present, the user can select more than one file, or include several

comma-separated email addresses.

At the time of writing, multiple file input is only supported in Chrome, Opera, and

Firefox.

Spaces or Commas?

You may notice that the iOS touch keyboard for email inputs includes a space.

Of course, spaces aren’t permitted in email addresses, but some browsers allow

you to separate multiple emails with spaces. Firefox 4 and Opera both support

multiple emails separated with either commas or spaces. WebKit has no support

for the space separator, even though the space is included in the touch keyboard.

Soon, all browsers will allow extra whitespace. This is how most users will likely

enter the data; plus, this allowance has recently been added to the specification.

The form Attribute
Not to be confused with the form element, the form attribute in HTML5 allows you

to associate form elements with forms in which they’re not nested. This means you

can now associate a fieldset or form control with any other form in the document.

The form attribute takes as its value the id of the form element with which the

fieldset or control should be associated.

If the attribute is omitted, the control will only be submitted with the form in which

it’s nested.

The autocomplete Attribute
The autocomplete attribute specifies whether the form, or a form control, should

have autocomplete functionality. For most form fields, this will be a drop-down

that appears when the user begins typing. For password fields, it’s the ability to

save the password in the browser. Support for this attribute has been present in

browsers for years, though it was never in the specification until HTML5.

By default, autocomplete is on. You may have noticed this the last time you filled

out a form. In order to disable it, use autocomplete="off". This is a good idea for

sensitive information, such as a credit card number, or information that will never

need to be reused, like a CAPTCHA.

HTML5 & CSS3 for the Real World70

Autocompletion is also controlled by the browser. The user will have to turn on

the autocomplete functionality in their browser for it to work at all; however, setting

the autocomplete attribute to off overrides this preference.

The datalist Element and the list Attribute
Datalists are currently only supported in Firefox and Opera, but they are very cool.

They fulfill a common requirement: a text field with a set of predefined autocomplete

options. Unlike the select element, the user can enter whatever data they like, but

they’ll be presented with a set of suggested options in a drop-down as they type.

The datalist element, much like select, is a list of options, with each one placed

in an option element. You then associate the datalist with an input using the

list attribute on the input. The list attribute takes as its value the id attribute of

the datalist you want to associate with the input. One datalist can be associated

with several input fields.

Here’s what this would look like in practice:

<label for="favcolor">Favorite Color</label>
<input type="text" list="colors" id="favcolor" name="favcolor">

<datalist id="colors">
 <option value="Blue">
 <option value="Green">
 <option value="Pink">
 <option value="Purple">
</datalist>

In supporting browsers, this will display a simple text field that drops down a list

of suggested answers when focused. Figure 4.4 shows what this looks like.

Figure 4.4. The datalist element in action in Firefox

71HTML5 Forms

The autofocus Attribute
The Boolean autofocus attribute specifies that a form control should be focused as

soon as the page loads. Only one form element can have autofocus in a given page.

HTML5 New Form Input Types
You’re probably already familiar with the input element’s type attribute. This is

the attribute that determines what kind of form input will be presented to the user.

If it is omitted—or, in the case of new input types and older browsers, not under-

stood—it still works: the input will default to type="text". This is the key that

makes HTML5 forms usable today. If you use a new input type, like email or search,

older browsers will simply present users with a standard text field.

Our sign-up form currently uses four of the ten input types you’re familiar with:

checkbox, text, password, and submit. Here’s the full list of types that were available

before HTML5:

■ button

■ checkbox

■ file

■ hidden

■ image

■ password

■ radio

■ reset

■ submit

■ text

HTML5 gives us input types that provide for more data-specific UI elements and

native data validation. HTML5 has a total of 13 new input types:

■ search

■ email

■ url

■ tel

■ datetime

■ date

HTML5 & CSS3 for the Real World72

■ month

■ week

■ time

■ datetime-local

■ number

■ range

■ color

Let’s look at each of these new types in detail, and see how we can put them to use.

Search
The search input type (type="search") provides a search field—a one-line text

input control for entering one or more search terms. The spec states:

The difference between the text state and the search state is

primarily stylistic: on platforms where search fields are distin-

guished from regular text fields, the search state might result in an

appearance consistent with the platform's search fields rather than

appearing like a regular text field.

Many browsers style search inputs in a manner consistent with the browser or the

operating system’s search boxes. Some browsers have added the ability to clear the

input with the click of a mouse, by providing an x icon once text is entered into the

field. You can see this behavior in Chrome on Mac OS X in Figure 4.5.

Figure 4.5. The search input type is styled to resemble the operating system’s search fields

Currently, only Chrome and Safari provide a button to clear the field. Opera 11

displays a rounded corner box without a control to clear the field, but switches to

display a normal text field if any styling, such as a background color, is applied.

While you can still use type="text" for search fields, the new search type is a

visual cue as to where the user needs to go to search the site, and provides an inter-

face the user is accustomed to. The HTML5 Herald has no search field, but here’s

an example of how you’d use it:

73HTML5 Forms

<form id="search" method="get">
 <input type="search" id="s" name="s">
 <input type="submit" value="Search">
</form>

Since search, like all the new input types, appears as a regular text box in nonsup-

porting browsers, there’s no reason not to use it when appropriate.

Email Addresses
The email type (type="email") is, unsurprisingly, used for specifying one or more

email addresses. It supports the Boolean multiple attribute, allowing for multiple,

comma-separated email addresses.

Let’s change our form to use type="email" for the registrant’s email address:

register.html (excerpt)

<label for="email">My email address is</label>
<input type="email" id="email" name="email">

If you change the input type from text to email, as we’ve done here, you’ll notice

no visible change in the user interface; the input still looks like a plain text field.

However, there are differences behind the scenes.

The change becomes apparent if you’re using an iOS device. When you focus on

the email field, the iPhone, iPad, and iPod will all display a keyboard optimized

for email entry (with a shortcut key for the @ symbol), as shown in Figure 4.6.

Figure 4.6. The email input type provides a specialized keyboard on iOS devices

HTML5 & CSS3 for the Real World74

Firefox, Chrome, and Opera also provide error messaging for email inputs: if you

try to submit a form with content unrecognizable as one or more email addresses,

the browser will tell you what is wrong. The default error messages are shown in

Figure 4.7.

Figure 4.7. Error messages for incorrectly formatted email addresses on Firefox 4 (left) and Opera 11 (right)

Custom Validation Messages

Don’t like the error messages provided? In some browsers, you can set your own

with .setCustomValidity(errorMsg). setCustomValidity takes as its only

parameter the error message you want to provide. You can pass an empty string

to setCustomValidity if you want to remove the error message entirely.

Unfortunately, while you can change the content of the message, you’re stuck

with its appearance, at least for now.

URLs
The url input (type="url") is used for specifying a web address. Much like email,

it will display as a normal text field. On many touch screens, the on-screen keyboard

displayed will be optimized for web address entry, with a forward slash (/) and a

“.com” shortcut key.

Let’s update our registration form to use the url input type:

register.html (excerpt)

<label for="url">My website is located at:</label>
<input type="url" id="url" name="url">

Opera, Firefox, and WebKit support the url input type, reporting the input as invalid

if the URL is incorrectly formatted. Only the general format of a URL is validated,

75HTML5 Forms

so, for example, q://example.xyz will be considered valid, even though q:// isn’t

a real protocol and .xyz isn’t a real top-level domain. As such, if you want the value

entered to conform to a more specific format, provide information in your label (or

in a placeholder) to let your users know, and use the pattern attribute to ensure

that it’s correct—we’ll cover pattern in detail later in this chapter.

WebKit

When we refer to WebKit in this book, we’re referring to browsers that use the

WebKit rendering engine. This includes Safari (both on the desktop and on iOS),

Google Chrome, the Android browser, and a number of other mobile browsers.

You can find more information about the WebKit open source project at

http://www.webkit.org/.

Telephone Numbers
For telephone numbers, use the tel input type (type="tel"). Unlike the url and

email types, the tel type doesn’t enforce a particular syntax or pattern. Letters and

numbers—indeed, any characters other than new lines or carriage returns—are

valid. There’s a good reason for this: all over the world countries have different

types of valid phone numbers, with various lengths and punctuation, so it would

be impossible to specify a single format as standard. For example, in the USA,

+1(415)555-1212 is just as well understood as 415.555.1212.

You can encourage a particular format by including a placeholder with the correct

syntax, or a comment after the input with an example. Additionally, you can stipulate

a format by using the pattern attribute or the setCustomValiditymethod to provide

for client-side validation.

Numbers
The number type (type="number") provides an input for entering a number. Usually,

this is a “spinner” box, where you can either enter a number or click on the up or

down arrows to select a number.

Let’s change our quantity field to use the number input type:

HTML5 & CSS3 for the Real World76

register.html (excerpt)

<label for="quantity">I would like to receive <input type="number"
➥name="quantity" id="quantity"> copies of <cite>The HTML5 Herald
➥</cite></label>

Figure 4.8 shows what this looks like in Opera.

Figure 4.8. The number input seen in Opera

The number input has min and max attributes to specify the minimum and maximum

values allowed. We highly recommend that you use these, otherwise the up and

down arrows might lead to different (and very odd) values depending on the browser.

When is a number not a number?

There will be times when you may think you want to use number, when in reality

another input type is more appropriate. For example, it might seem to make sense

that a street address should be a number. But think about it: would you want to

click the spinner box all the way up to 34154? More importantly, many street

numbers have non-numeric portions: think 24½ or 36B, neither of which work

with the number input type.

Additionally, account numbers may be a mixture of letters and numbers, or have

dashes. If you know the pattern of your number, use the pattern attribute. Just

remember not to use number if the range is extensive or the number could contain

non-numeric characters and the field is required. If the field is optional, you might

want to use number anyway, in order to prompt the number keyboard as the default

on touchscreen devices.

If you do decide that number is the way to go, remember also that the pattern

attribute is unsupported in the number type. In other words, if the browser supports

the number type, that supersedes any pattern. That said, feel free to include a

pattern, in case the browser supports pattern but not the number input type.

You can also provide a step attribute, which determines the increment by which

the number steps up or down when clicking the up and down arrows. The min, max,

and step attributes are supported in Opera and WebKit.

77HTML5 Forms

On many touchscreen devices, focusing on a number input type will bring up a

number touch pad (rather than a full keyboard).

Ranges
The range input type (type="range") displays a slider control in browsers that

support it (currently Opera and WebKit). As with the number type, it allows the

min, max, and step attributes. The difference between number and range, according

to the spec, is that the exact value of the number is unimportant with range. It’s

ideal for inputs where you want an imprecise number; for example, a customer

satisfaction survey asking clients to rate aspects of the service they received.

Let’s change our registration form to use the range input type. The field asking users

to rate their knowledge of HTML5 on a scale of 1 to 10 is perfect:

register.html (excerpt)

<label for="rating">On a scale of 1 to 10, my knowledge of HTML5
➥is:</label>
<input type="range" min="1" max="10" name="rating" type="range">

The step attribute defaults to 1, so it’s not required. Figure 4.9 shows what this input

type looks like in Safari.

Figure 4.9. The range input type in Chrome

The default value of a range is the midpoint of the slider—in other words, halfway

between the minimum and the maximum.

The spec allows for a reversed slider (with values from right to left instead of from

left to right) if the maximum specified is less than the minimum; however, currently

no browsers support this.

HTML5 & CSS3 for the Real World78

Colors
The color input type (type="color") provides the user with a color picker—or at

least it does in Opera (and, surprisingly, in the built-in browser on newer BlackBerry

smartphones). The color picker should return a hexadecimal RGB color value, such

as #FF3300.

Until this input type is fully supported, if you want to use a color input, provide

placeholder text indicating that a hexadecimal RGB color format is required, and

use the pattern attribute to restrict the entry to only valid hexadecimal color values.

We don’t use color in our form, but, if we did, it would look a little like this:

<label for="clr">Color: </label>
<input id="clr" name="clr" type="text" placeholder="#FFFFFF"
➥pattern="#(?:[0-9A-Fa-f]{6}|[0-9A-Fa-f]{3})" required>

The resulting color picker is shown in Figure 4.10. Clicking the Other… button

brings up a full color wheel, allowing the user to select any hexadecimal color value.

Figure 4.10. Opera’s color picker control for the color input type

WebKit browsers support the color input type as well, and can indicate whether

the color is valid, but don’t provide a color picker … yet.

Dates and Times
There are several new date and time input types, including date, datetime, date-

time-local, month, time, and week. All date and time inputs accept data formatted

according to the ISO 8601 standard.3

3 http://en.wikipedia.org/wiki/ISO_8601

79HTML5 Forms

date

This comprises the date (year, month, and day), but no time; for example, 2004-

06-24.

month

Only includes the year and month; for example, 2012-12.

week

This covers the year and week number (from 1 to 52); for example, 2011-W01

or 2012-W52.

time

A time of day, using the military format (24-hour clock); for example, 22:00 in-

stead of 10.00 p.m.

datetime

This includes both the date and time, separated by a “T”, and followed by either

a “Z” to represent UTC (Coordinated Universal Time), or by a time zone specified

with a + or - character. For example, “2011-03-17T10:45-5:00” represents

10:45am on the 17th of March, 2011, in the UTC minus 5 hours time zone

(Eastern Standard Time).

datetime-local

Identical to datetime, except that it omits the time zone.

The most commonly used of these types is date. The specifications call for the

browser to display a date control, yet at the time of writing, only Opera does this

by providing a calendar control.

Let’s change our subscription start date field to use the date input type:

register.html (excerpt)

<label for="startdate">Please start my subscription on:</label>
<input type="date" min="1904-03-17" max="1904-05-17"
➥id="startdate" name="startdate" required aria-required="true"
➥placeholder="1911-03-17">

Now, we’ll have a calendar control when we view our form in Opera, as shown in

Figure 4.11. Unfortunately, it’s unable to be styled with CSS at present.

HTML5 & CSS3 for the Real World80

Figure 4.11. Opera’s date picker for date, datetime, datetime-local, week, and month input types

For the month and week types, Opera displays the same date picker, but only allows

the user to select full months or weeks. In those cases, individual days are unable

to be selected; instead, clicking on a day selects the whole month or week.

Currently, WebKit provides some support for the date input type, providing a user

interface similar to the number type, with up and down arrows. Safari behaves a

little oddly when it comes to this control; the default value is the very first day of

the Gregorian calendar: 1582-10-15. The default in Chrome is 0001-01-01, and the

maximum is 275760-09-13. Opera functions more predictably, with the default

value being the current date. Because of these oddities, we highly recommend in-

cluding a minimum and maximum when using any of the date-based input types

(all those listed above, except time). As with number, this is done with the min and

max attributes.

The placeholder attribute we added to our start date field earlier is made redundant

in Opera by the date picker interface, but it makes sense to leave it in place to guide

users of other browsers.

Eventually, when all browsers support the UI of all the new input types, the

placeholder attribute will only be relevant on text, search, URL, telephone, email,

and password types. Until then, placeholders are a good way to hint to your users

what kind of data is expected in those fields—remember that they’ll just look like

regular text fields in nonsupporting browsers.

81HTML5 Forms

Dynamic Dates

In our example above, we hardcoded the min and max values into our HTML. If,

for example, you wanted the minimum to be the day after the current date (this

makes sense for a newspaper subscription start date), this would require updating

the HTML every day. The best thing to do is dynamically generate the minimum

and maximum allowed dates on the server side. A little PHP can go a long way:

<?php
function daysFromNow($days){
 $added = ($days * 24 * 3600) + time();
 echo(date("Y-m-d", $added));
}
?>

In our markup where we had static dates, we now dynamically create them with

the above function:

 <label for="startdate">Please start my subscription on:
➥</label>
 <input type="date" min="<?php daysFromNow(1); ?>"
➥max="<?php daysFromNow(60); ?>" id="startdate"
➥name="startdate" required aria-required="true"
➥placeholder="1911-03-17">

This way, the user is limited to entering dates that make sense in the context of

the form.

You can also include the step attribute with the date and time input types. For

example, step="6" on month will limit the user to selecting either January or July.

On time and datetime inputs, the step attribute must be expressed in seconds, so

step="900" on the time input type will cause the input to step in increments of 15

minutes.

HTML5 & CSS3 for the Real World82

Other New Form Controls in HTML5
We’ve covered the new values for the input element’s type attribute, along with

some attributes that are valid on most form elements. But HTML5 web forms still

have more to offer us! There are four new form elements in HTML5: output, keygen,

progress, and meter. We covered progress and meter in the last chapter, since

they’re often useful outside of forms, so let’s take a look at the other two elements.

The output Element
The purpose of the output element is to accept and display the result of a calculation.

The output element should be used when the user can see the value, but not directly

manipulate it, and when the value can be derived from other values entered in the

form. An example use might be the total cost calculated after shipping and taxes in

a shopping cart.

The output element’s value is contained between the opening and closing tags.

Generally, it will make sense to use JavaScript in the browser to update this value.

The output element has a for attribute, which is used to reference the ids of form

fields whose values went into the calculation of the output element’s value.

It’s worth noting that the output element’s name and value are submitted along

with the form.

The keygen Element
The keygen element is a control for generating a public-private keypair4 and for

submitting the public key from that key pair. Opera, WebKit, and Firefox all support

this element, rendering it as a drop-down menu with options for the length of the

generated keys; all provide different options, though.

The keygen element introduces two new attributes: the challenge attribute specifies

a string that is submitted along with the public key, and the keytype attribute spe-

cifies the type of key generated. At the time of writing, the only supported keytype

value is rsa, a common algorithm used in public-key cryptography.

4 http://en.wikipedia.org/wiki/Public-key_cryptography

83HTML5 Forms

Changes to Existing Form Controls
and Attributes
There have been a few other changes to form controls in HTML5.

The form Element
Throughout this chapter, we’ve been talking about attributes that apply to various

form field elements; however, there are also some new attributes specific to the

form element itself.

First, as we’ve seen, HTML5 provides a number of ways to natively validate form

fields; certain input types such as email and url, for example, as well as the

required and pattern attributes. You may, however, want to use these input types

and attributes for styling or semantic reasons without preventing the form being

submitted. The new Boolean novalidate attribute allows a form to be submitted

without native validation of its fields.

Next, forms no longer need to have the action attribute defined. If omitted, the

form will behave as though the action were set to the current page.

Lastly, the autocomplete attribute we introduced earlier can also be added directly

to the form element; in this case, it will apply to all fields in that form unless those

fields override it with their own autocomplete attribute.

The optgroup Element
In HTML5, you can have an optgroup as a child of another optgroup, which is

useful for multilevel select menus.

The textarea Element
In HTML 4, we were required to specify a textarea element’s size by specifying

values for the rows and cols attributes. In HTML5, these attributes are no longer

required; you should use CSS to define a textarea’s width and height.

New in HTML5 is the wrap attribute. This attribute applies to the textarea element,

and can have the values soft (the default) or hard. With soft, the text is submitted

without line breaks other than those actually entered by the user, whereas hard will

HTML5 & CSS3 for the Real World84

submit any line breaks introduced by the browser due to the size of the field. If you

set the wrap to hard, you need to specify a cols attribute.

In Conclusion
As support for HTML5 input elements and attributes grows, sites will require less

and less JavaScript for client-side validation and user interface enhancements, while

browsers handle most of the heavy lifting. Legacy user agents are likely to stick

around for the foreseeable future, but there is no reason to avoid moving forward

and using HTML5 web forms, with appropriate polyfills and fallbacks filling the

gaps where required.

In the next chapter, we’ll continue fleshing out The HTML5 Herald by adding what

many consider to be HTML5’s killer feature: native video and audio.

85HTML5 Forms

Chapter5
HTML5 Audio and Video
No book on HTML5 would be complete without an examination of the new video

and audio elements. These ground-breaking new elements have already been utilized

on the Web, albeit in a limited capacity, but more and more developers and content

creators are starting to incorporate them into their projects.

For The HTML5 Herald, we’re going to be placing a video element in the first column

of our three-column layout. But before we explore the details of the video element

and its various attributes and associated elements, let’s take a brief look at the state

of video on the Web today.

For the most part, this chapter will focus on the video element, since that’s what

we’re using in our sample project. However, the audio element behaves relatively

identically: almost all the attributes and properties that we’ll be using for video also

apply to audio. Where there are exceptions, we’ll be sure to point them out.

A Bit of History
Up until now, multimedia content on the Web has, for the most part, been placed

in web pages by means of third-party plugins or applications that integrate with the

web browser. Some examples of such software include QuickTime, RealPlayer, and

Silverlight.

By far the most popular way to embed video and audio on web pages is by means

of Adobe’s Flash Player plugin. The Flash Player plugin was originally developed

by Macromedia and is now maintained by Adobe as a result of their 2005 buy-out

of the company. The plugin has been available since the mid-90s, but did not really

take off as a way to serve video content until well into the 2000s.

Before HTML5, there was no standard way to embed video into web pages. A plugin

like Adobe’s Flash Player is controlled solely by Adobe, and is not open to com-

munity development.

The introduction of the video and audio elements in HTML5 resolves this problem

and makes multimedia a seamless part of a web page, the same as the img element.

With HTML5, there’s no need for the user to download third-party software to view

your content, and the video or audio player is easily accessible via scripting.

The Current State of Play
Unfortunately, as sublime as HTML5 video and audio sounds in theory, it’s less

simple in practice. A number of factors need to be considered before you decide to

include HTML5’s new multimedia elements on your pages.

First, you’ll need to understand the state of browser support. At the time of writing,

the only browsers with a significant market share that don’t support native HTML5

video and audio are Internet Explorer 8 and earlier. Unfortunately, this is still a

sizable slice of most sites’ audiences.

The other major browser makers offer HTML5 video support in versions now in

wide use (Chrome 3+, Safari 4+, and Firefox 3.5+). The last version of Chrome

without HTML5 video support (version 2) has a nonexistent market share, and the

same is true for the nonsupporting versions of Safari and Opera.

Although IE’s market share is significant, you can still use HTML5 video on your

pages today. Later on, we’ll show you how the new video element has been designed

with backwards compatibility in mind, so that users of nonsupporting browsers

will still have access to your multimedia content.

HTML5 & CSS3 for the Real World88
D

ow
nl

oa
d

fr
om

 W
ow

!
eB

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

Video Container Formats
Video on the Web is based on container formats and codecs. A container is a

wrapper that stores all the necessary data that comprises the video file being ac-

cessed, much like a ZIP file wraps or contains files. Some examples of well-known

video containers include Flash Video (.flv), MPEG-4 (.mp4 or .m4v), and AVI (.avi).

The video container houses data, including a video track, an audio track with

markers that help synchronize the audio and video, language information, and

other bits of metadata that describe the content.

The video container formats relevant to HTML5 are MPEG-4, Ogg, and WebM.

Video Codecs
A video codec defines an algorithm for encoding and decoding a multimedia data

stream. A codec can encode a data stream for transmission, storage, or encryption,

or it can decode it for playback or editing. For the purpose of HTML5 video, we’re

concerned with the decoding and playback of a video stream. The video codecs that

are most pertinent to HTML5 video are H.264, Theora, and VP8.

Audio Codecs
An audio codec in theory works the same as a video codec, except it’s concerned

with the streaming of sound, rather than video frames. The audio codecs that are

most pertinent to HTML5 video are AAC and Vorbis.

What combinations work in current browsers?
It would be nice if browser support allowed us to choose a single container, video

codec, and audio codec to create a standard way of embedding video using the new

video element in HTML5. Unfortunately, it’s not quite that simple—although things

are improving.

In Table 5.1, we’ve outlined video container and codec support in the most popular

browser versions. This chart only includes browser versions that offer support for

the HTML5 video element.

89HTML5 Audio and Video

Table 5.1. Browser support for HTML5 video

AndroidiOS
Safari

SafariOperaIEChromeFirefoxContainer/Video
Codec/Audio Codec

———10.5+—3+3.5+Ogg/Theora/Vorbis

2.1+a4+4+—9+3–11—MP4/H.264/AAC

2.3+——10.6+9+b6+4+WebM/VP8/Vorbis

a Versions of Android prior to 2.3 require JavaScript to play the video.
b IE9 supports playback of WebM video with a VP8 codec when the user has installed a VP8 codec on

Windows.

Opera Mini and Opera Mobile currently offer no support for HTML5 video, but

Opera has announced there are plans to include support in upcoming releases.1

Licensing Issues

While the new video element itself is free to use in any context, the containers

and codecs are not always as simple. For example, while the Theora and VP8

(WebM) codecs are not patent-encumbered, the H.264 codec is patent-encumbered

and licensing for it is provided by the MPEG-LA group.

Currently, for H.264, if your video is provided to your users for free, there’s no

requirement for you to pay royalties. However, detailed licensing issues are far

beyond the scope and intent of this book, so just be aware that you may need to

do some research before using any particular video format when including HTML5

video in your pages.

The Markup
After all that necessary business surrounding containers, codecs, browser support,

and licensing issues, it’s time to examine the markup of the video element and its

associated attributes.

The simplest way to include HTML5 video in a web page is as follows: <video

src="example.webm"></video>

1 http://my.opera.com/operamobile/blog/2010/12/04/developing-opera-mobile-for-android/

HTML5 & CSS3 for the Real World90

But, as you’ve probably figured out from the preceding sections, this will only work

in a limited number of browsers. It is, however, the minimum code required to have

HTML5 video working to some extent. In a perfect world, it would work every-

where—the same way the img element works everywhere—but that’s a little way

off just yet.

Similar to the img element, the video element should also include width and height

attributes:

<video src="example.webm" width="375" height="280"></video>

Even though the dimensions can be set in the markup, they’ll have no effect on the

aspect ratio of the video. For example, if the video in the above example was actually

375×240 and the markup was as shown above, the video would be centered vertically

inside the 280-pixel space specified in the HTML. This stops the video from

stretching unnecessarily and looking distorted.

The width and height attributes accept integers only, and their values are always

in pixels. Naturally, these values can be overridden via scripting or CSS.

Enabling Native Controls
No embedded video would be complete without giving the user the ability to play,

pause, stop, seek through the video, or adjust the volume. HTML5’s video element

includes a controls attribute that does just that:

<video src="example.webm" width="375" height="280" controls></video>

controls is a Boolean attribute, so no value is required. Its inclusion in the markup

tells the browser to make the controls visible and accessible to the user.

Each browser is responsible for the look of the built-in video controls. Figure 5.1

to Figure 5.4 show how these controls differ in appearance from browser to browser.

Figure 5.1. The native video controls in Firefox 4

91HTML5 Audio and Video

Figure 5.2. … in IE9

Figure 5.3. … in Opera 11

Figure 5.4. … and in Chrome

The autoplay Attribute
We’d love to omit reference to this particular attribute, since its use will be undesir-

able for the most part. However, there are cases where it can be appropriate. The

Boolean autoplay attribute does exactly what it says: it tells the web page to play

the video as soon as possible.

Normally, this is a bad practice; most of us know too well how jarring it can be if a

website starts playing video or audio as soon as it loads—especially if our speakers

are turned up. Usability best practices dictate that sounds and movement on web

pages should only be triggered when requested by the user. But this doesn’t mean

that the autoplay attribute can never be used.

For example, if the page in question contains nothing but a video—that is, the user

clicked on a link to a page for the sole purpose of viewing a specific video—it may

be acceptable to allow it to play automatically, depending on the video’s size, any

surrounding content, and the audience.

Here’s how you’d do that:

<video src="example.webm" width="375" height="280" controls
➥autoplay></video>

HTML5 & CSS3 for the Real World92

Autoplaying on the iPhone

Safari on the iPhone will ignore the autoplay attribute; all video will wait for

the user to press the play button before starting. This is sensible, given that mobile

bandwidth is often limited.

The loop Attribute
Another attribute that you should think twice about before using is the Boolean

loop attribute. Again, it’s fairly self-explanatory: according to the spec, this attribute,

when present, will tell the browser to “seek back to the start of the media resource

upon reaching the end.”

So if you created a web page whose sole intention was to annoy its visitors, it might

contain code like this:

<video src="example.webm" width="375" height="280" controls
➥autoplay loop></video>

Autoplay and an infinite loop! We just need to remove the native controls and we’d

have a trifecta of worst practices.

Of course, there are some situations where loop can be useful: imagine a browser-

based game, in which ambient sounds and music should play continuously as long

as the page is open.

The preload Attribute
In contrast to the two previous attributes, preload could definitely come in handy

in a number of cases. The preload attribute accepts one of three values:

auto

A value of auto indicates that the video and its associated metadata will start

loading before the video is played. This way, the browser can start playing the

video more quickly when the user requests it.

none

A value of none indicates that the video shouldn’t load in the background before

the user presses play.

93HTML5 Audio and Video

metadata

This works like none, except that any metadata associated with the video (for

example, its dimensions, duration, and the like) can be preloaded, even though

the video itself won’t be.

This particular attribute does not have a spec-defined default in cases where it’s

omitted; each browser decides which of those three values should be the default

state, which makes sense. It allows desktop browsers to preload the video and/or

metadata automatically (having no real adverse effect) while permitting mobile

browsers to default to either metadata or none, as many mobile users have restricted

bandwidth and will prefer to have the choice of downloading the video or not.

The poster Attribute
When you go to view a video on the Web, normally a single frame of the video will

display in order to provide a teaser of its content. The poster attribute makes it

easy to choose such a teaser. This attribute, similar to src, will point to an image

file on the server by means of a URL.

Here’s how our video element would look with a poster attribute defined:

<video src="example.webm" width="375" height="280"
➥poster="teaser.jpg" controls></video>

Although the poster attribute is useful, there’s a bug in iOS3 (corrected in iOS4)

that prevents playback of the video if this attribute is present. If you know that many

of your visitors use iOS 3.x, you should either avoid using the poster attribute, or

remove it for those devices specifically.

The audio Attribute
The audio attribute attribute controls the default state of the audio track for the

video element, and currently accepts only a single possible value: muted. The spec

states that other values are likely to be added in the future, for specifying the default

audio track or volume, for example.

A value of muted will cause the video’s audio track to default to muted, potentially

overriding any user preferences. This will only control the default state of the ele-

ment—the user interacting with the controls, or JavaScript can change this.

HTML5 & CSS3 for the Real World94

Here it is added to our video element:

<video src="example.webm" width="375" height="280"
➥poster="teaser.jpg" audio="muted"></video>

Adding Support for Multiple Video Formats
As we discussed earlier, using a single container format to serve your video is not

currently an option, even though that’s really the ultimate idea behind having the

video element, and one which we hope will be realized in the future. To allow in-

clusion of multiple video formats, the video element allows source elements to be

defined so that you can allow every user agent to display the video using the format

of its choice. These elements serve the same function as the src attribute on the

video element; so if you’re providing source elements, there’s no need to specify

a src for your video.

Taking current browser support into consideration, here’s how we might declare

our source elements:

<source src="example.mp4" type="video/mp4">
<source src="example.webm" type="video/webm">
<source src="example.ogv" type="video/ogg">

The source element (oddly enough) takes a src attribute that specifies the location

of the video file. It also accepts a type attribute that specifies the container format

for the resource being requested. This latter attribute allows the browser to determine

if it can play the file in question, thus preventing the browser from unnecessarily

downloading an unsupported format.

The type attribute also allows a codec parameter to be specified, which defines the

video and audio codecs for the requested file. Here’s how our source elements will

look with the codecs specified:

<source src="example.mp4"
➥type='video/mp4; codecs="avc1.42E01E, mp4a.40.2"'>
<source src="example.webm" type='video/webm; codecs="vp8, vorbis"'>
<source src="example.ogv" type='video/ogg; codecs="theora, vorbis"'>

95HTML5 Audio and Video

You’ll notice that the syntax for the type attribute has been slightly modified to

accommodate the container and codec values. The double quotes surrounding the

values have been changed to single quotes, and another set of nested double quotes

is included specifically for the codecs.

This can be a tad confusing at first glance, but in most cases you’ll just be copying

and pasting those values once you have a set method for encoding the videos (which

we’ll touch on later in this chapter). The important point is that you define the

correct values for the specified file to ensure that the browser can determine which

(if any) file it will be able to play.

source Order
In our example above, the MP4/H.264/AAC container/codec combination is included

first. This is to ensure that the video will play on the iPad. On that device, a bug

causes only the first source element to be recognized. It’s safe to assume that this

bug is fixed in subsequent versions of the iPad, but for now it’s necessary to include

the MP4/H.264 file first to ensure compatibility.

The first source element will be recognized by IE9, Safari, and older versions of

Chrome, so that covers quite a large chunk of our HTML5-ready audience.

The next element in the list defines the WebM/VP8/Vorbis container/codec combin-

ation. This is supported by later versions of Chrome that will eventually drop support

for H.264. In addition to Chrome, WebM video will also play in Firefox 4 and Opera

10.6.

Finally, the third source element declares the Ogg/Theora/Vorbis container/codec

combination, which is supported by Firefox 3.5 and Opera 10.5. Although other

browsers also support this combination, they’ll be using the other formats since

they appear ahead of this one in the source order. The browsers that support only

this combination are older versions of browsers whose current versions support

other formats, so it will be possible to drop this format once those versions become

sufficiently rare.

These three source elements are placed as children of the video element, so with

our three file formats declared, our code will now look like this:

HTML5 & CSS3 for the Real World96

index.html (excerpt)

<video width="375" height="280" poster="teaser.jpg" audio="muted">
 <source src="example.mp4" type='video/mp4;
➥codecs="avc1.42E01E, mp4a.40.2"'>
 <source src="example.webm" type='video/webm;
➥codecs="vp8, vorbis"'>
 <source src="example.ogv" type='video/ogg;
➥codecs="theora, vorbis"'>
</video>

You’ll notice that our code above is now without the src attribute on the video

element. As well as being redundant, it would also override any video files defined

in the source elements.

What about Internet Explorer 6–8?
The three source elements that we included inside our video element will cover

all modern browsers. But we’re yet to ensure that our video will play for a potentially

large portion of our audience. As mentioned earlier, a significant percentage of users

are still using browsers without native support for HTML5 video. Most of those

users are on some version of Internet Explorer prior to version 9.

In keeping with the principle of graceful degradation, the HTML5 video element

has been designed so that older browsers can access the video by some alternate

means. Older browsers that fail to recognize the video element will simply ignore

it, along with its source children. But if the video element contains content that

the browser recognizes as valid HTML, it will read and display that content instead.

What kind of content can we serve to those nonsupporting browsers? According to

Adobe,2 99% of users have the Flash plugin installed on their systems. Additionally,

most of those instances of the Flash plugin are version 9 or later, which offer support

for the MPEG-4 video container format. To allow Internet Explorer 6 to 8 (and other

older browsers lacking support for HTML5 video) to play the video, we declare an

embedded Flash video to use as a fallback. Here’s the completed code for the video

on The HTML5 Herald, with the Flash fallback code included:

2 http://www.adobe.com/products/player_census/flashplayer/version_penetration.html

97HTML5 Audio and Video

index.html (excerpt)

<video width="375" height="280" poster="teaser.jpg" audio="muted">
 <source src="example.mp4" type='video/mp4;
➥codecs="avc1.42E01E, mp4a.40.2"'>
 <source src="example.webm" type='video/webm;
➥codecs="vp8, vorbis"'>
 <source src="example.ogv" type='video/ogg;
➥codecs="theora, vorbis"'>
 <!-- fallback to Flash: -->
 <object width="375" height="280" type="application/x-shockwave-
➥flash" data="mediaplayer-5.5/player.swf">
 <param name="movie" value="mediaplayer-5.5/player.swf">
 <param name="allowFullScreen" value="true">
 <param name="wmode" value="transparent">
 <param name="flashvars" value="controlbar=over&image=
➥images/teaser.jpg&file=example.mp4">
 <!-- fallback image -->
 <img src="teaser.jpg" width="375" height="280" alt=""
➥title="No video playback capabilities">
 </object>
</video>

We’ll avoid going into a detailed discussion of how this newly added code works

(this isn’t a Flash book, after all!), but here are a few points to note about this addition

to our markup:

■ The width and height attributes on the object element should be the same as

those on the video element.

■ We’re using the open source JW Player by LongTail Video3 to play the file; you

can use whichever video player you prefer.

■ The Flash video code has a fallback of its own—an image file that displays if

the code for the Flash video fails to work.

■ The fourth param element defines the file to be used (example.mp4); as mentioned,

most instances of the Flash player now support video playback using the MPEG-

4 container format, so there’s no need to encode another video format.

3 http://www.longtailvideo.com/players/jw-flv-player/

HTML5 & CSS3 for the Real World98

■ HTML5-enabled browsers that support HTML5 video are instructed by the spec

to ignore any content inside the video element that’s not a source tag, so the

fallback is safe in all browsers.

The last thing we’ll mention here is that, in addition to the Flash fallback content,

you could also provide an optional “download video” link that allows the user to

get a local copy of the video and view it at their leisure. This would ensure that

nobody is left without a means to view the video.

MIME Types
If you find that you’ve followed our instructions closely and your videos still won’t

play from your server, the issue could be related to the content-type information

being sent.

Content-type, also known as the MIME type, tells the browser what kind of content

they’re looking at. Is this a text file? If so, what kind? HTML? JavaScript? Is this a

video file? The content-type answers these questions for the browser. Every time

your browser requests a page, the server sends “headers” to your browser before

sending any files. These headers tell your browser how to interpret the file that

follows. Content-type is an example of one of the headers the server sends to the

browser.

The MIME type for each video file that you include via the source element is the

same as the value of the type attribute (minus any codec information). For the

purpose of HTML5 video, we’re concerned with three MIME types. To ensure that

your server is able to play all three types of video file, place the following lines of

code in your .htaccess file (or the equivalent if you’re using a web server other than

Apache):

AddType video/ogg .ogv
AddType video/mp4 .mp4
AddType video/webm .webm

If this fails to fix your problem, you may have to talk to your host or server admin-

istrator to find out if your server is using the correct MIME types. To learn more

99HTML5 Audio and Video

about configuring other types of web servers, read the excellent article “Properly

Configuring Server MIME Types” from the Mozilla Developer Network.4

What’s an .htaccess file?

An .htaccess file provides a way to make configuration changes on a per-directory

basis when using the Apache web server. The directives in an .htaccess file apply

to the directory it lives in and all subdirectories. For more on .htaccess files, see

the Apache documentation.5

Encoding Video Files for Use on the Web
The code we’ve presented for The HTML5 Herald is virtually bullet-proof, and will

enable the video to be viewable by nearly everyone that sees the page. Because we

need to encode our video in at least two formats (possibly three, if we want to), we

need an easy way to encode our original video file into these HTML5-ready formats.

Fortunately, there are some online resources and desktop applications that allow

you to do exactly that.

Miro Video Converter6 is free software with a super-simple interface that offers the

ability to encode your video into all the necessary formats for HTML5 video. It’s

available for Mac and Windows.7

Simply drag a file to the window, or browse for a file in the customary way. A drop-

down box offers options for encoding your video in Theora, WebM, or MPEG-4

format. There’s also an option for MP3 and a number of presets for device-specific

video output.

There are a number of other options for encoding HTML5 video, but this should

suffice to help you create the two (or three) files necessary for embedding video

that 99% of users can view.

4 https://developer.mozilla.org/en/properly_configuring_server_mime_types
5 http://httpd.apache.org/docs/1.3/howto/htaccess.html
6 http://www.mirovideoconverter.com/
7 Linux users can use FFmpeg, [http://ffmpeg.org/] the command-line utility on which Miro Video

Converter is based.

HTML5 & CSS3 for the Real World100

Creating Custom Controls
There’s another huge benefit to using HTML5 video compared to the customary

method of embedding video with a third-party technology. With HTML5 video, the

video element becomes a real part of the web page, rather than an inaccessible

plugin. It’s as much a part of the web page as an img element or any other native

HTML element would be. This means we can target the video element and its

various components using JavaScript—and we can even style the video element

with CSS.

As previously mentioned, each browser that supports HTML5 video embeds a native

set of controls to help the user access the video content. These controls have a dif-

ferent appearance in each browser, which may vex those concerned with a site’s

branding. No problem: by using the JavaScript API provided by the video element,

we can create our own custom controls and link them up to the video’s behavior.

Custom controls are created using whichever elements you want—images, plain

HTML and CSS, or even elements drawn using the Canvas API—the choice is yours.

To harness this API, create your own custom controls, insert them into the page,

and then use JavaScript to convert those otherwise static graphic elements into dy-

namic, fully functioning video controls.

Some Markup and Styling to Get Us Started
For our sample site, we’re going to build a very simple set of video controls to

demonstrate the power of the new HTML5 video API. To start off, Figure 5.5 shows

a screenshot of the set of controls we’ll be using to manipulate the video.

Figure 5.5. The simple set of video controls we’ll be building

Both of those buttons have alternate states: Figure 5.6 shows how the controls will

look if the video is playing and the sound has been muted.

Figure 5.6. Our controls again, this time with the sound muted and the video playing

101HTML5 Audio and Video

Our controls have three components:

■ play/pause button
■ timer that counts forward from zero
■ mute/unmute button

In most cases, your custom video controls should have all the features of the default

controls that various browsers natively provide. If your set of controls introduces

fewer or inferior features, it’s likely you’ll end up frustrating your users.

For the purpose of introducing the API, rather than trying to mimic what the browsers

natively do, we want to introduce the important parts of the video API gradually;

this will allow you to get your feet wet while establishing a foundation from which

to work.

We’ll be creating a very simple, yet usable, set of controls for our video. The main

feature missing from our set of controls is the seek bar that lets the user “scrub”

through the video to find a specific part. This means there will be no way to go back

to the start of the video aside from refreshing the page. Other than that, the controls

will function adequately—they’ll allow the user to play, pause, mute, or unmute

the video.

Here’s the HTML we’ll be using to represent the different parts of the video controls:

index.html (excerpt)

<div id="controls" class="hidden">
 Play/Pause
 00:00
 Mute/Unmute
</div>

We’ll avoid going into the CSS in great detail, but here’s a summary of what we’ve

done (you can view the demo page’s source in the code archive if you want to see

how it’s all put together):

■ The text in the play/pause and mute/unmute buttons is removed from view using

the text-indent property.

■ A single CSS sprite image is used as a background image to represent the different

button states (play, pause, mute, unmute).

HTML5 & CSS3 for the Real World102

■ CSS classes are being used to represent the different states; those classes will be

added and removed using JavaScript.

■ The controls wrapper element is absolutely positioned and placed to overlay

the bottom of the video.

■ We’ve given the controls a default opacity level of 50%, but on hover the opacity

increases to 100% (we’ll be talking more about opacity in Chapter 6).

■ By default, the controls wrapper element is set to display: none using a class

of hidden, which we’ll remove with JavaScript.

If you’re following along building the example, go ahead and style the three elements

however you like. The appearance of the controls is really secondary to what we’re

accomplishing here, so feel free to fiddle until you have a look you’re happy with.

Introducing the Media Elements API
Let’s go through the steps needed to create our custom controls, and in the process

we’ll introduce you to some aspects of the video API. Afterwards, we’ll summarize

some other methods and attributes from the API that we won’t be using in our

controls, so you can have a good overview of what the API includes.

In order to work with our new custom controls, we’ll first cache them by placing

them into JavaScript variables. Here are the first few lines of our code:

js/videoControls.js (excerpt)

var videoEl = $('video')[0],
 playPauseBtn = $('#playPause'),
 vidControls = $('#controls'),
 muteBtn = $('#muteUnmute'),
 timeHolder = $('#timer');

Of course, caching our selections isn’t necessary, but it’s always best practice (for

maintainability and performance) to work with cached objects, rather than needlessly

repeating the same code to target various elements on the page.

The first line is targeting the video element itself. We’ll be using this videoEl

variable quite a bit when using the API—since most API methods need to be called

from the media element. The next four lines of code should be fairly familiar to you

103HTML5 Audio and Video

if you took note of the HTML that comprises our controls. Those are the four elements

on the page that we’ll be manipulating based on user interaction.

Our first task is make sure the native controls are hidden. We could do this easily

by simply removing the controls attribute from the HTML. But since our custom

controls are dependent on JavaScript, visitors with JavaScript disabled would be

deprived of any way of controlling the video. So we’re going to remove the controls

attribute in our JavaScript, like this:

js/videoControls.js (excerpt)

videoEl.removeAttribute("controls");

The next step is to make our own custom controls visible. As mentioned earlier,

we’ve used CSS to remove our controls from view by default. By using JavaScript

to enable the visibility of the custom controls, we ensure that the user will never

see two sets of controls.

So our next chunk of code will look like this:

js/videoControls.js (excerpt)

videoEl.addEventListener('canplaythrough', function () {
 vidControls.removeClass("hidden");
}, false);

This is the first place we’ve used a feature from the HTML5 video API. First, take

note of the addEventListener method. This method does exactly what its name

implies: it listens for the specified event occurring on the targeted element.

But addEventListener isn’t cross-browser!

If you’re familiar with cross-browser JavaScript techniques, you probably know

that the addEventListener method isn’t cross-browser. In this case, it poses no

problem. The only browsers in use that lack support for addEventListener are

versions of Internet Explorer prior to version 9—and those browsers have no

support for HTML5 video anyway.

All we have to do is use Modernizr (or some equivalent JavaScript) to detect

support for the HTML5 video API, and then only run the code for supporting

browsers—all of which will support addEventListener.

HTML5 & CSS3 for the Real World104

In this case, we’re targeting the video element itself. The event we’re registering to

be listened for is the canplaythrough event from the video API. According to the

definition of this event in the spec:8

The user agent estimates that if playback were to be started now,

the media resource could be rendered at the current playback rate

all the way to its end without having to stop for further buffering.

There are other events we can use to check if the video is ready, each of which has

its own specific purpose. We’ll touch on some of those other events later in this

chapter. This particular one ensures continuous playback, so it’s a good fit for us

as we’d like to avoid choppy playback.

Playing and Pausing the Video
When the canplaythrough event fires, a callback function is run. In that function,

we’ve put a single line of code that removes the hidden class from the controls

wrapper, so now our controls are visible. Now we want to add some functionality

to our controls. Let’s bind a click event handler to our play/pause button:

js/videoControls.js (excerpt)

playPauseBtn.bind('click', function () {
 if (videoEl.paused) {
 videoEl.play();
 } else {
 videoEl.pause();
 }
});

When the button is clicked, we run an if/else block that’s using three additional

features from the video API. Here’s a description of all three:

The paused attribute is being accessed to see if the video is currently in the “paused”

state. This doesn’t necessarily mean the video has been paused by the user; it could

equally just represent the start of the video, before it’s been played. So this attribute

will return true if the video isn’t currently playing.

8 http://www.whatwg.org/specs/web-apps/current-work/multipage/video.html#event-media-canplay-

through

105HTML5 Audio and Video

Since we’ve now determined that the play/pause button has been clicked, and the

video is not currently playing, we can safely call the play() method on the video

element. This will play the video from its last paused location.

Finally, if the paused attribute doesn’t return true, the else portion of our code

will fire, and this will trigger the pause() method on the video element, stopping

the video.

You may have noticed that our custom controls have no “stop” button (customarily

represented by a square icon). You could add such a button if you feel it’s necessary,

but many video players don’t use it since the seek bar can be used to move to the

beginning of the video. The only catch is that the video API has no “stop” method;

to counter this, you can cause the video to mimic the traditional “stop” behavior

by pausing it and then sending it to the beginning (more on this later).

You’ll notice that something’s missing from our if/else construct. Earlier, we

showed you a couple of screenshots displaying the controls in their two states. We

need to use JavaScript to alter the background position of our sprite image; we want

to change the button from “play me” to “pause me.”

Here’s how we’ll do that:

js/videoControls.js (excerpt)

videoEl.addEventListener('play', function () {
 playPauseBtn.addClass("playing");
}, false);
videoEl.addEventListener('pause', function () {
 playPauseBtn.removeClass("playing");
}, false);

Here we have two more uses of the addEventListener method (you’ll need to get

used to it if you’re going to use the video and audio APIs!). The first block is

listening for play events. So if the click handler we wrote triggers the play()

method (or if something else causes the video to play, such as some other code on

the page), the play event will be detected by the listener and the callback function

will run.

The same thing is happening in the second block of code, except that it’s listening

for the pause event (not to be confused with the paused attribute).

HTML5 & CSS3 for the Real World106

If the element has been played, the first block will add the class playing to our

play/pause button. This class will change the background position of the sprite on

the play/pause button to make the “pause me” icon appear. Similarly, the second

block of code will remove the playing class, causing the state of the button to go

back to the default (the “play me” state).

You’re probably thinking, “why not just add or remove the playing class in the

code handling the button click?” While this would work just fine for when the

button is clicked (or accessed via the keyboard), there’s another behavior we need

to consider here, demonstrated in Figure 5.7.

Figure 5.7. Some video controls are accessible via the context menu

The menu above appears when you bring up the video element’s context menu. As

you can see, clicking the controls on the video element isn’t the only way to

play/pause or mute/unmute the video.

To ensure that the button states are changed no matter how the video element’s

features are accessed, we instead listen for play and pause events (and, as you’ll

see in a moment, sound-related events) to change the states of the buttons.

107HTML5 Audio and Video

Disabling the Context Menu

You may also be concerned that the video element’s context menu has an option

for Save video as…. There’s been discussion online about how easy it is to save

HTML5 video, and this could affect how copyrighted videos will be distributed.

Some content producers might feel like avoiding HTML5 video for this reason

alone.

Whatever you choose to do, just recognize the realities associated with web video.

Most users who are intent on copying and distributing copyrighted video will

find ways to do it, regardless of any protection put in place. There are many web

apps and software tools that can easily rip even Flash-based video. You should

also be aware that even if you do disable the context menu on the video element,

the user can still view the source of the page and find the location of the video

file(s).

Some sites, like YouTube, have already implemented features to combat this when

using HTML5 video. YouTube has a page that allows you to opt in to their HTML5

video trial.9 After opting in, when you view a video and open the video element’s

context menu, there’s a custom context menu. The “Save Video As…” option is still

present. But not so fast! If you choose this option, (as of this writing) you’ll be

“rickrolled.”10 Sneaky!

YouTube also dynamically adds the video element to the page, so that you’re

unable to find the URL to the video file by poking around in the source.

So, realize that you do have options, and that it’s possible to make it more difficult

(but not impossible) for users to rip your copyrighted videos. But also recognize

there are drawbacks to changing user expectations, in addition to the performance

and maintainability issues associated with convoluting your scripts and markup

for what could be little, if any, gain.

Muting and Unmuting the Video’s Audio Track
The next bit of functionality we want to add to our script is the mute/unmute button.

This piece of code is virtually the same as what was used for the play/pause button.

This time, we’ve bound the click event to the mute/unmute button, following with

a similar if/else construct:

9 http://www.youtube.com/html5
10 http://en.wikipedia.org/wiki/Rickrolling

HTML5 & CSS3 for the Real World108

js/videoControls.js (excerpt)

muteBtn.bind('click', function () {
 if (videoEl.muted) {
 videoEl.muted = false;
 } else {
 videoEl.muted = true;
 }
});

This block of code introduces a new part of the API: the muted attribute. After the

mute button is clicked, we check to see the status of this attribute. If it’s true

(meaning the sound is muted), we set it to false (which unmutes the sound); if it’s

false, we set its status to true.

Again, we haven’t done any button state handling here, for the same reasons men-

tioned earlier when discussing the play/pause buttons; the context menu allows for

muting and unmuting, so we want to change the mute button’s state depending on

the actual muting or unmuting of the video, rather than the clicking of the button.

But unlike the play/pause button, we don’t have the ability to listen for mute and

unmute events. Instead, the API offers the volumechange event:

js/videoControls.js (excerpt)

videoEl.addEventListener('volumechange', function () {
 if (videoEl.muted) {
 muteBtn.addClass("muted");
 } else {
 muteBtn.removeClass("muted");
 }
}, false);

Again, we’re using an event listener to run some code each time the specified event

(in this case a change in volume) takes place. As you can probably infer from the

name of this event, the volumechange event isn’t limited to detecting muting and

unmuting; it can detect volume changes.

Once we have detected the change in volume, we check the status of the video

element’s muted attribute, and we change the class on the mute/unmute button

accordingly.

109HTML5 Audio and Video

Responding When the Video Ends Playback
The code we’ve written so far will allow the user to play and pause the video, as

well as mute and unmute the sound. All of this is done using our custom controls.

At this point, if you let the video play to the end, it will stop on the last frame. We

think it’s best to send the video back to the first frame, ready to be played again.

This gives us the opportunity to introduce two new features of the API:

js/videoControls.js (excerpt)

videoEl.addEventListener('ended', function () {
 videoEl.currentTime = 0;
 videoEl.pause();
}, false);

This block of code listens for the ended event, which tells us that the video has

reached its end and stopped. Once we detect this event, we set the video’s

currentTime property to zero. This property represents the current playback position,

expressed in seconds (with decimal fractions).

Which brings us to the next step in our code.

Updating the Time as the Video Plays
Now for the last step: we want our timer to update the current playback time as the

video plays. We’ve already introduced the currentTime property; we can use it to

update the content of our #timeHolder element. Here’s how we do it:

js/videoControls.js (excerpt)

videoEl.addEventListener('timeupdate', function () {
 timeHolder[0].innerHTML = secondsToTime(videoEl.currentTime);
}, false);

In this case, we’re listening for timeupdate events. The timeupdate event fires each

time the video’s time changes, which means even a fraction of a second’s change

will fire this event.

HTML5 & CSS3 for the Real World110

This alone would suffice to create a bare-bones timer. Unfortunately, the time would

be unhelpful, and ugly on the eye because you’d see the time changing every milli-

second to numerous decimal places, as shown in Figure 5.8.

Figure 5.8. Using the currentTime property directly in our HTML is less than ideal

In addition, the timer in this state will not display minutes or hours, just

seconds—which could end up being in the hundreds or thousands, depending on

the length of the video. That’s impractical, to say the least.

To format the seconds into a more user-friendly time, we’ve written a function

called secondsToTime(), and called it from our timeupdate handler above. We

don’t want to show the milliseconds in this case, so our function rounds the timer

to the nearest second. Here’s the start of our function:

js/videoControls.js (excerpt)

var h = Math.floor(s / (60 * 60)),
 dm = s % (60 * 60),
 m = Math.floor(dm / 60),
 ds = dm % 60,
 secs = Math.ceil(ds);

After those five lines of code, the final variable secs will hold a rounded number

of seconds, calculated from the number of seconds passed into the function.

Next, we need to ensure that a single digit amount of seconds or minutes is expressed

using 05 instead of just 5. The next code block will take care of this:

js/videoControls.js (excerpt)

if (secs === 60) {
 secs = 0;
 m = m + 1;
}

if (secs < 10) {
 secs = "0" + secs;
}

111HTML5 Audio and Video

if (m === 60) {
 m = 0;
 h = h + 1;
}

if (m < 10) {
 m = "0" + m;
}

Finally, we return a string that represents the current time of the video in its correct

format:

js/videoControls.js (excerpt)

if (h === 0) {
 fulltime = m + ":" + secs;
} else {
 fulltime = h + ":" + m + ":" + secs;
}

return fulltime;

The if/else construct is included to check if the video is one hour or longer; if so,

we’ll format the time with two colons. Otherwise, the formatted time will use a

single colon that divides minutes from seconds, which will be the case in most

circumstances.

Remember where we’re running this function. We’ve included this inside our

timeupdate event handler. The function’s returned result will become the content

of the timeHolder element (which is the cached element with an id of timer):

js/videoControls.js (excerpt)

timeHolder[0].innerHTML = secondsToTime(videoEl.currentTime);

Because the timeupdate event is triggered with every fraction of a second’s change,

the content of the timeHolder element will change rapidly. But because we’re

rounding the value to the nearest second, the visible changes will be limited to a

time update every second, even though technically the content of the timer element

is changing more rapidly.

HTML5 & CSS3 for the Real World112

And that’s it, our custom controls are done. The buttons work as expected and the

timer runs smoothly. As we mentioned at the top, this isn’t quite a fully functional

set of controls. But you should at least have a good handle on the basics of interacting

with HTML5 video from JavaScript, so have a tinker and see what else you can add.

Further Features of the Media Elements API
The API has much more to it than what we’ve covered here. Here’s a summary of

some events and attributes that you might want to use when building your own

custom controls, or when working with video and audio elements.

One point to remember is that these API methods and properties can be used any-

where in your JavaScript—they don’t need to be linked to custom controls. If you’d

like to play a video when the mouse hovers over it, or use audio elements to play

various sounds associated with your web application or game, all you need to do

is call the appropriate methods.

Events
We’ve already seen the canplaythrough, play, pause, volumechange, ended, and

timeupdate events. Here are some of the other events available to you when working

with HTML5 video and audio:

canplay

This is similar to canplaythrough, but will fire as soon as the video is playable,

even if it’s just a few frames. (This contrasts with canplaythrough, as you’ll

remember, which only fires if the browser thinks it can play the video all the

way to the end without rebuffering.)

error

This event is sent when an error has occurred; there’s also an error attribute.

loadeddata

The first frame of the media has loaded.

loadedmetadata

This event is sent when the media’s metadata has finished loading. This would

include dimensions, duration, and any text tracks (for captions).

113HTML5 Audio and Video

playing

This indicates that the media has begun to play. The difference between playing

and play is that play will not be sent if the video loops and begins playing

again, whereas playing will.

seeking

This is sent when a seek operation begins. It might occur when a user starts to

move the seek bar to choose a new part of the video or audio.

seeked

This event fires when a seek operation is completed.

Attributes
In addition to the attributes we’ve already seen, here’s a number of useful ones

available to you:

playbackRate

The default playback rate is 1. This can be changed to speed up or slow down

playback. This is naturally of practical use if you’re creating a fast-forward or

rewind button, or a slow-motion or slow-rewind button.

src

As its name implies, this attribute returns the URL that points to the video being

played. This only works if you’re using the src attribute on the video element.

currentSrc

This will return the value of the URL pointing to the video file being played,

whether it’s from the video element’s src attribute or one of the source elements.

readyState

This attribute returns a numeric value from 0 to 4, with each state representing

the readiness level of the media element. For example, a value of “1” indicates

that the media’s metadata is available. A value of “4” is virtually the same as

the condition for firing the canplaythrough event, meaning the video is ready

to play, and won’t be interrupted by buffering or loading.

duration

This returns the length of the video in seconds.

HTML5 & CSS3 for the Real World114

buffered

This represents the time ranges of the video that have buffered and are available

for the browser to play.

videoWidth, videoHeight

These values return the intrinsic dimensions of the video, the actual width and

height as the video was encoded—not what’s declared in the HTML or CSS.

Those values can be accessed through the customary width and height attributes.

You can also access attributes that are able to be declared directly in the HTML,

such as preload, controls, autoplay, loop, and poster.

What about audio?
Much of what we’ve discussed in relation to HTML5 video and its API also apply

to the audio element, with the obvious exceptions being those related to visuals.

Similar to the video element, the preload, autoplay, loop, and controls attributes

can be used (or not used!) on the audio element.

The audio element won’t display anything unless controls are present, but even if

the element’s controls are absent, the element is still accessible via scripting. This

is useful if you want your site to use sounds that aren’t tied to controls presented

to the user. The audio element nests source tags, similar to video, and it will also

treat any child element that’s not a source tag as fallback content for nonsupporting

browsers.

As for codec/format support, Firefox, Opera, and Chrome all support Ogg/Vorbis;

Safari, Chrome, and IE9 support MP3; and every supporting browser supports WAV.

Safari also supports AIFF. At present, MP3 and Ogg/Vorbis will be enough to cover

you for all supporting browsers.

115HTML5 Audio and Video

Accessible Media
In addition to their status as first-class citizens of the page, making them intrinsically

more keyboard accessible (using tabindex, for example), the HTML5 media elements

also give you access to the track element to display captions or a transcript of the

media file being played. Like source elements, track elements should be placed

as children of the video or audio element.

The track element is still in flux, but if included as a child of the video element,

it would look like the example shown here (similar to an example given in the spec):

<video src="brave.webm">
 <track kind="subtitles" src="brave.en.vtt" srclang="en"
➥label="English">
 <track kind="captions" src="brave.en.vtt" srclang="en"
➥label="English for the Hard of Hearing">
 <track kind="subtitles" src="brave.fr.vtt" srclang="fr"
➥label="Français">
 <track kind="subtitles" src="brave.de.vtt" srclang="de"
➥label="Deutsch">
</video>

The code here has four track elements, each referencing a text track for captions

in a different language (or, in the case of the second one, alternate content in the

same language).

The kind attribute can take one of five values: subtitles, captions, descriptions,

chapters, and metadata. The src attribute is required, and points to an external

file that holds the track information. The srclang attribute specifies the language.

Finally, the label attribute gives a user-readable title for the track.

As of this writing, the track element is yet to be supported by any browser. For

more info on this new element, see the W3C spec.11

11 http://dev.w3.org/html5/spec/Overview.html#the-track-element

HTML5 & CSS3 for the Real World116

It’s Showtime
Video and audio on the Web have long been the stronghold of Flash, but, as we’ve

seen, HTML5 is set to change that. While the codec and format landscape is presently

fragmented, the promises of fully scriptable multimedia content, along with the

performance benefits of running audio and video natively in the browser instead

of in a plugin wrapper, are hugely appealing to web designers, developers, and

content providers.

Because we have access to nearly foolproof fallback techniques, there’s no reason

not to start experimenting with these elements now. At the very least, we’ll be better

prepared when support is more universal.

We’ve now covered just about everything on HTML5 “proper” (that is, the bits that

are in the HTML5 spec). In the next few chapters, we’ll turn our attention to CSS3,

and start to make The HTML5 Herald look downright fancy. After that, we’ll finish

by looking at the new JavaScript APIs that are frequently bundled with the term

“HTML5.”

117HTML5 Audio and Video

Chapter6
Introducing CSS3
The content layer is done! Now it’s time to make it pretty. The next four chapters

focus on presentation. In this one, we’ll start by covering some basics: we’ll first do

a quick overview of CSS selectors, and see what’s been added to our arsenal in

CSS3. Then, we’ll take a look at a few new ways of specifying colors. We’ll then

dive into rounded corners, drop shadows, and text shadows—tips and tricks enabling

us to style pages without having to make dozens of rounded-corner and text images

to match our designs.

But first, we need to make sure older browsers recognize the new elements on our

page, so that we can style them.

Getting Older Browsers on Board
As we mentioned back in Chapter 1, styling the new HTML5 elements in older

versions of Internet Explorer requires a snippet of JavaScript called an HTML5 shiv.

If you’re using the Modernizr library detailed in Appendix A (which includes a

similar piece of code), you’ll be fine.

Even with this JavaScript in place, though, you’re not quite ready to roll. IE6 through

8 will now be aware of these new elements, but they’ll still lack any default styles.

In fact, this will be the case for previous versions of other browsers as well; while

they may allow arbitrary elements, they’ve no way of knowing, for example, that

article should be block-level and mark should be inline. Because elements render

as inline by default, it makes sense to tell these browsers which elements should

be block-level.

This can be done with the following simple CSS rule:

css/styles.css (excerpt)

article, aside, figure, footer, header, hgroup, nav, section {
 display:block;
}

With this CSS and the required JavaScript in place, all browsers will start off on an

even footing when it comes to styling HTML5 elements.

CSS3 Selectors
Selectors are at the heart of CSS. Without selectors to target elements on the page,

the only way to modify the CSS properties of an element would be to use the ele-

ment’s style attribute and declare the styles inline. This, of course, is ugly, awkward,

and unmaintainable. So we use selectors. Originally, CSS allowed the matching of

elements by type, class, and/or id. This required adding class and id attributes to

our markup to create hooks and differentiate between elements of the same type.

CSS2.1 added pseudo-elements, pseudo-classes, and combinators. With CSS3, we

can target almost any element on the page with a wide range of selectors.

In the descriptions that follow, we’ll be including the selectors provided to us in

earlier versions of CSS. They are included because, while we can now start using

CSS3 selectors, all the selectors from previous versions of CSS are still supported.

Even for those selectors that have been around for quite some time, it’s worth going

over them here, as browser support for many of them has only just reached the point

of making them usable.

HTML5 & CSS3 for the Real World120

Relational Selectors
Relational selectors target elements based on their relationship to another element

within the markup. All of these are supported in IE7+, Firefox, Opera, and WebKit:

Descendant (E F)

You should definitely be familiar with this one. The descendant selector targets

any element F that is a descendant (child, grandchild, great grandchild, and so

on) of an element E. For example, ol li targets li elements that are inside

ordered lists. This would include li elements in a ul that’s nested in an

ol—which might not be what you want.

Child (E > F)

This selector matches any element F that is a direct child of element E—any

further nested elements will be ignored. Continuing the above example, ol >

li would only target li elements directly inside the ol, and would omit those

nested inside a ul.

Adjacent Sibling (E + F)

This will match any element F that shares the same parent as E, and comes dir-

ectly after E in the markup. For example, li + li will target all li elements

except the first li in a given container.

General Sibling (E ~ F)

This one’s a little trickier. It will match any element F that shares the same

parent as any E and comes after it in the markup. So, h1~h2 will match any h2

that follows an h1, as long as they both share the same direct parent—that is,

as long as the h2 is not nested in any other element.

Let’s look at a quick example:

<article>
 <header>
 <h1>Main title</h1>
 <h2>This subtitle is matched </h2>
 </header>
 <p> blah, blah, blah …</p>
 <h2>This is not matched by h1~h2, but is by header~h2</h2>
 <p> blah, blah, blah …</p>
</article>

121Introducing CSS3
D

ow
nl

oa
d

fr
om

 W
ow

!
eB

oo
k

<
w

w
w

.w
ow

eb
oo

k.
co

m
>

The selector string h1~h2 will match the first h2, because they’re both children,

or direct descendants, of the header. The second h2 doesn’t match, since its

parent is article, not header. It would, however, match header~h2. Similarly,

h2~p only matches the last paragraph, since the first paragraph precedes the h2

with which it shares the parent article.

There Are No Backwards Selectors

You’ll notice that there’s no “parent” or “ancestor” selector, and there’s also no

“preceding sibling” selector. This can be annoying sometimes, but there’s a reason

for it: if the browser had to go backwards up the DOM tree, or recurse into sets of

nested elements before deciding whether or not to apply a style, rendering would

be exponentially slower and more demanding in terms of processing. See

http://snook.ca/archives/html_and_css/css-parent-selectors for a more in-depth

explanation of this issue.

Looking through the stylesheet for The HTML5 Herald, you’ll see a number of places

where we’ve used these selectors. For example, when determining the overall layout

of the site, we want the three-column divs to be floated left. To avoid this style being

applied to any other divs nested inside them, we use the child selector:

css/styles.css (excerpt)

#main > div {
 float: left;
 overflow:hidden;
}

As we add new styles to the site over the course of the next few chapters, you’ll be

seeing a lot of these selector types.

Attribute Selectors
CSS2 introduced several attribute selectors. These allow for matching elements

based on their attributes. CSS3 expands upon those attribute selectors, allowing for

some targeting based on pattern matching.

E[attr]

Matches any element E that has the attribute attr with any value. We made use

of this back in Chapter 4 to style required inputs—input:required works in

HTML5 & CSS3 for the Real World122

the latest browsers, but input[required] has the same effect and works in some

slightly older ones.

E[attr=val]

Matches any element E that has the attribute attrwith the exact, case-insensitive

value val. While not new, it’s helpful in targeting form input types—for instance,

target checkboxes with input[type=checkbox].

E[attr|=val]

Matches any element E whose attribute attr either has the value val or begins

with val-. This is most commonly used for the lang attribute (as in lang="en-

us"). For example, p[lang|="en"] would match any paragraph that has been

defined as being in English, whether it be UK or US English.

E[attr~=val]

Matches any element E whose attribute attr has within its value the full word

val, surrounded by whitespace. For example, .info[title~=more] would

match any element with the class info that had a title attribute containing

the word “more,” such as “Click here for more information.”

E[attr^=val] (IE8+, WebKit, Opera, Mozilla)

Matches any element E whose attribute attr starts with the value val. In other

words, the val matches the beginning of the attribute value.

E[attr$=val] (IE8+, WebKit, Opera, Mozilla)

Matches any element E whose attribute attr ends in val. In other words, the

val matches the end of the attribute value.

E[attr*=val] (IE8+, WebKit, Opera, Mozilla)

Matches any element E whose attribute attr matches val anywhere within the

attribute. In other words, the string val is matched anywhere in the attribute

value. It is similar to E[attr~=val] above, except the val can be part of a word.

Using the same example as above, .fakelink[title~=info] {} would match

any element with the class fakelink that has a title attribute containing the

string info, such as "Click here for more information."

123Introducing CSS3

Pseudo-classes
It’s likely that you’re already familiar with some of the user interaction pseudo-

classes, namely :link, :visited, :hover, :active, and :focus.

Key Points to Remember

1. The :visited pseudo-class may pose a security risk, and may not be fully

supported in the future. In short, malicious sites can apply a style to a visited

link, then use JavaScript to check the styles of links to popular sites. This allows

the attacker to glimpse the user’s browsing history without their permission.

As a result, several browsers have begun limiting the styles that can be applied

with :visited, and some others (notably Safari 5) have disabled it entirely.

The spec explicitly condones these changes, saying: “UAs [User Agents] may

therefore treat all links as unvisited links, or implement other measures to

preserve the user’s privacy while rendering visited and unvisited links differ-

ently.”

2. For better accessibility, add :focus wherever you include :hover, as not all

visitors will use a mouse to navigate your site.

3. :hover can apply to any element on the page—not just links and form controls.

4. :focus and :active are relevant to links, form controls, and any element

with a tabindex attribute.

While it’s likely you’ve been using these basic pseudo-classes for some time, there

are many other pseudo-classes available. Several of these have been in the specific-

ation for years, but weren’t supported (or commonly known) until browsers started

supporting the new HTML5 form attributes that made them more relevant.

The following pseudo-classes match elements based on attributes, user interaction,

and form control state:

:enabled

A user interface element that’s enabled.

:disabled

Conversely, a user interface element that’s disabled.

HTML5 & CSS3 for the Real World124

:checked

Radio buttons or checkboxes that are selected or ticked.

:indeterminate

Form elements that are neither checked nor unchecked. This pseudo-class is

still being considered, and may be included in the specification in the future.

:target

This selector singles out the element that is the target of the currently active

intrapage anchor. That sounds more complicated than it is: you already know

you can have links to anchors within a page by using the # character with the

id of the target. For example, you may have Skip to

content link in your page that, when clicked, will jump to the element

with an id of content.

This changes the URL in the address bar to thispage.html#content—and the

:target selector now matches the #content element, as if you had included,

temporarily, the selector #content. We say “temporarily” because as soon as

the user clicks on a different anchor, :target will match the new target.

:default

Applies to one or more UI elements that are the default among a set of similar

elements.

:valid

Applies to elements that are valid, based on the type or pattern attributes (as

we discussed in Chapter 4).

:invalid

Applies to empty required elements, and elements failing to match the require-

ments defined by the type or pattern attributes.

:in-range

Applies to elements with range limitations, where the value is within those

limitations. This applies, for example, to number and range input types with

min and max attributes.

125Introducing CSS3

:out-of-range

The opposite of :in-range: elements whose value is outside the limitations of

their range.

:required

Applies to form controls that have the required attribute set.

:optional

Applies to all form controls that do not have the required attribute.

:read-only

Applies to elements whose contents are unable to be altered by the user. This

is usually most elements other than form fields.

:read-write

Applies to elements whose contents are user-alterable, such as text input fields.

Browser support for these pseudo-classes is uneven, but improving fairly rapidly.

Browsers that support form control attributes like required and pattern also support

the associated :valid and :invalid pseudo-classes.

IE6 fails to understand :hover on elements other than links, and neither IE6 nor

IE7 understand :focus. IE8 and earlier lack support for :checked, :enabled, :dis-

abled, and :target. The good news is that IE9 does support these selectors.

While support is still lacking, JavaScript libraries such as jQuery can help in targeting

these pseudo-classes in nonsupporting browsers.

Structural Pseudo-classes
So far, we’ve seen how we can target elements based on their attributes and states.

CSS3 also enables us to target elements based simply on their location in the markup.

These selectors are grouped under the heading structural pseudo-classes.1

These might seem complicated right now, but they’ll make more sense as we look

at ways to apply them later on. These selectors are supported in IE9, as well as

current and older versions of all the other browsers—but not in IE8 and below.

1 http://www.w3.org/TR/css3-selectors/#structural-pseudos

HTML5 & CSS3 for the Real World126

:root

The root element, which is always the html element.

E F:nth-child(n)

The element F that is the nth child of its parent E.

E F:nth-last-child(n)

The element F that is the nth child of its parent E, counting backwards from the

last one. li:nth-last-child(1) would match the last item in any list—this is

the same as li:last-child (see below).

E:nth-of-type(n)

The element that is the nth element of its type in a given parent element.

E:nth-last-of-type(n)

Like nth-of-type(n), except counting backwards from the last element in a

parent.

E:first-child

The element E that is the first child E of its parent. This is the same as :nth-

child(1).

E:last-child

The element E that is the last child E of its parent, same as :nth-last-child(1).

E:first-of-type

Same as :nth-of-type(1).

E:last-of-type

Same as :nth-last-of-type(1).

E:only-child

An element that’s the only child of its parent.

E:only-of-type

An element that’s the only one of its type inside its parent element.

E:empty

An element that has no children; this includes text nodes, so <p>hello</p>

will not be matched.

127Introducing CSS3

E:lang(en)

An element in the language denoted by the two-letter abbreviation (en).

E:not(exception)

This is a particularly useful one: it will select elements that don’t match the

selector in the parentheses.

Selectors with the :not pseudo-class match everything to the left of the colon,

and then exclude from that matched group the elements that also match what’s

to the right of the colon. The left-hand side matching goes first. For example,

p:not(.copyright) will match all the paragraphs in a document first, and then

exclude all the paragraphs from the set that also have the class of copyright.

You can string several :not pseudo-classes together. h2:not(header >

h2):not(.logo) will match all h2s on a page except those that are in a header

and those that have a class of logo.

What is n?

There are four pseudo-classes that take an n parameter in parentheses: :nth-

child(n), :nth-last-child(n), :nth-of-type(n), and :nth-last-of-

type(n).

In the simplest case, n can be an integer. For example, :nth-of-type(1) will

target the first element in a series. You can also pass one of the two keywords odd

or even, targeting every other element. You can also, more powerfully, pass a

number expression such as :nth-of-type(3n+1). 3nmeans every third element,

defining the frequency, and +1 is the offset. The default offset is zero, so where

:nth-of-type(3n) would match the 3rd, 6th, and 9th elements in a series,

:nth-of-type(3n+1) would match the 1st, 4th, 7th, and so on. Negative offsets

are also allowed.

With these numeric pseudo-classes, you can pinpoint which elements you want

to target without adding classes to the markup. The most common example is a

table where every other row should be a slightly darker color to make it easier to

read. We used to have to add odd or even classes to every tr to accomplish this.

Now, we can simply declare tr:nth-of-type(odd) to target every odd line

without touching the markup. You can even take it a step further with three-

colored striped tables: target :nth-of-type(3n), :nth-of-type(3n+1), and

:nth-of-type(3n+2) and apply a different color to each.

HTML5 & CSS3 for the Real World128

Pseudo-elements and Generated Content
In addition to pseudo-classes, CSS gives us access to pseudo-elements. Pseudo-

elements allow you to target text that’s part of the document, but not otherwise

targetable in the document tree. Pseudo-classes generally reflect some attribute or

state of the element that is not otherwise easily or reliably detectable in CSS. Pseudo-

elements, on the other hand, represent some structure of the document that’s outside

of the DOM.

For example, all text nodes have a first letter and a first line, but how can you target

them without wrapping them in a span? CSS provides the ::first-letter and

::first-line pseudo-elements that match the first letter and first line of a text

node, respectively. These can alternatively be written with just a single colon:

:first-line and :first-letter.

Why bother with the double colon?

The double colon is the correct syntax, but the single colon is better supported.

IE6, IE7, and IE8 only understand the single-colon notation. All other browsers

support both. Even though :first-letter, :first-line, :first-child,

:before, and :after have been around since CSS2, these pseudo-elements in

CSS3 have been redefined using double colons to differentiate them from pseudo-

classes.

Generated Content
The ::before and ::after pseudo-elements don’t refer to content that exists in the

markup, but rather to a location where you can insert additional content, generated

right there in your CSS. While this generated content doesn’t become part of the

DOM, it can be styled.

To generate content for a pseudo-element, use the content property. For example,

let’s say you wanted all external links on your page to be followed by the URL they

point to in parentheses, to make it clear to your users that they’ll be leaving your

page. Rather than hardcoding the URLs into your markup, you can use the combin-

ation of an attribute selector and the ::after pseudo-element:

129Introducing CSS3

a[href^=http]:after {
 content: " (" attr(href) ")";
}

attr() allows you to access any attributes of the selected element, coming in handy

here for displaying the link’s target. And you’ll remember from the attribute selectors

section that a[href^=http] means “any a element whose href attribute begins with

http”; in other words, external links.

Here’s another example:

a[href$=pdf] {
 background: transparent url(pdficon.gif) 0 50% no-repeat;
 padding-left: 20px;
}
a[href$=pdf]:after {
 content: " (PDF)";
}

Those styles will add a PDF icon and the text “(PDF)” after links to PDFs. Remember

that the [attr$=val] selector matches the end of an attribute—so document.pdf

will match but page.html won’t.

::selection

The ::selection pseudo-element matches text that is highlighted.

This is supported in WebKit, and with the -moz vendor prefix in Firefox. Let’s use

it on The HTML5 Herald, to bring the selection background and text color in line

with the monochrome style of the rest of the site:

css/styles.css (excerpt)

::-moz-selection{
 background: #484848;
 color:#fff;
}
::selection {
 background:#484848;
 color:#fff;
}

HTML5 & CSS3 for the Real World130

CSS3 Colors
We know you’re probably chomping at the bit to put the really cool stuff from CSS3

into practice, but before we do there’s one more detour we need to take. CSS3 brings

with it support for some new ways of describing colors on the page. Since we’ll be

using these in examples over the next few chapters, it’s important we cover them

now.

Prior to CSS3, we almost always declared colors using the hexadecimal format

(#FFF, or #FFFFFF for white). It was also possible to declare colors using the rgb()

notation, providing either integers (0–255) or percentages. For example, white is

rgb(255,255,255) or rgb(100%,100%,100%). In addition, we had access to a few

named colors, like purple, lime, aqua, red, and the like. While the color keyword

list has been extended in the CSS3 color module2 to include 147 additional keyword

colors (that are generally well supported), CSS3 also provides us with a number of

other options: HSL, HSLA, and RGBA. The most notable change with these new

color types is the ability to declare semitransparent colors.

RGBA
RGBA works just like RGB, except that it adds a fourth value: alpha, the opacity

level. The first three values still represent red, green, and blue. For the alpha value,

1 means fully opaque, 0 is fully transparent, and 0.5 is 50% opaque. You can use

any number between 0 and 1, inclusively.

Unlike RGB, which can also be represented with hexadecimal notation as #RRGGBB,

there is no hexadecimal notation for RGBA. There’s been some discussion of includ-

ing an eight-character hexadecimal value for RGBA as #RRGGBBAA, but this has

yet to be added to the draft specification.

For an example, let’s look at our registration form. We want the form to be a darker

color, while still preserving the grainy texture of the site’s background. To accom-

plish this, we’ll use an RGBA color of 0,0,0,0.2—in other words, solid black that’s

80% transparent:

2 http://www.w3.org/TR/css3-color/

131Introducing CSS3

css/styles.css (excerpt)

form {
 ⋮
 background: rgba(0,0,0,0.2) url(../images/bg-form.png) no-repeat
➥bottom center;
}

Since Internet Explorer 8 and below lack support for RGBA, if you declare an RGBA

color, make sure you precede it with a color IE can understand. IE will render the

last color it can make sense of, so it will just skip the RGBA color. Other browsers

will understand both colors, but thanks to the CSS cascade, they’ll overwrite the IE

color with the RGBA color as it comes later.

In the above example, we’re actually fine with older versions of IE having no back-

ground color, because the color we’re using is mostly transparent anyway.

HSL and HSLA
HSL stands for hue, saturation, and lightness. Unlike RGB, where you need to ma-

nipulate the saturation or brightness of a color by changing all three color values

in concert, with HSL you can tweak either just the saturation, or the lightness, while

keeping the same base hue. The syntax for HSL comprises integer for hue, and

percentage values for saturation and lightness.3

Although monitors display colors as RGB, the browser simply converts the HSL

value you give it into one the monitor can display.

The hsl() declaration accepts three values:

■ The hue, in degrees from 0 to 359. Some examples: 0 = red, 60 = yellow, 120 =

green, 180 = cyan, 240 = blue, and 300 = magenta. Of course, feel free to use

everything in between.

3 A full exploration of color theory—along with what is meant by the terms saturation and lightness—is

beyond the scope of this book. If you want to read more, Jason Beaird’s The Principles of Beautiful Web

Design (SitePoint: Melbourne, 2010) [http://www.sitepoint.com/books/design2/] includes a great primer

on color.

HTML5 & CSS3 for the Real World132

■ The saturation, as a percentage. 100% is the norm for saturation. Saturation of

100% will be the full hue, and saturation of 0 will give you a shade of gray—

essentially causing the hue value to be ignored.

■ A percentage for lightness, with 50% being the norm. Lightness of 100% will

be white, 50% will be the actual hue, and 0% will be black.

HSL also allows for an opacity value. For example, hsla(300, 100%, 50%, 0.5)

is magenta with full saturation and normal lightness, which is 50% opaque.

HSL mimics the way the human eye perceives color, so it can be more intuitive for

designers to understand —and, as mentioned above, it can make adjustments a bit

quicker and easier. Feel free to use whatever syntax you’re most comfortable

with—but remember that if you need to support IE8 or below, you’ll generally want

to limit yourself to hexadecimal notation.

Let’s sum up with a review of all the ways to write colors in CSS. A shade of dark

red can be written as:

■ #800000

■ maroon

■ rgb(128,0,0)

■ rgba(128,0,0,1.0)

■ hsl(0,100%,13%)

■ hsla(0,100%,13%,1.0)

Opacity
In addition to specifying transparency with HSLA and RGBA colors, CSS3 also

provides us with the opacity property. opacity sets the opaqueness of the element

on which it’s declared. Similar to alpha transparency, the opacity value is a floating

point number between (and including) 0 and 1. An opacity value of 0 defines the

element as fully transparent, whereas an opacity value of 1 means the element is

fully opaque.

Let’s look at an example:

133Introducing CSS3

div.halfopaque {
 background-color: rgb(0, 0, 0);
 opacity: 0.5;
 color: #000000;
}

div.halfalpha{
 background-color: rgba(0, 0, 0, 0.5);
 color: #000000;
}

While the two declaration blocks above may seem to be identical at first glance,

there’s actually a key difference. While opacity sets the opacity value for an element

and all of its children, a semitransparent RGBA or HSLA color has no impact on

elements other than the one it’s declared on.

Looking at the example above, any text in the halfopaque div will also be 50%

opaque (most likely making it difficult to read!); the text on the halfalpha div,

though, will still be 100% opaque.

So, while the opacity property is a quick and easy solution for creating semitrans-

parent elements, you should be aware of this consequence.

Putting It into Practice
Now that we’ve been through all the available CSS selectors and new color types,

we’re ready to really start styling.

For the rest of the chapter, we’ll style a small section of The HTML5 Herald front

page; this will demonstrate how to add rounded corners, text shadow, and box

shadow.

In the right-hand sidebar of The HTML5 Herald’s front page are a series of whimsical

advertisements—we marked them up as article elements within an aside way

back in Chapter 2. The first of these is an old “Wanted” poster-style ad, advising

readers to be on the look out for the armed and dangerous HTML5 and CSS3. The

ad’s final appearance is depicted in Figure 6.1.

HTML5 & CSS3 for the Real World134

Figure 6.1. Our “Wanted” ad

You’ll notice that the dark gray box in the center of the ad has a double border with

rounded corners, as well as a three-dimensional “pop” to it. The text that reads

“<HTML5> & {CSS3}” also has a shadow that offsets it from the background. Thanks

to CSS3, all these effects can be achieved with some simple code, and with no reli-

ance on images or JavaScript. Let’s learn how it’s done.

The markup for the box is simply <HTML5> & {CSS3}.

Other than the HTML entities, it’s as straightforward as it gets!

Before we can apply any styles to it, we need to select it. Of course, we could just

add a class attribute to the markup, but where’s the fun in that? We’re here to learn

CSS3, so we should try and use some fancy new selectors instead.

Our box isn’t the only a element on the page, but it might be the only a immediately

following a paragraph in the sidebar. In this case, that’s good enough to single out

the box. We also know how to add some pre-CSS3 styling for the basics, so let’s do

that:

css/styles.css (excerpt)

aside p + a {
 display: block;
 text-decoration: none;
 border: 5px double;
 color: #ffffff;
 background-color: #484848;
 text-align: center;

135Introducing CSS3

 font-size: 28px;
 margin: 5px 5px 9px 5px;
 padding: 15px 0;
 position: relative;
}

Not bad! As Figure 6.2 shows, we’re well on our way to the desired appearance.

This will also be the appearance shown to IE8 and below except for the font styling,

which we’ll be adding in Chapter 9.

Figure 6.2. The basic appearance of our ad link, which will be seen by older browsers

Remember that IE6 lacks support for the adjacent sibling selector—so if you need

to provide support to that browser, you can use a more common id or class selector.

This presentation is fine, and should be acceptable—no need for web pages to look

identical in all browsers. Users with older versions of Internet Explorer will be un-

aware that they’re missing anything. But we can still provide treats to better browsers.

Let’s go ahead and add a bit of polish.

Rounded Corners: border-radius
The border-radius property lets you create rounded corners without the need for

images or additional markup. To add rounded corners to our box, we simply add:

-moz-border-radius: 25px;
border-radius: 25px;

Safari, Chrome, Opera, IE9, and Firefox 4 support rounded corners without a vendor

prefix (just border-radius). We still need to include the vendor-prefixed -moz-

border-radius for Firefox 3.6 and earlier, though by the time you read this those

versions may have dwindled enough for it to be no longer necessary.

HTML5 & CSS3 for the Real World136

Figure 6.3 shows what our link looks like with the addition of these properties.

Figure 6.3. Adding rounded corners to our link

The border-radius property is actually a shorthand. For our a element, the corners

are all the same size and symmetrical. If we had wanted different-sized corners, we

could declare up to four unique values—border-radius: 5px 10px 15px 20px;,

for example. Just like padding, margin, and border, you can adjust each value indi-

vidually:

border-top-left-radius: 5px;
border-top-right-radius: 10px;
border-bottom-right-radius: 15px;
border-bottom-left-radius: 40px;

The -moz- prefixed form for older versions of Firefox uses a slightly different syntax:

-moz-border-radius-topleft: 5px;
-moz-border-radius-topright: 10px;
-moz-border-radius-bottomright: 15px;
-moz-border-radius-bottomleft: 40px;

The resulting off-kilter box is shown in Figure 6.4.

Figure 6.4. It’s possible to set the radius of each corner independently

137Introducing CSS3

When using the shorthand border-radius, the order of the corners is top-left, top-

right, bottom-right, and bottom-left. You can also declare only two values, in which

case the first is for top-left and bottom-right, and the second is for top-right and

bottom-left. If you declare three values, the first refers to top-left, the second sets

both the top-right and bottom-left, and the third is bottom-right.

We recommend using the shorthand—because it’s much shorter, and because until

old versions of Firefox no longer require support, it avoids the need to use two dif-

ferent syntaxes.

You can also create asymmetrical corners with a different radius on each side. Rather

than being circular, these will appear elliptical. If two values are supplied to any

of the four longhand values, you’ll be defining the horizontal and vertical radii of

a quarter ellipse respectively. For example, border-bottom-left-radius: 20px

10px; will create an elliptical bottom-left corner.

When using the shorthand for elliptical corners, separate the value of the horizontal

and vertical radii with a slash. border-radius: 20px / 10px; will create four

equal, elliptical corners, and border-radius: 5px 10px 15px 20px / 10px 20px

30px 40px; will create four unequal, elliptical corners. That last example will create

corners seen in Figure 6.5. Interesting? Yes. Aesthetically pleasing? Not so much.

Figure 6.5. Four interesting, unequal, elliptical corners

With an Eye to the Future

When including prefixed properties, always follow with the correctly written,

nonprefixed, standards-compliant syntax. This will ensure that your site is forward

compatible!

There’s only one other element on The HTML5 Herald that uses rounded corners:

the registration form’s submit button. Let’s round those corners now:

HTML5 & CSS3 for the Real World138

css/styles.ss (excerpt)

input[type=submit] {
 -moz-border-radius: 10%;
 border-radius: 10%;
}

You’ll note two things about the above CSS: we’ve used an attribute selector to target

the submit input type, and we’ve used percentages instead of pixel values for the

rounded corners. This will come in handy if we need to add more forms to the site

later; other submit buttons might be smaller than the one on the registration page,

and by using percentages, rounded corners will scale in proportion to the size of

the button.

The border-radius property can be applied to all elements, except the table ele-

ment when the border-collapse property is set to collapse.

What about older browsers?

Generally speaking, there’s no need to provide an identical look in older browsers,

but sometimes a client may insist on it. In the case of rounded corners, one common

method is to dynamically generate four additional elements—one for each corner.

You’d then use JavaScript to add four spans to all the elements you want rounded

and, in your CSS, provide background images to each span corresponding to the

relevant corner.

While methods like this one provide the desired look, they require JavaScript,

additional markup, CSS, and/or images. Additionally, if there’s a design change

—for example, the color, radius, or border—the background images will need to

be recreated. Fortunately, there are some JavaScript solutions that provide CSS3

decorations to older versions of IE without requiring additional images or markup;

CSS3 PIE4 is one that’s worth looking into.

4 http://css3pie.com/

139Introducing CSS3

Drop Shadows
CSS3 provides the ability to add drop shadows to elements using the box-shadow

property. This property lets you specify the color, height, width, blur, and offset of

one or multiple inner and/or outer drop shadows on your elements.

We usually think of drop shadows as an effect that makes an element look like it’s

“hovering” over the page and leaving a shadow; however, with such fine-grained

control over all those variables, you can be quite creative. For our advertisement

link, we can use a box-shadow with no blur to create the appearance of a 3D box.

The box-shadow property takes a comma-separated list of shadows as its value. Each

shadow is defined by two to four size values, a color, and the key term inset for

inset—or internal—shadows. If you fail to specify inset, the default is for the

shadow to be drawn outside of the element:

Let’s look at the shadow we’re using on our element, so that we can break down

what each value is doing:

css/styles.css (excerpt)

-webkit-box-shadow: 2px 5px 0 0 rgba(72,72,72,1);
-moz-box-shadow: 2px 5px 0 0 rgba(72,72,72,1);
box-shadow: 2px 5px 0 0 rgba(72,72,72,1);

The first value is the horizontal offset. A positive value will create a shadow to the

right of the element, a negative value to the left. In our case, our shadow is two

pixels to the right of the a.

The second value is the vertical offset. A positive value pushes the shadow down,

creating a shadow on the bottom of the element. A negative value pushes the

shadow up. In our case, the shadow is five pixels below the a.

The third value, if included, is the blur distance of the shadow. The greater the

value, the more the shadow is blurred. Only positive values are allowed. Our

shadow is not blurred, so we can either include a value of zero (0), or omit the value

altogether.

The fourth value determines the spread distance of the shadow. A positive value

will cause the shadow shape to expand in all directions. A negative value contracts

HTML5 & CSS3 for the Real World140

the shadow. Our shadow has no spread, so again we can either include a value of

zero (0), or omit the value altogether.

The fifth value above is the color. You will generally want to declare the color of

the shadow. If it’s omitted, the spec states that it should default to the same as the

color property of the element. Opera and Firefox support this default behavior, but

WebKit doesn’t, so be sure to include the color. In the example above, we used an

RGBA color. In this particular design, the shadow is a solid color, so we could just

have used the hex value. Most of the time, though, shadows will be partially trans-

parent, so you’ll be using RGBA or HSLA, usually.

The drop shadow created by these declarations is shown in Figure 6.6.

Figure 6.6. Adding a drop shadow to our box gives it the illusion of depth

By default, the shadow is a drop shadow—occurring on the outside of the box. You

can create an inset shadow by adding the word inset to the start of your shadow

declaration.

Opera, Firefox 4, and IE9 support the nonprefixed syntax. We’re still including the

-moz- prefix for Firefox 3.6 and earlier, and the -webkit- prefix for Safari and

Chrome. However, current development versions of WebKit support the unprefixed

version, and Firefox 4 will soon supplant the older versions, so the need for prefixing

should wane.

141Introducing CSS3

Drop Shadows on IE6+

To include box shadows in IE6 through IE8, you have to use a proprietary filter

like the one shown below. Be warned, though, that it’s almost impossible to make

it look the same as a CSS3 shadow. You should also be aware that filters have a

significant impact on performance, so you should only use them if it’s absolutely

necessary for those older browsers to see your shadows. Moreover, these styles

should be in a separate stylesheet targeted to earlier versions of IE with the help

of conditional comments—otherwise they’ll mess with your standard CSS3

shadows on IE9:

filter: shadow(color=#484848, direction=220, Strength=8);
filter:progid:DXImageTransform.Microsoft.dropshadow(OffX=2,
➥OffY=5, Color='#484848', Positive='true');

Nonrectangular shadows?

Drop shadows look good on rectangular elements, including those with rounded

corners like ours. We’re using the border-radius property on our element, so

the shadow will follow the curve of the corners, which looks good.

Keep in mind, though, that the shadow follows the edges of your element, rather

than the pixels of your content. So, if you try to use drop shadows on semitrans-

parent images, you’ll receive an ugly surprise: the shadow follows the rectangular

borders of the image instead of the contour of the image’s content.

To include more than one box shadow on an element, define a comma-separated

list of shadows. When more than one shadow is specified, the shadows are layered

front to back, as if the browser drew the last shadow first, and the previous shadow

on top of that.

Like an element’s outline, box shadows are supposed to be invisible in terms of the

box model. In other words, they should have no impact on the layout of a page

—they’ll overlap other boxes and their shadows if necessary. We say “supposed

to,” because there are bugs in some browsers, though these are few, and will likely

be fixed fairly quickly.

HTML5 & CSS3 for the Real World142

Inset and Multiple Shadows
The registration form for The HTML5 Herald has what looks like a gradient back-

ground around the edges, but it’s actually a few inset box shadows.

To create an inset box shadow, add the inset key term to your declaration. In our

case, we have to include two shadows so that we cover all four sides: one shadow

for the top left, and one for the bottom right:

css/styles.css (excerpt)

form {
 -webkit-box-shadow:
 inset 1px 1px 84px rgba(0,0,0,0.24),
 inset -1px -1px 84px rgba(0,0,0,0.24);
 -moz-box-shadow:
 inset 1px 1px 84px rgba(0,0,0,0.24),
 inset -1px -1px 84px rgba(0,0,0,0.24);
 box-shadow:
 inset 1px 1px 84px rgba(0,0,0,0.24),
 inset -1px -1px 84px rgba(0,0,0,0.24);
}

As you can see, to add multiple shadows to an element, you simply need to repeat

the same syntax again, separated with a comma.

WebKit and Inset Shadows

Current versions of WebKit-based browsers suffer from very slow performance

when rendering inset box shadows with a large blur value, like the one we’re

using on The HTML5 Herald’s registration form.

Because WebKit supports both the -webkit- prefixed and unprefixed forms of

the box-shadow property, we’ve had to omit both of these from the finished CSS.

We could only include the -moz- prefixed property, so, unfortunately, Firefox is

the sole beneficiary of our nice big inset shadow.

This bug has been fixed in the current development version of the WebKit engine,

but it might be some time before the fix makes its way into releases of every

WebKit-based browser. Therefore, if you’re using inset shadows, be sure to do

plenty of browser testing.

143Introducing CSS3

Text Shadow
Where box-shadow lets us add shadows to boxes, text-shadow adds shadows to

individual characters in text nodes. Added in CSS2, text-shadow has been supported

in Safari since version 1, and is now supported in all current browser releases except

IE9.

The syntax of the text-shadow property is very similar to box-shadow, including

prefixes, offsets, and the ability to add multiple shadows; the exceptions are that

there’s no spread, and inset shadows aren’t permitted:

/* single shadow */
text-shadow: topOffset leftOffset blurRadius color;

/* multiple shadows */
text-shadow: topOffset1 leftOffset1 blurRadius1 color1,
 topOffset2 leftOffset2 blurRadius2 color2,
 topOffset3 leftOffset3 blurRadius3 color3;

Like box-shadow, when multiple shadows are declared, they’re painted from front

to back with the first shadow being the topmost. Text shadows appear behind the

text itself. If a shadow is so large that it touches another letter, it will continue behind

that character.

Our text has a semi-opaque shadow to the bottom right:

css/styles.css (excerpt)

text-shadow: 3px 3px 1px rgba(0, 0, 0, 0.5);

This states that the shadow extends three pixels below the text, three pixels to the

right of the text, is slightly blurred (one pixel), and has a base color of black at 50%

opacity.

With that style in place, our ad link is nearly complete, as Figure 6.7 shows. The

finishing touch—a custom font—will be added in Chapter 9.

HTML5 & CSS3 for the Real World144

Figure 6.7. Our ad link is looking quite snazzy!

More Shadows
We now know how to create drop shadows on both block-level elements and text

nodes. But so far, we’ve only styled a fraction of our page: only one link in one ad-

vertisement, in fact. Let’s do the rest of the shadows before moving on.

Looking back at the site design, we can see that all the h1 elements on the page are

uppercase and have drop shadows. The text is dark gray with a very subtle, solid-

white drop shadow on the bottom right, providing a bit of depth.5 The tagline in

the site header also has a drop shadow, but is all lowercase. The taglines for the

articles, meanwhile, have no drop shadow.

We know from the section called “CSS3 Selectors” that we can target all these ele-

ments without using classes. Let’s target these elements without any additional

markup:

css/styles.css (excerpt)

h1, h2 {
 text-transform: uppercase;
 text-shadow: 1px 1px #FFFFFF;
}
:not(article) > header h2 {
 text-transform: lowercase;
 text-shadow: 1px 1px #FFFFFF;
}

The first declaration targets all the h1 elements and h2 elements on the page. The

second targets all the h2 elements that are in a header, but only if that header is

not nested in an article element.

5 See http://twitter.com/#!/themaninblue/status/27210719975964673.

145Introducing CSS3

Our text shadows are a solid white, so there’s no need to use alpha transparent

colors, or a blur radius.

Up Next
Now that we have shadows and rounded corners under our belt, it’s time to have

some more fun with CSS3. In the next chapter, we’ll be looking at CSS3 gradients

and multiple background images.

HTML5 & CSS3 for the Real World146

Chapter7
CSS3 Gradients and Multiple
Backgrounds
In Chapter 6, we learned a few ways to add decorative styling features—like shadows

and rounded corners—to our pages without the use of additional markup or images.

The next most common feature frequently added to websites that used to require

images is gradients. CSS3 provides us with the ability to create native radial and

linear gradients, as well as include multiple background images on any element.

With CSS3, there’s no need to create the multitudes of JPEGs of years past, or add

nonsemantic hooks to our markup.

Browser support for gradients and multiple backgrounds is still evolving, but as

you’ll see in this chapter, it’s possible to develop in a way that supports the latest

versions of all major browsers—including IE9.

We’ll start by looking at CSS3 gradients—but first, what are gradients? Gradients

are smooth transitions between two or more specified colors. In creating gradients,

you can specify multiple in-between color values, called color stops. Each color

stop is made up of a color and a position; the browser fades the color from each

stop to the next to create a smooth gradient. Gradients can be utilized anywhere a

background image can be used. This means that in your CSS, a gradient can be

theoretically employed anywhere a url() value can be used, such as

background-image, border-image, and even list-style-type, though for now the

most consistent support is for background images.

By using CSS gradients to replace images, you avoid forcing your users to download

extra images, support for flexible layouts is improved, and zooming is no longer

pixelated the way it can be with images.

There are two types of gradients currently available in CSS3: linear and radial. Let’s

go over them in turn.

Linear Gradients
Linear gradients are those where colors transition across a straight line: from top

to bottom, left to right, or along any arbitrary axis. If you’ve spent any time with

image-editing tools like Photoshop and Fireworks, you should be familiar with

linear gradients—but as a refresher, Figure 7.1 shows some examples.

Figure 7.1. Linear gradient examples

Similar to image-editing programs, to create a linear gradient you specify a direction,

the starting color, the end color, and any color stops you want to add along that

line. The browser takes care of the rest, filling the entire element by painting lines

of color perpendicular to the line of the gradient. It produces a smooth fade from

one color to the next, progressing in the direction you specify.

When it comes to browsers and linear gradients, things get a little messy. WebKit

first introduced gradients several years ago using a particular and, many argued,

convoluted syntax. After that, Mozilla implemented gradients using a simpler and

HTML5 & CSS3 for the Real World148

more straightforward syntax. Then, in January of 2011, the W3C included a proposed

syntax in CSS3. The new syntax is very similar to Firefox’s existing implementa-

tion—in fact, it’s close enough that any gradient written with the new syntax will

work just fine in Firefox. The W3C syntax has also been adopted by WebKit, though,

at the time of writing it’s only in the nightly builds, and yet to make its way into

Chrome and Safari; they are still using the old-style syntax. For backwards compat-

ibility reasons, those browsers will continue to support the old syntax even once

the standard form is implemented. And Opera, with the release of version 11.10,

supports the new W3C standard for linear gradients. All the current implementations

use vendor prefixes (-webkit-, -moz-, and -o-).

WebKit Nightly Builds

The WebKit engine that sits at the heart of Chrome and Safari exists independently

as an open source project at http://www.webkit.org/. However, new features im-

plemented in WebKit take some time to be released in Chrome or Safari. In the

meantime, it’s still possible to test these features by installing one of the nightly

builds, so-called because they’re built and released on a daily basis, incorporating

new features or code changes from a day’s work by the community. Because they’re

frequently released while in development, they can contain incomplete features

or bugs, and will often be unstable. Still, they’re great if you want to test new

features (like the W3C gradient syntax) that are yet to make it into Chrome or Safari.

Visit http://nightly.webkit.org/ to obtain nightly builds of WebKit for Mac or

Windows.

That still leaves us with the question of how to handle gradients in IE and older

versions of Opera. Fortunately, IE9 and Opera 11.01 and earlier support SVG back-

grounds—and it’s fairly simple to create gradients in SVG. (We’ll be covering SVG

in more detail in Chapter 11.) And finally, all versions of IE support a proprietary

filter that enables the creation of basic linear gradients.

Confused? Don’t be. While gradients are important to understand, it’s unnecessary

to memorize all the browser syntaxes. We’ll cover the new syntax, as well as the

soon-to-be-forgotten old-style WebKit syntax, and then we’ll let you in on a little

secret: there are tools that will create all the required styles for you, so there’s no

need to remember all the specifics of each syntax. Let’s get started.

There’s one linear gradient in The HTML5 Herald, in the second advertisement

block shown in Figure 7.2 (which happens to be advertising this very book!). You’ll

149CSS3 Gradients and Multiple Backgrounds

note that the gradient starts off dark at the top, lightens, then darkens again as if to

create a road under the cyclist, before lightening again.

Figure 7.2. A linear gradient in The HTML5 Herald

To create a cross-browser gradient for our ad, we’ll start with the new standard

syntax. It’s the simplest and easiest to understand, and likely to be the only one

you’ll need to use in a few years’ time. After that, we’ll look at how the older WebKit

and Firefox syntaxes differ from it.

The W3C Syntax
Here’s the basic syntax for linear gradients:

background-image: linear-gradient(…);

Inside those parentheses, you specify the direction of the gradient, and then provide

some color stops. For the direction, you can provide either the angle along which

the gradient should proceed, or the side or corner from which it should start—in

which case it will proceed towards the opposite side or corner. For angles, you use

values in degrees (deg). 0deg points to the right, 90deg is up, and so on counter-

clockwise. For a side or corner, use the top, bottom, left, and right keywords.

After specifying the direction, provide your color stops; these are made up of a

color and a percentage or length specifying how far along the gradient that stop is

located.

That’s a lot to take in, so let’s look at some gradient examples. For the sake of illus-

tration we’ll use a gradient with just two color stops: #FFF (white) to #000 (black).

HTML5 & CSS3 for the Real World150

To have the gradient go from top to bottom of an element, as shown in Figure 7.3,

you could specify any of the following (our examples are using the -moz- prefix,

but remember that -webkit- and -o- support the same syntax):

background-image: -moz-linear-gradient(270deg, #FFF 0%, #000 100%);
background-image: -moz-linear-gradient(top, #FFF 0%, #000 100%);
background-image: -moz-linear-gradient(#FFF 0%, #000 100%);

Figure 7.3. A white-to-black gradient from the top center to the bottom center of an element

The last declaration works because top is the default in the absence of a specified

direction.

Because the first color stop is assumed to be at 0%, and the last color stop is assumed

to be at 100%, you could also omit the percentages from that example and achieve

the same result:

background-image: -moz-linear-gradient(#FFF, #000);

Now, let’s put our gradient on an angle, and place an additional color stop. Let’s

say we want to go from black to white, and then back to black again:

background-image: -moz-linear-gradient(30deg, #000, #FFF 75%, #000);

We’ve placed the color stop 75% along the way, so the white band is closer to the

gradient’s end point than its starting point, as shown in Figure 7.4.

151CSS3 Gradients and Multiple Backgrounds

Figure 7.4. A gradient with three color stops

You can place your first color stop somewhere other than 0%, and your last color

stop at a place other than 100%. All the space between 0% and the first stop will

be the same color as the first stop, and all the space between the last stop and 100%

will be the color of the last stop. Here’s an example:

background-image: -moz-linear-gradient(30deg, #000 50%, #FFF 75%,
➥#000 90%);

The resulting gradient is shown in Figure 7.5.

Figure 7.5. A gradient confined to a narrow band by offsetting the start and end color stops

You don’t actually need to specify positions for any of the color stops. If you omit

them, the stops will be evenly distributed. Here’s an example:

HTML5 & CSS3 for the Real World152

background-image:
 -moz-linear-gradient(45deg,
 #FF0000 0%,
 #FF6633 20%,
 #FFFF00 40%,
 #00FF00 60%,
 #0000FF 80%,
 #AA00AA 100%);

background-image:
 -moz-linear-gradient(45deg,
 #FF0000,
 #FF6633,
 #FFFF00,
 #00FF00,
 #0000FF,
 #AA00AA);

Either of the previous declarations makes for a fairly unattractive angled rainbow.

Note that we’ve added line breaks and indenting for ease of legibility—they are not

essential.

Colors transition smoothly from one color stop to the next. However, if two color

stops are placed at the same position along the gradient, the colors won’t fade, but

will stop and start on a hard line. This is a way to create a striped background effect,

like the one shown in Figure 7.6.

Figure 7.6. Careful placement of color stops can create striped backgrounds

153CSS3 Gradients and Multiple Backgrounds

Here are the styles used to construct that example:

background-image:
 -moz-linear-gradient(45deg,
 #000000 30%,
 #666666 30%,
 #666666 60%,
 #CCCCCC 60%,
 #CCCCCC 90%);

At some point in the reasonably near future, you can expect this updated version

of the syntax to be the only one you’ll need to write—but we’re not quite there yet.

The Old WebKit Syntax
As we’ve mentioned, the latest development version of WebKit has adopted the

W3C syntax; however, most current releases of WebKit-based browsers still use an

older syntax, which is a little more complicated. Because those browsers still need

to be supported, let’s quickly take a look at the old syntax, using our first white-to-

black gradient example again:

background-image:
 -webkit-gradient(linear, 0% 0%, 0% 100%, from(#FFFFFF),
➥to(#000000));

Rather than use a specific linear-gradient property, there’s a general-purpose

-webkit-gradient property, where you specify the type of gradient (linear in this

case) as the first parameter. The linear gradient then needs both a start and end

point to determine the direction of the gradient. The start and end points can be

specified using percentages, numeric values, or the keywords top, bottom, left, right,

or center.

The next step is to declare color stops of the gradients. You can include the origin-

ating color with the from keyword, and the end color with the to keyword. Then,

you can include any number of intermediate colors using the color-stop() function

to create a color stop. The first parameter of the color-stop() function is the position

of the stop, expressed as a percentage, and the second parameter is the color at that

location.

Here’s an example:

HTML5 & CSS3 for the Real World154

background-image:
 -webkit-gradient(linear, left top, right bottom,
 from(red),
 to(purple),
 color-stop(20%, orange),
 color-stop(40%, yellow),
 color-stop(60%, green),
 color-stop(80%, blue));

With that, we’ve recreated our angled rainbow, reminiscent of GeoCities circa 1996.

It’s actually unnecessary to specify the start and end colors using from and to. As

from(red) is the equivalent to color-stop(0, red), we could also have written:

background-image:
 -webkit-gradient(linear, left top, right bottom,

color-stop(0, red),
 color-stop(20%, orange),
 color-stop(40%, yellow),
 color-stop(60%, green),
 color-stop(80%, blue),

color-stop(100%, purple));

If you don’t declare a from or a 0% color stop, the color of the first color stop is

used for all the area up to that first stop. The element will have a solid area of the

color declared from the edge of the container to the first specified color stop, at

which point it becomes a gradient morphing into the color of the next color stop.

At and after the last stop, the color of the last color stop is used. In other words, if

the first color stop is at 40% and the last color stop is at 60%, the first color will be

used from 0% to 40%, and the last color will be displayed from 60% to 100%, with

the area from 40% to 60% a gradient morphing between the two colors.

As you can see, this is more complicated than the Mozilla syntax. Fortunately, tools

exist to generate all the required code for a given gradient automatically. We’ll be

looking at some of them at the end of this section, but first, we’ll see how to use

both syntaxes to create a cross-browser gradient for The HTML5 Herald. The good

news is that since the old WebKit syntax uses a different property name (-webkit-

gradient instead of -webkit-linear-gradient), you can use both syntaxes side-

by-side without conflict. In fact, the old syntax is still supported in the newer

WebKit, so the browser will just use whichever one was declared last.

155CSS3 Gradients and Multiple Backgrounds

Putting It All Together
Now that we have a fairly good understanding of how to declare linear gradients,

let’s declare ours.

If your designer included a gradient in the design, it’s likely to have been created

in Photoshop or another image-editing program. You can use this to your advantage;

if you have the original files, it’s fairly easy to replicate exactly what your designer

intended.

If we pop open Photoshop and inspect the gradient we want to use for the ad (shown

in Figure 7.7), our gradient is linear, with five color stops that simply change the

opacity of a single color (black).

Figure 7.7. An example linear gradient in Photoshop

You’ll note via the Photoshop screengrab that the color starts from 40% opacity,

and that the first color stop’s location is at 37%, with an opacity of 0%. We can use

this tool to grab the data for our CSS declaration, beginning with the W3C syntax

declaration for Firefox, Opera 11.10, and newer WebKit browsers:

css/styles.css (excerpt)

#ad2 {
 ⋮
 background-image:
 -moz-linear-gradient(
 270deg,
 rgba(0,0,0,0.4) 0,
 rgba(0,0,0,0) 37%,
 rgba(0,0,0,0) 83%,

HTML5 & CSS3 for the Real World156

 rgba(0,0,0,0.06) 92%,
 rgba(0,0,0,0) 98%
);
 background-image:
 -webkit-linear-gradient(
 270deg,
 rgba(0,0,0,0.4) 0,
 rgba(0,0,0,0) 37%,
 rgba(0,0,0,0) 83%,
 rgba(0,0,0,0.06) 92%,
 rgba(0,0,0,0) 98%
);
 background-image:
 -o-linear-gradient(
 270deg,
 rgba(0,0,0,0.4) 0,
 rgba(0,0,0,0) 37%,
 rgba(0,0,0,0) 83%,
 rgba(0,0,0,0.06) 92%,
 rgba(0,0,0,0) 98%
);
}

We want the gradient to run from the very top of the ad to the bottom, so we set the

angle to 270deg (towards the bottom). We’ve then added all the color stops from

the Photoshop gradient. Note that we’ve omitted the end point of the gradient, be-

cause the last color stop is at 98%—everything after that stop will be the same color

as the stop in question (in this case, black at 0% opacity, or full transparency).

Now let’s add in the old WebKit syntax, with the unprefixed version last to future-

proof the declaration:

css/styles.css (excerpt)

#ad2 {
 ⋮
 background-image:
 -webkit-gradient(linear,
 from(rgba(0,0,0,0.4)),
 color-stop(37%, rgba(0,0,0,0)),
 color-stop(83%, rgba(0,0,0,0)),
 color-stop(92%, rgba(0,0,0,0.16)),
 color-stop(98%, rgba(0,0,0,0)));

157CSS3 Gradients and Multiple Backgrounds

 background-image:
 -webkit-linear-gradient(
 270deg,
 rgba(0,0,0,0.4) 0,
 rgba(0,0,0,0) 37%,
 rgba(0,0,0,0) 83%,
 rgba(0,0,0,0.06) 92%,
 rgba(0,0,0,0) 98%
);
 background-image:
 linear-gradient(
 270deg,
 rgba(0,0,0,0.4) 0,
 rgba(0,0,0,0) 37%,
 rgba(0,0,0,0) 83%,
 rgba(0,0,0,0.06) 92%,
 rgba(0,0,0,0) 98%
);
}

We now have our gradient looking just right in Mozilla, Opera, and WebKit-based

browsers.

Linear Gradients with SVG
We still have a few more browsers to add our linear gradient to. In Opera 11.01 and

earlier—and more importantly, IE9—we can declare SVG files as background images.

By creating a gradient in an SVG file, and declaring that SVG as the background

image of an element, we can recreate the same effect we achieved with CSS3

gradients.

SV what?

SVG stands for Scalable Vector Graphics. It’s an XML-based language for defining

vector graphics using a set of elements—like what you use in HTML to define the

structure of a document. We’ll be covering SVG in much more depth in Chapter 11,

but for now we’ll just skim over the basics, since all we’re creating is a simple

gradient.

An SVG file sounds scary, but for creating gradients it’s quite straightforward. Here’s

our gradient again, in SVG form:

HTML5 & CSS3 for the Real World158

images/gradient.svg (excerpt)

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
 "http://www.w3.org/TR/2001/REC-SVG-20050904/DTD/svg10.dtd">
<svg xmlns="http://www.w3.org/2000/svg"
 xmlns:xlink="http://www.w3.org/1999/xlink" version="1.1">
<title>Module Gradient</title>
 <defs>
 <linearGradient id="grad" x1="0" y1="0" x2="0" y2="100%">
 <stop offset="0" stop-opacity="0.3" color-stop="#000000" />
 <stop offset="0.37" stop-opacity="0" stop-color="#000000" />
 <stop offset="0.83" stop-opacity="0" stop-color="#000000" />
 <stop offset="0.92" stop-opacity="0.06" stop-color="#000000" />
 <stop offset="0.98" stop-opacity="0" stop-color="#000000" />
 </linearGradient>
</defs>
<rect x="0" y="0" width="100%" height="100%"
➥style="fill:url(#grad)" />
</svg>

Looking at the SVG file, you should notice that it’s quite similar to the syntax for

linear gradients in CSS3. We declare the gradient type and the orientation in the

linearGradient element; then add color stops. The orientation is set with start and

end coordinates, from x1, y1 to x2, y2. The color stops are fairly self-explanatory,

having an offset between 0 and 1 determining their position and a stop-color for

their color. After declaring the gradient, we then have to create a rectangle (the rect

element) and fill it with our gradient using the style attribute.

So, we’ve created a nifty little gradient, but how do we use it on our site? Save the

SVG file with the .svg extension. Then, in your CSS, simply declare the SVG as your

background image with the same syntax, as if it were a JPEG, GIF, or PNG:

css/styles.css (excerpt)

#ad2 {
 ⋮
 background-image: url(../images/gradient.svg);
 ⋮
}

The SVG background should be declared before the CSS3 gradients, so browsers

that understand both will use the latter. Many browsers are even smart enough not

159CSS3 Gradients and Multiple Backgrounds

to download the SVG if it’s overwritten by another background-image property

later on in your CSS.

The major difference between our CSS linear gradients and the SVG version is that

the SVG background image won’t default to 100% of the height and width of the

container the way that CSS gradients do. To make the SVG fill the container, declare

the height and width of your SVG rectangle as 100%.

Linear Gradients with IE Filters
For Internet Explorer prior to version 9, we can use the proprietary IE filter syntax

to create simple gradients. The IE gradient filter doesn’t support color stops, gradient

angle, or, as we’ll see later, radial gradients. All you have is the ability to specify

whether the gradient is horizontal or vertical, as well as the “to” and “from” colors.

It’s fairly basic, but if you need a gradient on these older browsers, it can provide

the solution.

The filter syntax for IE is:

filter:progid:DXImageTransform.Microsoft.gradient(GradientType=0,
➥startColorstr='#COLOR', endColorstr='#COLOR); /* IE6 & IE7 */
-ms-filter:"progid:DXImageTransform.Microsoft.gradient(GradientType=
➥0,startColorstr='#COLOR', endColorstr='#COLOR')"; /* IE8 */

The GradientType parameter should be set to 1 for a horizontal gradient, or 0 for a

vertical gradient.

Since the gradient we’re using for our ad block requires color stops, we’ll skip using

the IE filters. The ad still looks fine without the gradient, so it’s all good.

Filters Kinda Suck

As we’ve mentioned before, IE’s filters can have a significant impact on perform-

ance, so use them sparingly, if at all. Calculating the display of filter effects takes

processing time, with some effects being slower than others. SVGs can have a

similar—albeit lesser—effect, so be sure to test your site in a number of browsers

if you’re using these fallbacks.

HTML5 & CSS3 for the Real World160

Tools of the Trade
Now that you understand how to create linear gradients and have mastered the in-

tricacies of their convoluted syntax, you can forget almost everything you’ve learned.

There are some very cool tools to help you create linear gradients without having

to recreate your code four times for each different browser syntax.

John Allsop’s http://www.westciv.com/tools/gradients/ is a tool that enables you

to create gradients with color stops for both Firefox and WebKit. Note that there are

separate tabs for Firefox and WebKit, and for radial and linear gradients. The tool

only creates gradients with hexadecimal color notation, but it does provide you

with copy-and-paste code, so you can copy it, and then switch the hexadecimal

color values to RGBA or HSLA if you prefer.

Damian Galarza’s http://gradients.glrzad.com/ provides for both color stops and

RGB. It even lets you set colors with an HSL color picker, but converts it to RGB in

the code. It does not provide for alpha transparency, but since the code generated

is in RGB, it’s easy to update. This gradient generator is more powerful than the

Westciv one, but may be a bit overwhelming for a newbie.

Finally, Paul Irish’s http://css3please.com/ allows you to create linear gradients,

though it has no support for color stops. You may wonder why it’s even worth

mentioning—but it is, because it’s the only one of the tools mentioned that provides

the filter syntax for IE alongside the other gradient syntaxes. Plus, as well as gradi-

ents, it can give you cross-browser syntax for lots of other features as well, like

shadows and rounded corners.

Radial Gradients
Radial gradients are circular or elliptical gradients. Rather than proceeding along

a straight axis, colors blend out from a starting point in all directions. Radial

gradients are supported in WebKit and Mozilla (beginning with Firefox 3.6). While

Opera 11.10 has begun supporting linear gradients, it does not provide support for

radial gradients; however, as with linear gradients, radial gradients can be created

in SVG, so support can be provided to Opera and IE9. Radial gradients are entirely

unsupported in IE8 and earlier—not even with filters.

161CSS3 Gradients and Multiple Backgrounds

The W3C Syntax
Let’s start with a simple circular gradient to illustrate the standard syntax:

background-image: -moz-radial-gradient(#FFF, #000);
background-image: -moz-radial-gradient(center, #FFF, #000);
background-image: -moz-radial-gradient(center, ellipse cover,
➥#FFF, #000);

The above three declarations are functionally identical, and will all result in the

gradient shown in Figure 7.8. At the minimum, you need to provide a start color

and an end color. Alternatively, you can also provide a position for the center of

the gradient as the first parameter, and a shape and size as the second parameter.

Figure 7.8. A simple, centered radial gradient

Let’s start by playing with the position:

background-image: -moz-radial-gradient(30px 30px, #FFF, #000);

This will place the center of the gradient 30 pixels from the top and 30 pixels from

the left of the element, as you can see in Figure 7.9. As with background-position,

you can use values, percentages, or keywords to set the gradient’s position.

HTML5 & CSS3 for the Real World162

Figure 7.9. A gradient positioned off center

Now let’s look at the shape and size parameter. The shape can take one of two values,

circle or ellipse, with the latter being the default.

For the size, you can use one of the following values:

closest-side

The gradient’s shape meets the side of the box closest to its center (for circles),

or meets both the vertical and horizontal sides closest to the center (for ellipses).

closest-corner

The gradient’s shape is sized so it meets exactly the closest corner of the box

from its center.

farthest-side

Similar to closest-side, except that the shape is sized to meet the side of the

box farthest from its center (or the farthest vertical and horizontal sides in the

case of ellipses).

farthest-corner

The gradient’s shape is sized so that it meets exactly the farthest corner of the

box from its center.

contain

A synonym for closest-side.

163CSS3 Gradients and Multiple Backgrounds

cover

A synonym for farthest-corner.

According to the spec, you can also provide a second set of values to explicitly

define the horizontal and vertical size of the radial gradient. This is currently only

supported in WebKit, though support should be added to Firefox in the near future.

For now, though, you should probably stick to the above constraints if you want to

create the same gradient in all supporting browsers.

The color stop syntax is the same as for linear gradients: a color value followed by

an optional stop position. Let’s look at one last example:

background-image: -moz-radial-gradient(30px 30px, circle
➥farthest-side, #FFF, #000 30%, #FFF);

This will create a gradient like the one in Figure 7.10.

Figure 7.10. A radial gradient with a modified size and shape, and an extra color stop

The Old WebKit Syntax
To create the example in Figure 7.10 using the old-style WebKit syntax currently

supported in Safari and Chrome, you’d need to write it as follows:

background-image: -webkit-gradient(radial, 30 30, 0, 30 30, 100%,
➥from(#FFFFFF), to(#FFFFFF), color-stop(.3,#000000))

HTML5 & CSS3 for the Real World164

The same -webkit-gradient property used earlier for linear gradients is used for

radial gradients; the difference is that we pass radial as the first parameter. The

next four parameters are the respective position and radius of two circles, with the

gradient proceeding from the inner circle to the outer circle. Just to make it more

confusing, these values are defined in pixels, but without the px unit. You can also

specify the values as percentages, in which case you do need to include the %

symbol. You should be starting to see why the W3C opted for a version of the

Mozilla syntax rather than this one.

Furthermore, your inner circle doesn’t need to be centered in your outer circle. If

the first point is equal to the second point, the gradient will be symmetrical like

the one in Figure 7.10. If they differ, however, your inner circle will be off-center,

so the gradient will be asymmetrical. If your inner circle’s center is outside the

boundary of your outer circle, instead of having a circle off-center inside another

circle, you’ll have a very odd triangle gradient effect, as Figure 7.11 illustrates.

Figure 7.11. The older WebKit radial gradient syntax allowed for some interesting effects

Here’s the code used to create that gradient:

background-image:-webkit-gradient(radial, 200 200, 100, 100 100, 40,
from(#FFFFFF), to(#000000));

As with the linear gradients, you can insert more colors with the color-stop func-

tion. The syntax for color stops is the same for both linear and radial gradients.

You’ll generally want to create gradients that look the same in older versions of

Chrome and Safari as they do in newer versions of those browsers and Firefox, so

165CSS3 Gradients and Multiple Backgrounds

you should limit yourself to the kinds of gradients that can be replicated using the

W3C syntax. However, if you do find yourself building specifically for WebKit

browsers (for mobile platforms, for example), it can be useful to know that these

additional options exist. As mentioned earlier, the old syntax will continue to be

supported in WebKit browsers for the foreseeable future.

Putting it All Together
Let’s take all we’ve learned and implement a radial gradient for The HTML5 Herald.

You may yet to have noticed, but the form submit button has a radial gradient in

the background. The center of the radial gradient is outside the button area, towards

the left and a little below the bottom, as Figure 7.12 shows.

Figure 7.12. A radial gradient on a button in The HTML5 Herald’s sign-up form

We’ll want to declare at least three background images: an SVG file for Opera and

IE9, the older WebKit syntax for Chrome and Safari, and the -moz- vendor prefixed

version for Firefox. You can also declare the newer WebKit vendor prefixed version

(currently only in the WebKit nightly builds), as well as the non-prefixed version:

css/styles.css (excerpt)

input[type=submit] {
 ⋮
 background-color: #333;
 /* SVG for IE9 and Opera */
 background-image: url(../images/button-gradient.svg);
 /* Old WebKit */
 background-image: -webkit-gradient(radial,
 30% 120%, 0, 30% 120%, 100,
 color-stop(0,rgba(144,144,144,1)),
 color-stop(1,rgba(72,72,72,1)));
 /* W3C for Mozilla */
 background-image: -moz-radial-gradient(30% 120%, circle,
 rgba(144,144,144,1) 0%,
 rgba(72,72,72,1) 50%);
 /* W3C for new WebKit */

HTML5 & CSS3 for the Real World166

 background-image: -webkit-radial-gradient(30% 120%, circle,
 rgba(144,144,144,1) 0%,
 rgba(72,72,72,1) 50%);
 /* W3C unprefixed */
 background-image: radial-gradient(30% 120%, circle,
 rgba(144,144,144,1) 0%,
 rgba(72,72,72,1) 50%);
}

The center of the circle is 30% from the left, and 120% from the top, so it’s actually

below the bottom edge of the container. We’ve included two color stops for the

color #484848 (or rgb(72,72,72)) and #909090 (or rbg(144,144,144)).

And here’s the SVG file used as a fallback, though we’ll stop short of explaining it

here, as the syntax is fairly explanatory and we’ll be covering SVG in Chapter 11:

button-gradient.svg (excerpt)

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.0//EN"
➥"http://www.w3.org/TR/2001/REC-SVG-20050904/DTD/svg10.dtd">
<svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="
➥http://www.w3.org/1999/xlink" version="1.1">
<title>Button Gradient</title>
 <defs>
 <radialGradient id="grad" cx="30%" cy="120%" fx="30%" fy="120%"
➥r="50%" gradientUnits="userSpaceOnUse">
 <stop offset="0" stop-color="#909090" />
 <stop offset="1" stop-color="#484848" />
 </radialGradient>
</defs>
<rect x="0" y="0" width="100%" height="100%"
➥style="fill:url(#grad)" />
</svg>

167CSS3 Gradients and Multiple Backgrounds

Repeating Gradients
Sometimes you’ll find yourself wanting to create a gradient “pattern” that repeats

over the background of an element. While linear-repeating gradients can be created

by repeating the background image (with background-repeat), there’s no equivalent

way to easily create repeating radial gradients. Fortunately, CSS3 comes to the rescue

with both a repeating-linear-gradient and a repeating-radial-gradient syntax.

The vendor-prefixed repeating-linear-gradient syntax is supported in Firefox

3.6+, Safari 5.0.3+, Chrome 10+, and Opera 11.10+.

Gradients with repeating-linear-gradient and repeating-radial-gradient

have the same syntax as the nonrepeating versions.

Supported in Firefox 3.6, Chrome 10, and the WebKit nightly build (hence, Safari

6), here are examples of what can be created with just a few lines of CSS (again using

only the -webkit- prefixed syntax for brevity):

.repeat_linear_1 {
 background-image:
 -webkit-repeating-linear-gradient(left,
 rgba(0,0,0,0.5) 10%,
 rgba(0,0,0,0.1) 30%);
}
.repeat_radial_2 {
 background-image:
 -webkit-repeating-radial-gradient(top left, circle,
 rgba(0,0,0,0.9),
 rgba(0,0,0,0.1) 10%,
 rgba(0,0,0,0.5) 20%);
}
.multiple_gradients_3 {
 background-image:
 -webkit-repeating-linear-gradient(left,
 rgba(0,0,0,0.5) 10%,
 rgba(0,0,0,0.1) 30%),
 -webkit-repeating-radial-gradient(top left, circle,
 rgba(0,0,0,0.9),
 rgba(0,0,0,0.1) 10%,
 rgba(0,0,0,0.5) 20%);
}

The resulting gradients are shown in Figure 7.13.

HTML5 & CSS3 for the Real World168

Figure 7.13. A few examples of repeating gradients

Multiple Background Images
You probably noticed that our advertisement with the linear gradient is incomplete:

we’re missing the bicycle. Prior to CSS3, adding the bicycle would have required

placing an additional element in the markup to contain the new background image.

In CSS3, there’s no need to include an element for every background image; it

provides us with the ability to add more than one background image to any element,

even to pseudo-elements.

To understand multiple background images, you need to understand the syntax and

values of the various background properties. The syntax for the values of all the

background properties, including background-image and the shorthand background

property, are the same whether you have one background image or many. To make

a declaration for multiple background images, simply separate the values for each

individual image with a comma. For example:

background-image:
 url(firstImage.jpg),
 url(secondImage.gif),
 url(thirdImage.png);

This works just as well if you’re using the shorthand background property:

background:
 url(firstImage.jpg) no-repeat 0 0,
 url(secondImage.gif) no-repeat 100% 0,
 url(thirdImage.png) no-repeat 50% 0;

169CSS3 Gradients and Multiple Backgrounds

The background images are layered one on top of the other with the first declaration

on top, as if it had a high z-index. The final image is drawn under all the images

preceding it in the declaration, as if it had a low z-index. Basically, think of the

images as being stacked in reverse order: first on top, last on the bottom.

If you want to declare a background color—which you should, especially if it’s

light-colored text on a dark-colored background image—declare it last. It’s often

simpler and more readable to declare it separately using the background-color

property.

As a reminder, the shorthand background property is short for eight longhand

background properties. If you use the shorthand, any longhand background property

value that’s omitted from the declaration will default to the longhand property’s

default (or initial) value. The default values for the various background properties

are listed below:

■ background-color: transparent;

■ background-image: none;

■ background-position: 0 0;

■ background-size: auto;

■ background-repeat: repeat;

■ background-clip: border-box;

■ background-origin: padding-box;

■ background-attachment: scroll;

Just like for a declaration of a single background image, you can include a gradient

as one of several background images. Here’s how we do it for our advertisement.

For brevity, only the unprefixed version is shown. The bicycle image would be in-

cluded similarly in each background-image declaration:

css/styles.css (excerpt)

#ad2 {
 ⋮
 background-image:
 url(../images/bg-bike.png),
 linear-gradient(top,
 rgba(0,0,0,0.4) 0,
 rgba(0,0,0,0) 37%,
 rgba(0,0,0,0) 83%,

HTML5 & CSS3 for the Real World170

 rgba(0,0,0,0.06) 92%,
 rgba(0,0,0,0) 98%);
 background-position: 50% 88%, 0 0;
}

Note that we’ve put the bicycle picture first in the series of background images,

since we want the bicycle to sit on top of the gradient, instead of the other way

around. We’ve also declared the background position for each image by putting

them in the same order as the images were declared in the background-image

property. If only one set of values was declared—for example, background-position:

50% 88%;—all images would have the same background position as if you’d declared

background-position: 50% 88%, 50% 88%;. In this case, the 50% 80% positions

the bicycle, which was declared first, and the 0 0 (or left top) positions the

gradient.

Because a browser will only respect one background-image property declaration

(whether it has one or many images declared), the bicycle image must be included

in each background-image declaration, since they’re all targeting different browsers.

Remember, browsers ignore CSS that they fail to understand. So if Safari doesn’t

understand -moz-linear-gradient (which it doesn’t), it will ignore the entire

property/value pair.

The heading on our sign-up form also has two background images. While we could

attach a single extra-wide image in this case, spanning across the entire form, there’s

no need! With multiple background images, CSS3 allows us to attach two separate

small images, or a single image sprite twice with different background positions.

This saves on bandwidth, of course, but it could also be beneficial if the heading

needed to stretch; a single image would be unable to accommodate differently sized

elements. This time, we’ll use the background shorthand:

background:
 url(../images/bg-formtitle-left.png) left 13px no-repeat,
 url(../images/bg-formtitle-right.png) right 13px no-repeat;

171CSS3 Gradients and Multiple Backgrounds

The background Shorthand

When all the available background properties are fully supported, the following

two statements will be equivalent:

div {
 background: url("tile.png") no-repeat scroll center
➥bottom / cover rgba(0, 0, 0, 0.2);
}

div {
 background-color: rgba(0,0,0,0.2);
 background-position: 50% 100%;
 background-size: cover;
 background-repeat: no-repeat;
 background-clip: border-box;
 background-origin: padding-box;
 background-attachment: scroll;
 background-image: url(form.png);
}

Currently, though, since only some browsers support all the values available, we

recommend including color, position, repeat, attachment, and image in

your shorthand declaration, with clip, origin, and size following, or avoiding

the shorthand altogether. You must declare the shorthand before the longhand

properties, as any value not explicitly declared in the shorthand will be treated

as though you’d declared the default value.

Background Size
The background-size property allows you to specify the size you want your back-

ground images to have. In theory, you can include background-size within the

shorthand background declaration by adding it after the background’s position,

separated with a slash (/). As it stands, no browser understands this shorthand; in

fact, it will cause them to ignore the entire background declaration, since they see

it as incorrectly formatted. As a result, you’ll want to use the background-size

property as a separate declaration instead.

Support for background-size is as follows:

■ Opera 11.01+: background-size (unprefixed)

HTML5 & CSS3 for the Real World172

■ Safari and Chrome: current versions support unprefixed, but older versions re-

quire -webkit-background-size

■ Firefox: -moz-background-size for 3.6, background-size for 4+

■ IE9: background-size

As you can see, adoption of the unprefixed version of this syntax was very quick;

it’s a simple property with a straightforward implementation that was unlikely to

change. This is a great example of why you should always include the unprefixed

version in your CSS.

If declaring the background image size in pixels, be careful to avoid the image dis-

torting; define either the width or the height, not both, and set the other value to

auto. This will preserve the aspect ratio of your image. If you only include one

value, the second value is assumed to be auto. In other words, both these lines have

the same meaning:

background-size: 100px auto, auto auto;
background-size: 100px, auto auto;

As with all background properties, use commas to separate values for each image

declared. If we wanted our bicycle to be really big, we could declare:

-webkit-background-size: 100px, cover;
-moz-background-size: 100px, cover;
-o-background-size: 100px, cover;
background-size: 100px auto, cover;

By declaring just the width of the image, the second value will default to auto, and

the browser will determine the correct height of the image based on the aspect ratio.

The default size of a background image is the actual size of the image. Sometimes

the image is just a bit smaller or larger than its container. You can define the size

of your background image in pixels (as shown above) or percentages, or you can

use the contain or cover key terms.

The contain value scales the image while preserving its aspect ratio; this may leave

uncovered space. The cover value scales the image so that it completely covers the

173CSS3 Gradients and Multiple Backgrounds

element. This can result in clipping the image if the element and its background

image have different aspect ratios.

Screen Pixel Density, or DPI

The background-size property comes in handy for devices that have different

pixel densities, such as the newest generation of smartphones. For example, the

iPhone 4 has a pixel density four times higher than previous iPhones; however,

to prevent pages designed for older phones from looking tiny, the browser on the

iPhone 4 behaves as though it only has a 320×480px display. In essence, every

pixel in your CSS corresponds to four screen pixels. Images are scaled up to

compensate, but this means they can sometimes look a little rough compared to

the smoothness of the text displayed.

To deal with this, you can provide higher-resolution images to the iPhone 4. For

example, if we were providing a high-resolution image of a bicycle for the iPhone,

it would measure 74×90px instead of 37×45px. However, we don’t actually want

it to be twice as big! We only want it to take up 37×45px worth of space. We can

use background-size to ensure that our high-resolution image still takes up the

right amount of space:

-webkit-background-size: 37px 45px, cover;
-moz-background-size: 37px 45px, cover;
-o-background-size: 37px 45px, cover;
background-size: 37px 45px, cover;

In the Background
That’s all for CSS3 backgrounds and gradients. In the next chapter, we’ll be looking

at transforms, animations, and transitions. These allow you to add dynamic effects

and movement to your pages without relying on bandwidth- and processor-heavy

JavaScript.

HTML5 & CSS3 for the Real World174

Chapter8
CSS3 Transforms and Transitions
Our page is fairly static. Actually, it’s completely static. In Chapter 4 we learned a

little about how to alter a form’s appearance based on its state with the :invalid

and :valid pseudo-classes. But what about really moving things around? What

about changing the appearance of elements—rotating or skewing them?

For years, web designers have relied on JavaScript for in-page animations, and the

only way to display text on an angle was to use an image. This is far from ideal.

Enter CSS3: without a line of JavaScript or a single JPEG, you can tilt, scale, move,

and even flip your elements with ease.

Let’s see how it’s done.

Transforms
Supported in Firefox 3.5+, Opera 10.5, WebKit since 3.2 (Chrome 1), and even In-

ternet Explorer 9, the CSS3 transform property lets you translate, rotate, scale, or

skew any element on the page. While some of these effects were possible using

previously existing CSS features (like relative and absolute positioning), CSS3 gives

you unprecedented control over many more aspects of an element’s appearance.

We manipulate an element’s appearance using transform functions. The value of

the transform property is one or more transform functions, separated by spaces,

which will be applied in the order they’re provided. In this book, we’ll cover all

the two-dimensional transform functions. WebKit also supports the transformation

of elements in 3D space—3D transforms—but that’s beyond the scope of this book.

To illustrate how transforms work, we’ll be working on another advertisement block

from The HTML5 Herald, shown in Figure 8.1.

Figure 8.1. This block will serve to illustrate CSS3 transforms

Translation
Translation functions allow you to move elements left, right, up, or down. These

functions are similar to the behavior of position: relative; where you declare

top and left. When you employ a translation function, you’re moving elements

without impacting the flow of the document.

Unlike position: relative, which allows you to position an element either against

its current position or against a parent or other ancestor, a translated element can

only be moved relative to its current position.

The translate(x,y) function moves an element by x from the left, and y from the

top:

-webkit-transform: translate(45px,-45px);
-moz-transform: translate(45px,-45px);
-ms-transform: translate(45px,-45px);
-o-transform: translate(45px,-45px);
transform: translate(45px,-45px);

HTML5 & CSS3 for the Real World176

If you only want to move an element vertically or horizontally, you can use the

translatex or translatey functions:

-webkit-transform: translatex(45px);
-moz-transform: translatex(45px);
-ms-transform: translatex(45px);
-o-transform: translatex(45px);
transform: translatex(45px);

-webkit-transform: translatey(-45px);
-moz-transform: translatey(-45px);
-ms-transform: translatey(-45px);
-o-transform: translatey(-45px);
transform: translatey(-45px);

For our ad, let’s say we want to move the word “dukes” over to the right when the

user hovers over it, as if it had been punched by our mustachioed pugilist. In the

markup, we have:

<h1>Put your dukes up sire</h1>

Let’s apply the style whenever the h1 is hovered over. This will make the effect

more likely to be stumbled across than if it was only triggered by hovering over the

span itself:

css/styles.css (excerpt)

#ad3 h1:hover span {
 color: #484848;
 -webkit-transform: translateX(40px);
 -moz-transform: translateX(40px);
 -ms-transform: translateX(40px);
 -o-transform:translateX(40px);
 transform: translateX(40px);
}

This works in most browsers, but you may have noticed that WebKit’s not playing

along. What gives? It turns out that WebKit will only allow you to transform block-

level elements; inline elements are off-limits. That’s easy enough to fix—we’ll just

add display: inline-block; to our span:

177CSS3 Transforms and Transitions

css/styles.css (excerpt)

#ad3 h1 span {
 font-size: 30px;
 color: #999999;
display:inline-block;

 ⋮

The result is shown in Figure 8.2.

Figure 8.2. The result of our translate transform

It’s nice, but we can still do better! Let’s look at how we can scale our text to make

it bigger as well.

Scaling
The scale(x,y) function scales an element by the defined factors horizontally and

vertically, respectively. If only one value is provided, it will be used for both the x

and y scaling. For example, scale(1) would leave the element the same size,

scale(2) would double its proportions, scale(0.5) would halve them, and so on.

Providing different values will distort the element, as you’d expect:

-webkit-transform: scale(1.5,0.25);
-moz-transform: scale(1.5,0.25);
-ms-transform: scale(1.5,0.25);
-o-transform: scale(1.5,0.25);
transform: scale(1.5,0.25);

As with translate, you can also use the scalex(x) or scaley(y) functions. These

functions will scale only the horizontal dimensions, or only the vertical dimensions.

They are the same as scale(x,1) and scale(1,y), respectively.

HTML5 & CSS3 for the Real World178

A scaled element will grow outwards from or shrink inwards towards its center; in

other words, the element’s center will stay in the same place as its dimensions

change. To change this default behavior, you can include the transform-origin

property, which we’ll be covering a bit later.

Let’s add a scale transform to our span:

css/styles.css (excerpt)

#ad3 h1:hover span {
 color: #484848;
 -webkit-transform: translateX(40px) scale(1.5);
 -moz-transform: translateX(40px) scale(1.5);
 -ms-transform: translateX(40px) scale(1.5);
 -o-transform: translateX(40px) scale(1.5);
 transform: translateX(40px) scale(1.5);
}

Note that there’s no need to declare a new transform—you provide it with a space-

separated list of transform functions, so we just add our scale to the end of the list.

It’s also worth remembering that scaling, like translation, has no impact on the

document flow. This means that if you scale inline text, text around it won’t reflow

to accommodate it. Figure 8.3 shows an example of how this might be a problem.

In cases like this, you might want to consider simply adjusting the element’s height,

width, or font-size instead of using a scale transform. Changing those properties

will change the space allocated to the element by the browser.

Figure 8.3. Using the scale function on inline text can have unwanted results

In our example, however, we want the text to pop out of the ad without reflowing

the surrounding text, so the scale does exactly what we need it to do. Figure 8.4

shows what our hover state looks like with the scale added to the existing translation.

179CSS3 Transforms and Transitions

Figure 8.4. Our ad now has plenty of pop

It’s looking good, but there’s still more to add.

Rotation
The rotate() function rotates an element around the point of origin (as with scale,

by default this is the element’s center), by a specified angle value. Generally, angles

are declared in degrees, with positive degrees moving clockwise and negative

moving counter-clockwise. In addition to degrees, values can be provided in grads,

radians, or turns—but we’ll just be sticking with degrees.

Let’s add a rotate transform to our “dukes”:

#ad3 h1:hover span {
 color: #484848;
 -webkit-transform:rotate(10deg) translateX(40px) scale(1.5);
 -moz-transform:rotate(10deg) translateX(40px) scale(1.5);
 -ms-transform:rotate(10deg) translateX(40px) scale(1.5);
 -o-transform:rotate(10deg) translateX(40px) scale(1.5);
 transform:rotate(10deg) translateX(40px) scale(1.5);
}

We’re rotating our span by ten degrees clockwise—adding to the effect of text that

has just been dealt a powerful uppercut. We are declaring the rotation before the

translate so that it’s applied first—remember that transforms are applied in the

order provided. Sometimes this will make no difference, but if an effect is behaving

differently to what you’d like, it’s worth playing with the order of your transforms.

The final transformed text is shown in Figure 8.5.

HTML5 & CSS3 for the Real World180

Figure 8.5. Our text has now been translated, scaled, and rotated—that’s quite a punch

There’s one more type of transform we’re yet to visit. It won’t be used on The HTML5

Herald, but let’s take a look anyway.

Skew
The skew(x,y) function specifies a skew along the X and Y axes. As you’d expect,

the x specifies the skew on the X axis, and the y specifies the skew on the Y axis.

If the second parameter is omitted, the skew will only occur on the X axis:

-webkit-transform: skew(15deg, 4deg);
-moz-transform: skew(15deg, 4deg);
-ms-transform: skew(15deg, 4deg);
-o-transform: skew(15deg, 4deg);
transform: skew(15deg, 4deg);

Applying the above styles to a heading, for example, results in the skew shown in

Figure 8.6.

Figure 8.6. Some text with a skew transform applied

As with translate and scale, there are axis-specific versions of the skew transform:

skewx() and skewy().

181CSS3 Transforms and Transitions

Changing the Origin of the Transform
As we hinted at earlier, you can control the origin from which your transforms are

applied. This is done using the transform-origin property. It has the same syntax

as the background-position property, and defaults to the center of the object (so

that scales and rotations will be around the center of the box by default).

Let’s say you were transforming a circle. Because the default transform-origin is

the center of the circle, applying a rotate transform to a circle would have no visible

effect—a circle rotated 90 degrees still looks exactly the same as it did before being

rotated. However, if you gave your circle a transform-origin of 10% 10%, you

would notice the circle’s rotation, as Figure 8.7 illustrates.

Figure 8.7. Rotating a circle only works if the transform-origin has been set

The transform-origin property is supported with vendor prefixes in WebKit,

Firefox, and Opera:

-webkit-transform-origin: 0 0;
-moz-transform-origin: 0 0;
-o-transform-origin: 0 0;
transform-origin: 0 0;

Support for Internet Explorer 8 and Earlier
While CSS3 transforms are unsupported in IE6, IE7, or IE8, you can mimic these

effects with other CSS properties, including filters. To “translate,” use position:

relative;, and top and left values:

HTML5 & CSS3 for the Real World182

.translate {
 position: relative;
 top: 200px;
 left: 200px;
}

You can also scale an element by altering its width and height. Remember, though,

that while transformed elements still take up the space that they did before being

scaled, altering a width or height alters the space allocated for the element and can

affect the layout.

You can even use filters to rotate an element in Internet Explorer, but it’s ugly:

.rotate {
 transform: rotate(15deg);
 filter: progid:DXImageTransform.Microsoft.Matrix(
 sizingMethod='auto expand', M11=0.9659258262890683,
 M12=-0.25881904510252074, M21=0.25881904510252074,
 M22=0.9659258262890683);
 -ms-filter: "progid:DXImageTransform.Microsoft.Matrix(
 M11=0.9659258262890683, M12=-0.25881904510252074,
 M21=0.25881904510252074, M22=0.9659258262890683,
 sizingMethod='auto expand')";
 zoom: 1;
}

This filter’s syntax isn’t worth going into here. If you want to rotate an element in

Internet Explorer, go to http://css3please.com/ for cross-browser code for a given

rotation. Just edit any of the rotation values, and the other versions will be updated

accordingly.

Transitions
As much fun as it’s been to have a feature work in IE9, it’s time to again leave that

browser behind. While Opera, Firefox, and WebKit all support CSS transitions, IE

is once again left in the dust.

Transitions allow the values of CSS properties to change over time, essentially

providing simple animations. For example, if a link changes color on hover, you

can have it gradually fade from one color to the other, instead of a sudden change.

183CSS3 Transforms and Transitions

Likewise, you can animate any of the transforms we’ve just seen, so that your pages

feel more dynamic.

Animation has certainly been possible for some time with JavaScript, but native

CSS transitions require much less processing on the client side, so they’ll generally

appear smoother. Especially on mobile devices with limited computing power, this

can be a lifesaver.

CSS transitions are declared along with the regular styles on an element. Whenever

the target properties change, the browser will apply the transition. Most often, the

change will be due to different styles applied to a hover state, for example. However,

transitions will work equally well if the property in question is changed using

JavaScript. This is significant: rather than writing out an animation in JavaScript,

you can simply switch a property value and rely on the browser to do all the heavy

lifting.

Here are the steps to create a simple transition using only CSS:

1. Declare the original state of the element in the default style declaration.

2. Declare the final state of your transitioned element; for example, in a hover state.

3. Include the transition functions in your default style declaration, using a few

different properties: transition-property, transition-duration,

transition-timing-function, and transition-delay. We’ll look at each of

these and how they work shortly.

The important point to note is that the transition is declared in the default state.

Currently, the transition functions need to include the vendor prefixes -webkit-,

-o-, and -moz-, for WebKit, Opera, and Firefox, respectively.

This may be a lot to grasp, so let’s go over the various transition values. As we go,

we’ll apply a transition to the transforms we added to our ad in the last section, so

that the word “dukes” moves smoothly into its new position when hovered.

transition-property
The transition-property lists the CSS properties of the element that should be

transitioned. Properties that can be made to transition include background, border,

and box model properties. You can transition font sizes and weights, but not font

HTML5 & CSS3 for the Real World184

families. The W3C last updated the list of properties that can be transitioned in

August 2010:

■ background-color and background-position

■ border-color, border-spacing, and border-width

■ bottom, top, left, and right

■ clip

■ color

■ crop

■ font-size and font-weight

■ height and width

■ letter-spacing

■ line-height

■ margin

■ max-height, max-width, min-height, and min-width

■ opacity

■ outline-color, outline-offset, and outline-width

■ padding

■ text-indent

■ text-shadow

■ vertical-align

■ visibility

■ word-spacing

■ z-index

More properties are available to transition in some browsers, including the transform

functions, but they’re not (yet) in the proposed specifications. Note also that not all

browsers support transitions on all the above properties at the time of writing.

You can provide any number of CSS properties to the transition-property declar-

ation, separated by commas. Alternatively, you can use the keyword all to indicate

that every supported property should be animated.

In the case of our ad, we’ll apply the transition to the transform property:

#ad2 h1 span {
 -webkit-transition-property: -webkit-transform;
 -moz-transition-property: -moz-transform;

185CSS3 Transforms and Transitions

 -o-transition-property: -o-transform;
 transition-property: transform;
}

Note that we need to specify the prefixed forms of properties—you can’t animate

transform in a browser that only understands -moz-transform, for example.

Because the list of properties that can transition is in flux, be careful what you in-

clude: it’s possible that a property that doesn’t animate at the time you’re writing

your page eventually will, so be selective in the properties you specify, and only

use all if you really want to animate every property.

So far these styles will have no effect; that’s because we still need to specify the

duration of the transition.

transition-duration
The transition-duration property sets how long the transition will take. You can

specify this either in seconds (s) or milliseconds (ms). We’d like our animation to

be fairly quick, so we’ll specify 0.2 seconds, or 200 milliseconds:

-webkit-transition-duration: 0.2s;
-moz-transition-duration: 0.2s;
-o-transition-duration: 0.2s;
transition-duration: 0.2s;

With those styles in place, our spanwill transition on hover. Notice that the “reverse”

transition also takes place over the same duration—the element returns to its previous

position.

Automatic Graceful Degradation

Although transitions are only supported in some browsers, the fact that they’re

declared separately from the properties that are changing means that those changes

will still be apparent in browsers without support for transitions. Those browsers

will still apply the :hover (or other) state just fine, except that the changes will

happen instantly rather than being transitioned over time.

HTML5 & CSS3 for the Real World186

transition-timing-function
The transition-timing-function lets you control the pace of the transition in

even more granular detail. Do you want your animation to start off slow and get

faster, start off fast and end slower, advance at an even keel, or some other variation?

You can specify one of the key terms ease, linear, ease-in, ease-out, or ease-

in-out. The best way to familiarize yourself with them is to play around and try

them all. Most often, one will just feel right for the effect you’re aiming to create.

Remember to set a relatively long transition-duration when testing timing func-

tions—if it’s too fast, you won’t be able to tell the difference.

In addition to those five key terms, you can also describe your timing function more

precisely using the cubic-bezier() function. It accepts four numeric parameters;

for example, linear is the same as cubic-bezier(0.0, 0.0, 1.0, 1.0). If you’ve

taken six years of calculus, the method of writing a cubic Bézier function might

make sense; otherwise, it’s likely you’ll want to stick to the five basic timing func-

tions. You can also look at online tools that let you play with different values, such

as http://www.netzgesta.de/dev/cubic-bezier-timing-function.html.

For our transition, we’ll use ease-out:

-webkit-transition-timing-function: ease-out;
-moz-transition-timing-function: ease-out;
-o-transition-timing-function: ease-out;
transition-timing-function: ease-out;

This makes the transition fast to start with, becoming slower as it progresses. Of

course, with a 0.2 second duration, the difference is barely perceptible.

transition-delay
Finally, by using the transition-delay property, it’s also possible to introduce a

delay before the animation begins. Normally, a transition begins immediately, so

the default is 0. Include the number of milliseconds (ms) or seconds (s) to delay the

transition:

187CSS3 Transforms and Transitions

-webkit-transition-delay: 250ms;
-moz-transition-delay: 250ms;
-o-transition-delay: 250ms;
transition-delay: 250ms;

Negative Delays

Interestingly, a negative time delay that is less than the duration of the entire

transition will cause it to start immediately, but it will start partway through the

animation. For example, if you have a delay of -500ms on a 2s transition, the

transition will start a quarter of the way through, and will last 1.5 seconds. This

might be used to create some interesting effects, so it’s worth being aware of.

The transition Shorthand Property
With four transition properties and three vendor prefixes, you could wind up with

16 lines of CSS for a single transition. Fortunately, as with other properties, there’s

a shorthand available. The transition property is shorthand for the four transition

functions described above. Let’s take another look at our transition so far:

#ad2 h1 span {
 -webkit-transition-property: -webkit-transform, color;
 -moz-transition-property: -moz-transform, color;
 -o-transition-property: -o-transform, color;
 transition-property: transform, color;
 -webkit-transition-duration: 0.2s;
 -moz-transition-duration: 0.2s;
 -o-transition-duration: 0.2s;
 transition-duration: 0.2s;
 -webkit-transition-timing-function: ease-out;
 -moz-transition-timing-function: ease-out;
 -o-transition-timing-function: ease-out;
 transition-timing-function: ease-out;
}

Now let’s combine all those values into a shorthand declaration:

HTML5 & CSS3 for the Real World188

css/styles.css (excerpt)

#ad2 h1 span {
 -webkit-transition: -webkit-transform 0.2s ease-out;
 -moz-transition: -moz-transform 0.2s ease-out;
 -o-transition: -o-transform 0.2s ease-out;
 transition: transform 0.2s ease-out;
}

Note that order of the values is important and must be as follows (though you don’t

need to specify all four values):

1. transition-property

2. transition-duration

3. transition-function

4. transition-delay

Multiple Transitions
The transition properties allow for multiple transitions in one call. For example, if

we want to change the color at the same time as changing the rotation and size, we

can.

Let’s say instead of just transitioning the rotation, we transition the text’s color

property as well. We’d have to first include a color property in the transitioned

style declaration, and then either the color property in the transition-property

value list, or use the key term all:

transition-property: transform, color;
transition-duration: 0.2s;
transition-timing-function: ease-out;

You can also specify different durations and timing functions for each property

being animated. Simply include each value in a comma-separated list, using the

same order as in your transition-property:

transition-property: transform, color;
transition-duration: 0.2s, 0.1s;
transition-timing-function: ease-out, linear;

189CSS3 Transforms and Transitions

The above properties will apply an ease-out transition over 0.2 seconds to the

transform, but a linear transition over 0.1 seconds to the color.

It’s possible to specify multiple transitions when using the shorthand transition

property also. In this case, specify all the values for each transition together, and

separate each transition with commas:

transition: color 0.2s ease-out, transform 0.2s ease-out;

If you want to change both properties at the same rate and delay, you can include

both property names or, since you are transitioning all the properties listed in the

hover state anyway, you can employ the all keyword.

When using the all keyword, all the properties transition at the same rate, speed,

and delay:

-webkit-transition: all 0.2s ease-out;
-moz-transition: all 0.2s ease-out;
-o-transition: all 0.2s ease-out;
transition: all 0.2s ease-out;

If you don’t want all your properties to transition at the same rate, or if you just

want a select few to have a transition effect, include the various transition properties

as a comma-separated list, including, at minimum, the transition-property and

transition-duration for each.

Animations
Transitions animate elements over time; however, they’re limited in what they can

do. You can define starting and ending states, but there’s no fine-grained control

over any intermediate states. CSS animations, unlike transitions, allow you to control

each step of an animation via keyframes. If you’ve ever worked with Flash, you’re

likely very familiar with the concept of keyframes; if not, don’t worry, it’s fairly

straightforward. A keyframe is a snapshot that defines a starting or end point of any

smooth transition. With CSS transitions, we’re essentially limited to defining the

first and last keyframes. CSS animations allow us to add any number of keyframes

in between, to guide our animation in more complex ways.

HTML5 & CSS3 for the Real World190

At the time of this writing, only WebKit supports CSS animation. This means that

support on the desktop is limited, but support on mobile devices is fairly good, as

the default browsers on iOS and Android both run on WebKit. As we’ve already

mentioned, the lack of powerful processors on many mobile devices make CSS an-

imations a great alternative to weighty, CPU-intensive JavaScript animation.

Keyframes
To animate an element in CSS, you first create a named animation, then attach it

to an element in that element’s property declaration block. Animations in themselves

don’t do anything; in order to animate an element, you will need to associate the

animation with that element.

To create an animation, use the @keyframes rule—or @-webkit-keyframes for current

WebKit implementations—followed by a name of your choosing, which will serve

as the identifier for the animation. Then, you can specify your keyframes.

For an animation called myAnimation, the @keyframes rule would look like this:

@-webkit-keyframes 'myAnimation'{
 /* put animation keyframes here */
}

Each keyframe looks like its own nested CSS declaration block. Instead of a selector,

though, you use the keywords from or to, a percentage value, or a comma-separated

list of percentage values. This value specifies how far along the animation the key-

frame is located.

Inside each keyframe, include the desired properties and values. Between each

keyframe, values will be smoothly interpolated by the browser’s animation engine.

Keyframes can be specified in any order; it’s the percentage values, rather than the

order of the declarations, that determine the sequence of keyframes in the animation.

Here are a few simple animations:

@-webkit-keyframes 'appear' {
 0% {
 opacity: 0;
 }

191CSS3 Transforms and Transitions

 100% {
 opacity: 1;
 }
}

@-webkit-keyframes 'disappear' {
 to {
 opacity: 0;
 }
 from {
 opacity: 1;
 }
}

@-webkit-keyframes 'appearDisappear' {
 0%, 100% {
 opacity: 0;
 }
 20%, 80% {
 opacity: 1;
 }
}

The last animation is worth paying extra attention to: we’ve applied the same styles

to 0% and 100%, and to 20% and 80%. In this case, it means the element will start

out invisible (opacity: 0;), fade in to visible by 20% of the way through the dura-

tion, remain visible until 80%, then fade out.

We’ve created three animations, but they aren’t attached to any elements. Once we

have defined an animation, the next step is to apply it to one or more elements using

the various animation properties.

Animation Properties
The animation properties supported by WebKit are as follows, with the -webkit-

vendor prefix.

animation-name

This property is used to attach an animation (defined using the @keyframes syntax

previously) to an element:

HTML5 & CSS3 for the Real World192

-webkit-animation-name: 'appear';

Note that the quotes around the animation name in both the property value and the

@keyframe selector are optional. We recommend including them to keep your styles

as legible as possible, and to avoid conflicts.

animation-duration

The animation-duration property defines the length of time, in seconds or milli-

seconds, an animation takes to complete one iteration (all the way through, from

0% to 100%):

-webkit-animation-duration: 300ms;

animation-timing-function

Like the transition-timing-function property, the animation-timing-function

determines how the animation will progress over its duration. The options are the

same as for transition-timing-function: ease, linear, ease-in, ease-out, ease-

in-out, or cubic-bezier:

-webkit-animation-timing-function: linear;

animation-iteration-count

This property lets you define how many times the animation will play through. The

value is generally an integer, but you can also use numbers with decimal points (in

which case, the animation will end partway through a run), or the value infinite

for endlessly repeating animations. If omitted, it will default to 1, in which case the

animation will occur only once:

-webkit-animation-iteration-count: infinite;

animation-direction

When the animation iterates, you can use the animation-direction property with

the value alternate to make every other iteration play the animation backwards.

For example, in a bouncing ball animation, you could provide keyframes for the

193CSS3 Transforms and Transitions

falling ball, and then use animation-direction: alternate; to reverse it on every

second play through:

-webkit-animation-direction: alternate;

The default is normal, so the animation will play forwards on each iteration.

When animations are played in reverse, timing functions are also reversed; for ex-

ample, ease-in becomes ease-out.

animation-delay

Used to define how many milliseconds or seconds to wait before the browser begins

the animation:

-webkit-animation-delay: 15s;

animation-fill-mode

The animation-fill-mode property defines what happens before the animation

begins and after the animation concludes. By default, an animation won’t affect

property values outside of its runs, but with animation-fill-mode, we can override

this default behavior. We tell the animation to “sit and wait” on the first keyframe

until the animation starts, or stop on the last keyframe without reverting to the ori-

ginal values at the conclusion of the animation, or both.

The available values are none, forwards, backwards, or both. The default is none,

in which case the animation proceeds and ends as expected, reverting to the initial

keyframes when the animation completes its final iteration. When set to forwards,

the animation continues to apply the values of the last keyframes after the animation

ends. When set to backwards, the animation’s initial keyframes are applied as soon

as the animation style is applied to an element. As you’d expect, both applies both

the backwards and forwards effects:

-webkit-animation-fill-mode: forwards;

animation-play-state

The animation-play-state property defines whether the animation is running or

paused. A paused animation displays the current state of the animation statically.

HTML5 & CSS3 for the Real World194

When a paused animation is resumed, it restarts from the current position. This

provides a simple way to control CSS animations from your JavaScript.

The Shorthand animation Property
Fortunately, there’s a shorthand for all these animation properties. The animation

property takes as its value a space-separated list of values for the longhand

animation-name, animation-duration, animation-timing-function,

animation-delay, animation-iteration-count, animation-direction, and

animation-fill-mode properties:

.verbose {
 -webkit-animation-name: 'appear';
 -webkit-animation-duration: 300ms;
 -webkit-animation-timing-function: ease-in;
 -webkit-animation-iteration-count: 1;
 -webkit-animation-direction: alternate;
 -webkit-animation-delay: 5s;
 s-webkit-animation-fill-mode: backwards;
}

/* shorthand */
.concise {
 -webkit-animation: 'appear' 300ms ease-in 1 alternate 5s
➥backwards;
}

To declare multiple animations on an element, include a grouping for each animation

name, with each shorthand grouping separated by a comma. For example:

.target {
 -webkit-animation:
 'animationOne' 300ms ease-in 0s backwards,
 'animationTwo' 600ms ease-out 1s forwards;
}

195CSS3 Transforms and Transitions

Moving On
With transforms, transitions, and animations, our site is looking more dynamic.

Remember the old maxim, though: just because you can, doesn’t mean you should.

Animations were aplenty on the Web in the late nineties; a lot of us remember

flashing banners and scrolling marquees, and to some extent, that problem still exists

today. Use animations and transitions where it makes sense, enhancing the user

experience—and skip it everywhere else.

We still have a few lessons to learn in CSS3 to make our website look more like an

old-time newspaper. In the next chapter, we’ll learn about creating columns without

relying on float, and how to include fancy fonts that aren’t installed by default on

our users’ computers.

HTML5 & CSS3 for the Real World196

Chapter9
Embedded Fonts and Multicolumn
Layouts
We’ve added quite a lot of decoration to The HTML5 Herald, but we’re still missing

some key components to give it that really old-fashioned feel. To look like a real

newspaper, the text of the articles should be laid out in narrow columns, and we

should use some suitably appropriate fonts for the period.

In this chapter, we’ll finish up the look and feel of our website with CSS3 columns

and @font-face.

Web Fonts with @font-face
Since the early days of the Web, designers have been dreaming of creating sites with

beautiful typography. But, as we all know too well, browsers are limited to rendering

text in the fonts the user has installed on their system. In practical terms, this has

limited most sites to a handful of fonts: Arial, Verdana, Times, Georgia, and a few

others.

Over the years, we have come up with a number of clever workarounds for this

problem. We created JPEGs and PNGs for site titles, logos, buttons, and navigation

elements. When those elements required additional states or variants, we created

even more images, or image sprites to ensure the page stayed snappy and responsive.

Whenever the design or text changed, all those images had to be recreated.

This can be an acceptable solution for some elements on a page, but it’s just unreal-

istic to expect a designer to handcraft the title of every new article in Photoshop

and then upload it to the site. So, for key page elements that need to change fre-

quently, we were stuck with those same few fonts.

To fill this typographic void, some very cool font embedding scripts were created,

like sIFR, based on Flash and JavaScript, and the canvas-based Cufón. While these

methods have been a great stopgap measure, allowing us to include our own fonts,

they had severe drawbacks. Sometimes they were tricky to implement, and they

required that JavaScript be enabled and, in the case of sIFR, the Flash plugin be

installed. In addition, they significantly slowed the page’s download and rendering.

Fortunately, there’s now a better way: @font-face is a pure CSS solution for embed-

ding fonts—and it’s supported on every browser with any kind of market share,

from IE6 on up.

We’ll be including two embedded fonts on The HTML5 Herald site: League Gothic

from The League of Movable Type,1 and Acknowledgement Medium by Ben

Weiner of Reading Type.2 The two fonts are shown, respectively, in Figure 9.1 and

Figure 9.2.

Figure 9.1. League Gothic

1 http://www.theleagueofmoveabletype.com/
2 http://www.readingtype.org/

HTML5 & CSS3 for the Real World198

Figure 9.2. Acknowledgement Medium

We’ll now look at how we can embed these fonts and use them to power any of the

text on our site, just as if they were installed on our users’ machines.

Implementing @font-face
@font-face is one of several CSS at-rules, like @media, @import, @page, and the one

we’ve just seen, @keyframes. At-rules are ways of encapsulating several rules together

in a declaration to serve as instructions to the browser’s CSS processor. The @font-

face at-rule allows us to specify custom fonts that we can then include in other

declaration blocks.

To include fonts using @font-face, you have to:

1. load the font file onto your servers in a variety of formats to support all the dif-

ferent browsers

2. name, describe, and link to that font in an @font-face rule

3. include the font’s name in a font-family property value, just as you would for

system fonts

You already know how to upload a file onto a server, so we’ll discuss the details of

the various file types in the next section. For now, we’ll focus on the second and

third steps so that you can become familiar with the syntax of @font-face.

Here’s an example of an @font-face block:

@font-face {
 font-family: 'fontName';
 src: source;
 font-weight: weight;
 font-style: style;
}

The font family and source are required, but the weight and style are optional.

199Embedded Fonts and Multicolumn Layouts

You need to include a separate @font-face at-rule for every font you contain in

your site. You’ll also have to include a separate at-rule for each variation of the

font—regular, thin, thick, italic, black, and so on. The HTML5 Herald will require

two imported fonts, so we’ll include two @font-face blocks:

css/styles.css (excerpt)

@font-face {
 ⋮
}

@font-face {
 ⋮
}

The font-family part of the @font-face at-rule declaration is slightly different

from the font-family property with which you’re already familiar. In this case,

we’re declaring a name for our font, rather than assigning a font with a given name

to an element. The font name can be anything you like—it’s only a reference to a

font file, so it needn’t even correspond to the name of the font. Of course, it makes

sense to use the font’s name to keep your CSS readable and maintainable. It’s good

to settle on a convention and stick to it for all your fonts. For our two fonts, we’ll

use camel case:

css/styles.css (excerpt)

@font-face {
 font-family: 'LeagueGothic';
}

@font-face {
 font-family: 'AcknowledgementMedium';
}

Declaring Font Sources
Now that we have a skeleton laid out for our @font-face rules, and we’ve given

each of them a name, it’s time to link them up to the actual font files. The src

property can take several formats. Additionally, you can declare more than one

source. If the browser fails to find the first source, it will try for the next one, and

so on, until it either finds a source, or it runs out of options.

HTML5 & CSS3 for the Real World200

Let’s add more formats to our League Gothic declaration:

css/styles.css (excerpt)

@font-face {
 font-family: 'LeagueGothicRegular';
 src: url('../fonts/League_Gothic-webfont.eot') format('eot'),
 url('../fonts/League_Gothic-webfont.woff') format('woff'),
 url('../fonts/League_Gothic-webfont.ttf') format('truetype'),
 url('../fonts/League_Gothic-webfont.svg#webfontFHzvtkso')
➥format('svg');
}

There are four font sources listed in the code block above. The first declaration is

an EOT font declaration, a proprietary format for Internet Explorer, and the only

file type understood by IE4–8.

Then we define the WOFF (Web Open Font Format, an emerging standard), OTF

(OpenType), TTF (TrueType), and SVG (Scalable Vector Graphics) font files. While

most desktop browsers will use one of the first three declarations, be sure to include

the SVG format, which was originally the only format supported by the iPhone.3

Table 9.1 shows a breakdown of browser support for different formats. As you can

see, there’s no single format that’s supported in every browser, so we need to provide

a number of formats, as we did with video in Chapter 5.

Table 9.1. Browser support for font formats

iOSOperaFirefoxChromeSafariIE

3.2+10+3.5+4+3.1+4+@font-face

11.1+3.6+6+6+9+WOFF

4.2+10+3.5+4+3.1+OTF

4.2+10+3.5+4+3.1+9+?TTF

3.2+10+4+3.1+SVG

4+EOT

3 The iPhone recently expanded support to include OTF in 4.2, but it still makes sense to include SVG

for the time being.

201Embedded Fonts and Multicolumn Layouts

Adding these extra font formats ensures support for every browser, but unfortunately

it will cause problems in versions of IE older than IE9. Those browsers will see

everything between the first url(' and the last ') as one URL, so will fail to load

the font. At first, it would seem that we’ve been given the choice between supporting

IE and supporting every other browser, but fortunately there’s a solution. Detailed

in a FontSpring blog post,4 it involves adding a query string to the end of the EOT

URL. This tricks the browser into thinking that the rest of the src property is a

continuation of that query string, so it goes looking for the correct URL and loads

the font:

(excerpt)

@font-face {
 font-family: 'LeagueGothicRegular';
 src: url('../fonts/League_Gothic-webfont.eot?#iefix')
➥format('eot'),
 url('../fonts/League_Gothic-webfont.woff') format('woff'),
 url('../fonts/League_Gothic-webfont.ttf') format('truetype'),
 url('../fonts/League_Gothic-webfont.svg#webfontFHzvtkso')
➥format('svg');
}

This syntax has one potential point of failure: IE9 has a feature called compatibility

mode, in which it will attempt to render pages the same way IE7 or 8 would. This

was introduced to prevent older sites appearing broken in IE9’s more standards-

compliant rendering. However, IE9 in compatibility mode doesn’t reproduce the

bug in loading the EOT font, so the above declaration will fail. To compensate for

this, you can add an additional EOT URL in a separate src property:

(excerpt)

@font-face {
 font-family: 'LeagueGothicRegular';
src: url('../fonts/League_Gothic-webfont.eot');

 src: url('../fonts/League_Gothic-webfont.eot?#iefix')
➥format('eot'),
 url('../fonts/League_Gothic-webfont.woff') format('woff'),
 url('../fonts/League_Gothic-webfont.ttf') format('truetype'),

4 http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax

HTML5 & CSS3 for the Real World202

 url('../fonts/League_Gothic-webfont.svg#webfontFHzvtkso')
➥format('svg');
}

This may be an unnecessary precaution, as generally a user would need to deliber-

ately switch IE to compatibility mode while viewing your site for this issue to arise.

Alternatively, you could also force IE out of compatibility mode by adding this meta

element to your document’s head:

<meta http-equiv="X-UA-Compatible" content="IE=Edge">

It’s also possible to achieve the same result by adding an extra HTTP header; this

can be done with a directive in your .htaccess file (or equivalent):

<IfModule mod_setenvif.c>
 <IfModule mod_headers.c>
 BrowserMatch MSIE ie
 Header set X-UA-Compatible "IE=Edge"
 </IfModule>
</IfModule>

Font Property Descriptors
Font property descriptors—including font-style, font-variant, font-weight,

and others—can optionally be added to define the characteristics of the font face,

and are used to match styles to specific font faces. The values are the same as the

equivalent CSS properties:

@font-face {
 font-family: 'LeagueGothicRegular';
 src: url('../fonts/League_Gothic-webfont.eot');
 src: url('../fonts/League_Gothic-webfont.eot?#iefix')
➥format('eot'),
 url('../fonts/League_Gothic-webfont.woff') format('woff'),
 url('../fonts/League_Gothic-webfont.ttf') format('truetype'),
 url('../fonts/League_Gothic-webfont.svg#webfontFHzvtkso')
➥format('svg');
 font-weight: bold;
 font-style: normal;
}

203Embedded Fonts and Multicolumn Layouts

Again, the behavior is different from what you’d expect. You are not telling the

browser to make the font bold; rather, you’re telling it that this is the bold variant

of the font. This can be confusing, and the behavior can be quirky in some browsers.

However, there is a reason to use the font-weight or font-style descriptor in the

@font-face rule declaration. You can declare several font sources for the same

font-family name:

@font-face {
 font-family: 'CoolFont';
 font-style: normal;
 src: url(fonts/CoolFontStd.ttf);
}

@font-face {
 font-family: 'CoolFont';
 font-style: italic;
 src: url(fonts/CoolFontItalic.ttf);
}

.whichFont {
 font-family: 'CoolFont';
}

Notice that both at-rules use the same font-family name, but different font styles.

In this example, the .whichFont element will use the CoolFontStd.ttf font, because

it matches the style given in that at-rule. However, if the element were to inherit

an italic font style, it would switch to using the CoolFontItalic.ttf font instead.

Unicode Range
Also available is the unicode-range descriptor, which is employed to define the

range of Unicode characters supported by the font. If this property is omitted, the

entire range of characters included in the font file will be made available.

We won’t be using this on our site, but here’s an example of what it looks like:

unicode-range: U+000-49F, U+2000-27FF, U+2900-2BFF, U+1D400-1D7FF;

HTML5 & CSS3 for the Real World204

Applying the Font
Once the font is declared using the @font-face syntax, you can then refer to it as

you would any normal system font in your CSS: include it in a “stack” as the value

of a font-family property. It’s a good idea to declare a fallback font or two in case

your embedded font fails to load.

Let’s look at one example from The HTML5 Herald:

css/styles.css (excerpt)

h1 {
 text-shadow: #fff 1px 1px;
 font-family: LeagueGothic, Tahoma, Geneva, sans-serif;
 text-transform: uppercase;
 line-height: 1;
}

Our two embedded fonts are used in a number of different places in our stylesheet,

but you get the idea.

Legal Considerations
We’ve included the markup for two fonts on our site, but we’re yet to put the font

files themselves in place. We found both of these fonts freely available online. They

are both licensed as freeware—that is, they’re free to use for both personal and

commercial use. Generally, you should consider this the only kind of font you

should use for @font-face, unless you’re using a third-party service.

How is @font-face any different from using a certain font in an image file? By

having a website on the Internet, your font source files are hosted on publicly

available web servers, so in theory anyone can download them. In fact, in order to

render the text on your page, the browser has to download the font files. By using

@font-face, you’re distributing the font to everyone who visits your site. In order

to include a font on your website, then, you need to be legally permitted to distribute

the font.

Owning or purchasing a font doesn’t mean you have the legal right to redistribute

it—in the same way that buying a song on iTunes doesn’t grant you the right to

throw it up on your website for anyone to download. Licenses that allow you to

205Embedded Fonts and Multicolumn Layouts

distribute fonts are more expensive (and rarer) than licenses allowing you to use a

font on one computer for personal or even commercial use.

However, there are several websites that have free downloadable web fonts with

Creative Commons,5 shareware, or freeware licensing. Alternatively, there are paid

and subscription services that allow you to purchase or rent fonts, generally

providing you with ready-made scripts or stylesheets that make them easy to use

with @font-face.

A few sites providing web font services include Typekit,6 Typotheque,7 Webtype,8

Fontdeck,9 and Fonts.com10.

Google’s web fonts directory11 has a growing collection of fonts provided free of

charge and served from Google’s servers. It simply provides you with a URL pointing

to a stylesheet that includes all the required @font-face rules, so all you need to

do is add a link element to your document in order to start using a font.

When selecting a service, font selection and price are certainly important, but there

are other considerations. Make sure that any service you choose to use takes

download speed into consideration. Font files can be fairly large, potentially con-

taining several thousand characters. Good services allow you to select character

subsets, as well as font-style subsets, to decrease the file size. Bear in mind, also,

that some services require JavaScript in order to function.

Creating Various Font File Types: Font Squirrel
If you have a font that you’re legally allowed to redistribute, there’ll be no need for

you to use any of the font services above. You will, however, have to convert your

font into the various formats required to be compatible with every browser on the

market. So how do you go about converting your fonts into all these formats?

5 If you’re unfamiliar with Creative Commons licenses, you can find out more at

http://creativecommons.org/.
6 http://typekit.com/
7 http://www.typotheque.com/
8 http://www.webtype.com/
9 http://fontdeck.com/
10 http://webfonts.fonts.com
11 http://code.google.com/apis/webfonts/

HTML5 & CSS3 for the Real World206

One of the easiest tools for this purpose is Font Squirrel’s @font-face generator.12

This service allows you to select fonts from your desktop with a few clicks of your

mouse and convert them to TTF, EOT, WOFF, SVG, SVGZ, and even a Base64 en-

coded version.13

By default, the Optimal option is selected for generating an @font-face kit; however,

in some cases you can decrease the file sizes by choosing Expert… and creating a

character subset. Rather than including every conceivable character in the font file,

you can limit yourself to those you know will be used on your site.

For example, on The HTML5 Herald site, the Acknowledgement Medium font is

used only in specific ad blocks and headings, so we need just a small set of charac-

ters. All the text set in this font is uppercase, so let’s restrict our font to uppercase

letters, punctuation, and numbers, as shown in Figure 9.3.

Figure 9.3. Selecting a subset of characters in Font Squirrel’s @font-face generator

Figure 9.4 below shows how the file sizes of our subsetted fonts stack up against

the default character sets. In our case, the uppercase-and-punctuation-only fonts

are 25–30% smaller than the default character sets. Font Squirrel even lets you

specify certain characters for your subset, so there’s no need to include all the letters

of the alphabet if you know you won’t use them.

12 http://www.fontsquirrel.com/fontface/generator
13 Base64 encoding is a way of including the entire contents of a font file directly in your CSS file.

Sometimes this can provide performance benefits by avoiding an extra HTTP request, but that’s beyond

the scope of this book. Don’t sweat it, though—the files generated by the default settings should be fine

for most uses.

207Embedded Fonts and Multicolumn Layouts

Figure 9.4. File sizes of subsetted fonts can be substantially smaller

For the League Gothic font, we’ll need a more expanded character subset. This font

is used for article titles, which are all uppercase like our ads, so we can again omit

lowercase letters; however, we should consider that content for titles may include

a wider range of possible characters. Moreover, users might use in-browser tools,

or Google Translate, to translate the content on the page—in which case other

characters might be required. So, for League Gothic, we’ll go with the default Basic

Subsetting—this will give you all the characters required for Western languages.

When employing @font-face, as a general rule minimize font file size as much as

reasonably possible, while making sure to include enough characters so that a

translated version of your site is still accessible.

Once you’ve uploaded your font for processing and selected all your options, press

Download Your Kit. Font Squirrel provides a download containing: your font files

with the extensions requested, a demo HTML file for each font face style, and a

stylesheet from which you can copy and paste the code directly into your own CSS.

Font Squirrel’s Font Catalogue

In addition to the @font-face generator, the Font Squirrel site includes a catalog

of hand-picked free fonts whose licenses allow for web embedding. In fact, both

of the fonts we’re using on The HTML5 Herald can also be found on Font Squirrel,

with ready-made @font-face kits to download without relying on the generator

at all.

To target all browsers, make sure you’ve created TTF, WOFF, EOT, and SVG font

file formats. Once you’ve created the font files, upload the web fonts to your server.

Copy and paste the CSS provided, changing the paths to point to the folder where

HTML5 & CSS3 for the Real World208

you’ve put your fonts. Make sure the font-family name specified in the @font-face

rule matches the one you’re using in your styles, and you’re good to go!

Troubleshooting @font-face

If your fonts are failing to display in any browser, the problem could very well be

the path in your CSS. Check to make sure that the font file is actually where you

expect it to be. Browser-based debugging tools—such as the Web Inspector in

WebKit, Dragonfly in Opera, or the Firebug Firefox extension—will indicate if

the file is missing.

If you’re sure that the path is correct and the file is where it’s supposed to be,

make sure your server is correctly configured to serve up the fonts. Windows IIS

servers won’t serve up files if they’re unable to recognize their MIME type, so try

adding WOFF and SVG to your list of MIME types (EOT and TTF should be sup-

ported out of the box):

.woff application/x-font-woff

.svg image/svg+xml

Finally, some browsers require that font files be served from the same domain as

the page they’re embedded on.

Browser-based Developer Tools

Safari, Chrome, and Opera all come standard with tools to help save you time as

a web developer. Chrome and Opera already have these tools set up. Simply right-

click (or control-click on a Mac) and choose Inspect Element. A panel will open

up at the bottom of your browser, highlighting the HTML of the element you’ve

selected. You’ll also see any CSS applied to that element.

While Safari comes with this tool, it needs to be manually enabled. To turn it on,

go to Safari > Preferences, and then click the Advanced tab. Be sure that you check

the Show Develop menu in menu bar checkbox.

Firefox comes without such a tool. Luckily, there’s a free Firefox plugin called

Firebug that provides the same functionality. You can download Firebug at

http://getfirebug.com/.

209Embedded Fonts and Multicolumn Layouts

Other Considerations
Embedded fonts can improve performance and decrease maintenance time when

compared to text as images. Remember, though, that font files can be big. If you

need a particular font for a banner ad, it may make more sense (given the limited

amount of text required) to simply create an image instead of including font files.

When pondering the inclusion of multiple font files on your site, consider perform-

ance. Multiple fonts will increase your site’s download time, and font overuse can

be tacky. Furthermore, the wrong font can make your content difficult to read. For

body text, you should almost always stick to the usual selection of web-safe fonts.

Another factor worth considering is that browsers are unable to render the @font-

face font until it has been downloaded entirely. They’ll behave differently in how

they display your content before the download is complete: some browsers will

render the text in a system font, while others won’t render any text at all.

This effect is referred to as a “flash of unstyled text,” or FOUT, a term coined by

Paul Irish.14 To try to prevent this from happening (or to minimize its duration),

make your file sizes as small as possible, Gzip them, and include your @font-face

rules in CSS files as high up as possible in your markup. If there’s a script above

the @font-face declaration in the source, IE experiences a bug, whereby the page

won’t render anything until the font has downloaded—so be sure your fonts are

declared above any scripts on your page.

Another option to mitigate @font-face’s impact on performance is to defer the font

file download until after the page has rendered. This may be unviable for your de-

signer or client, however, as it may result in a more noticeable FOUT, even if the

page loads faster overall.15

Of course, we don’t want to scare you away from using @font-face, but it’s important

that you avoid using this newfound freedom to run wild without regard for the

consequences. Remember that there are trade-offs, so use web fonts where they’re

appropriate, and consider the available alternatives.

14 http://paulirish.com/2009/fighting-the-font-face-fout/
15 For more on @font-face and performance, as well as an example of how to “lazy load” your font

files, see http://www.stevesouders.com/blog/2009/10/13/font-face-and-performance/.

HTML5 & CSS3 for the Real World210

CSS3 Multicolumn Layouts
Nothing says “newspaper” like a row of tightly packed columns of text. There’s a

reason for this: newspapers break articles into multiple columns because lines of

text that are too long are hard to read. Browser windows can be wider than printed

books, and even as wide as some newspapers—so it makes sense for CSS to provide

us with the ability to flow our content into columns.

You may be thinking that we’ve always been able to create column effects using the

float property. But the behavior of floats is subtly different from what we’re after.

Newspaper-style columns have been close to impossible to accomplish with CSS

and HTML without forcing column breaks at fixed positions. True, you could break

an article into divs, floating each one to make it look like a set of columns. But what

if your content is dynamic? Your back-end code will need to figure out where each

column should begin and end in order to insert the requisite div tags.

With CSS3 columns, the browser determines when to end one column and begin

the next without requiring any extra markup. You retain the flexibility to change

the number of columns as well as their width, without having to go back in and alter

the page’s markup.

For now, we’re mostly limited to splitting content across a few columns, while

controlling their widths and the gutters between them. As support broadens, we’ll

be able to break columns, span elements across multiple columns, and more. Support

for CSS3 columns is moderate: Firefox and WebKit have had support via vendor-

prefixed properties for years, while Opera has just added support in 11.10 (without

a vendor prefix), and IE still offers no support.

Almost all the content on the main page of The HTML5 Herald is broken into

columns. Let’s dig deeper into the properties that make up CSS3 columns and learn

how to create these effects on our site.

The column-count Property
The column-count property specifies the number of columns desired, and the

maximum number of columns allowed. The default value of auto means that the

element has one column. Our leftmost articles are broken into three columns, and

the article below the ad blocks has two columns:

211Embedded Fonts and Multicolumn Layouts

css/styles.css (excerpt)

#primary article .content {
 -webkit-column-count: 3;
 -moz-column-count: 3;
 column-count: 3;
}

#tertiary article .content {
 -webkit-column-count: 2;
 -moz-column-count: 2;
 column-count: 2;
}

This is all we really need to create our columns. By default, the columns will have

a small gap between them. The total width of the columns combined with the gaps

will take up 100% of the width of the element.

Yet, there are a number of other properties we can use for more granular control.

The column-gap Property
The column-gap property specifies the width of the space between columns:

css/styles.css (excerpt)

#primary article .content,
#tertiary article .content {
 -webkit-column-gap: 10px;
 -moz-column-gap: 10px;
 column-gap: 10px;
}

Declare the width in length units, such as ems or pixels, or use the term normal.

It’s up to the browser to determine what normal means, but the spec suggests 1em.

We’ve declared our gaps to be 10px wide. The resulting columns are shown in

Figure 9.5.

HTML5 & CSS3 for the Real World212

Figure 9.5. Our leftmost content area has articles split over three columns

The column-width Property
The column-width property is like having a min-width for your columns. The

browser will include as many columns of at least the given width as it can to fill

up the element—up to the value of the column-count property. If the columns need

to be wider to fill up all the available space, they will be.

For example, if we have a parent that is 400 pixels wide, a 10-pixel column gap,

and the column-width is declared as 150px, the browser can fit two columns:

(400px width – 10px column gap) ÷ 150px width = 2.6

The browser rounds down to two columns, making columns that are as large as

possible in the allotted space; in this case that’s 195px for each column—the total

width minus the gap, divided by the number of columns. Even if the column-count

were set to 3, there would still only be two columns, as there’s not enough space

to include three columns of the specified width. In other words, you can think of

the column-count property as specifying the maximum column count.

213Embedded Fonts and Multicolumn Layouts

The only situation in which columns will be narrower than the column-width is if

the parent element itself is too narrow for a single column of the specified width.

In this case, you’ll have one column that fills the whole parent element.

It’s a good idea to declare your column-width in ems, to ensure a minimum number

of characters for each line in a column. Let’s add a column-width of 9em to our

content columns:

css/styles.css (excerpt)

#primary article .content,
#tertiary article .content {
 ⋮
 -webkit-column-width: 9em;
 -moz-column-width: 9em;
 column-width: 9em;
}

Now, if you increase the font size in your browser, you’ll see that the number of

columns is decreased as required to maintain a minimum width. This ensures

readability, as shown in Figure 9.6.

Figure 9.6. Declaring a column-width in ems ensures a minimum number of characters on each line

HTML5 & CSS3 for the Real World214

The columns Shorthand Property
The columns shorthand property is a composite of the column-width and

column-count properties. Declare the two parameters—the width of each column

and the number of columns—as described above.

At the time of this writing, this compound property is only supported in WebKit,

so you will need to at least continue providing separate properties for the -moz-

implementation:

css/styles.css (excerpt)

#primary article .content {
 -webkit-columns: 3 9em;
 -moz-column-count: 3;
 -moz-column-width: 9em;
 columns: 3 9em;
}

Rather than specifying different properties for -webkit- and -moz-, you might find

it simpler to just stick with the separate column-width and column-count properties

for now. It’s up to you.

Columns and the height Property
With the above declarations—and no height specified on the element—browsers

will balance the column heights automatically, so that the content in each column

is approximately equal in height.

But what if a height is declared? When the height property is set on a multicolumn

block, each column is allowed to grow to that height and no further before a new

column is added. The browser starts with the first column and creates as many

columns as necessary, creating only the first column if there is minimal text. Finally,

if too little space is allocated, the content will overflow from the box—or be clipped

if overflow: hidden; is set.

If you want to declare a height on your element, but would also like the content to

be spread across your columns, you can use the column-fill property. When sup-

ported, and set to balance, the browser will balance the height of the columns as

though there were no height declared.

215Embedded Fonts and Multicolumn Layouts

Margins and Padding

Even with a height declared, columns may still not appear to have exactly the

desired height, because of the bottom margins on paragraphs. WebKit currently

splits margins and padding between columns, sometimes adding the extra spacing

at the top of a following column. Firefox allows margins to go beyond the bottom

of the box, rather than letting them show up at the top of the next column, which

we think makes more sense.

As with the column-width, you may also want to declare your height in ems

instead of pixels; this way, if your user increases the font size, they are less likely

to have content clipped or overflowing.

Other Column Features
Beyond the core count, width, and gap properties, CSS3 provides us with a few

additional features for laying out multicolumn content, some of which are yet to be

supported.

The column-rule Property
Column rules are essentially borders between each column. The column-rule

property specifies the color, style, and width of the column rules. The rule will

appear in the middle of the column gap. This property is actually shorthand for the

column-rule-color, column-rule-style, and column-rule-width properties.

The syntax for the value is exactly the same as for border and the related

border-width, border-style, and border-color properties. The width can be any

length unit, just like border-width, including the key terms of medium, thick, and

thin. And the color can be any supported color value:

css/styles.css (excerpt)

-webkit-column-rule: 1px solid #CCCCCC;
-moz-column-rule: 1px solid #CCCCCC;
column-rule: 1px solid #CCCCCC;

Column Breaks
There are three column-breaking properties that allow developers to define where

column breaks should appear. The break-before, break-after, and break-inside

HTML5 & CSS3 for the Real World216

properties take a limited number of key terms as values to define whether a column

break can and should occur before, after, or inside an element, respectively. Rather

than being applied to the same element on which we defined our primary column

properties, they’re applied to other elements nested inside it.

The values available are the same as for page-break-after, page-break-before,

and page-break-inside in CSS 2.1: auto, always, avoid, left, and right. CSS3

also adds a few new possible values for these properties: page, column, avoid-page,

and avoid-column. The page and column values function like always, and will force

a break. The difference is that page will only force page breaks and column applies

only to columns. This gives you a bit more flexibility in how you manage breaks.

avoid-page and avoid-column are similar, except that they function like avoid.

For example, you might want to avoid a column break occurring immediately after

an h2 element in your content. Here’s how you’d do that:

.columns {
 column-count: 3;
 column-gap: 5px;
}

.columns h2 {
 break-after: avoid;
}

The only browser engine that currently supports column breaks is WebKit. As well

as being vendor-prefixed, the WebKit properties also take a different syntax from

what’s in the proposed specifications (note the addition of the word column to the

property names):

-webkit-column-break-after: always;
-webkit-column-break-before: auto;
-webkit-column-break-inside: never;

Spanning Columns
The column-span property will make it possible for an element to span across sev-

eral columns. If column-span: all; is set on an element, all content that comes

before that element in the markup should be in columns above that element. All

217Embedded Fonts and Multicolumn Layouts

content in columns appearing in the markup after the element should be in columns

below the spanned element.

Currently, column-span is only supported in WebKit (as -webkit-column-span).

Because it results in a very different appearance when it’s unsupported, it’s probably

best to avoid using it for now—unless you can be sure that all your visitors will be

using WebKit.

For example, for the first article on The HTML5 Herald, we could have applied the

column properties to the article element rather than the .content div, and used

column-span to ensure that the video spanned across the full width of the article.

However, this would appear badly broken in browsers that support columns but

not spanning—like Firefox—so we instead opted to separate the video from the

column content.

Other Considerations
If you’ve been following along with our examples, you might notice that some of

your blocks of text have ugly holes in them, like the one shown in Figure 9.7.

Figure 9.7. “Rivers” can appear in your text when your columns are too narrow

HTML5 & CSS3 for the Real World218

This problem occurs when text with text-align: justify; is set in very narrow

columns—as we’re doing for The HTML5 Herald. This is because browsers don’t

know how to hyphenate words in the same way that word processors do, so they

space words out awkwardly to ensure that the left and right edges stay justified.

For The HTML5 Herald, we’ve used a JavaScript library called Hyphenator16 to

hyphenate words and keep our text looking tidy. This may, however be unnecessary

for your site—our columns are extremely narrow, as we’re trying to replicate an

old-style newspaper. Few real-world sites would likely need justified columns that

narrow, but if you ever come across this issue, it’s good to know that there are

solutions available.

Progressive Enhancement
While columns still have limited browser support, there’s no harm including them

in your sites unless your designer is a stickler for detail. Columns can be viewed as

a progressive enhancement: making long lines easier to read. Those with browsers

that lack support for columns will be none the wiser about what they’re missing.

For example, The HTML5 Herald will have no columns when viewed in Internet

Explorer 9, as Figure 9.8 shows—but the site certainly doesn’t look broken, it’s

simply adapted to the capabilities of the browser.

Figure 9.8. Our site has no columns when viewed in IE9—but that’s okay!

16 http://code.google.com/p/hyphenator/

219Embedded Fonts and Multicolumn Layouts

If, however, columns are an important feature of your design, and must be provided

to all visitors, there are scripts that can help, such as Columnizer,17 a jQuery plugin

by Adam Wulf.

Media Queries
At this point, we’ve added a number of CSS3 enhancements to The HTML5 Herald.

Along the way, we’ve filled in some knowledge gaps by presenting aspects of CSS3

that were outside the scope of our sample site. So while we’re on the topic of

columns, it’s fitting that we introduce another CSS3 feature that’s received much

attention among designers targeting audiences on various devices.

In Chapter 1, we talked about the growth rate of mobile devices and the importance

of considering the needs of mobile users. With CSS3 media queries, you can do just

that—create a layout that resizes to accommodate different screen resolutions.

Media queries are at the heart of a recent design trend called responsive web design.

This is when all page elements, including images and widgets, are designed and

coded to resize and realign seamlessly and elegantly, depending on the capabilities

and dimensions of the user’s browser.

What are Media Queries?
Before CSS3, a developer could specify a media type for a stylesheet using the media

attribute. So you might have come across a link element that looked like this:

<link rel="stylesheet" href="print.css" media="print">

Notice that the media type is specified as print. Acceptable values in addition to

print include screen, handheld, projection, all, and a number of others you’ll

see less often, if ever. The media attribute allows you to specify which stylesheet

to load based on the type of device the site is being viewed on. This has become a

fairly common method for serving a print stylesheet.

With CSS3’s media queries you can, according to the W3C spec, “extend the func-

tionality of media types by allowing more precise labeling of style sheets.” This is

done using a combination of media types and expressions that check for the presence

17 http://welcome.totheinter.net/columnizer-jquery-plugin/

HTML5 & CSS3 for the Real World220

of particular media features. So media queries let you change the presentation (the

CSS) of your content for a wide variety of devices without changing the content itself

(the HTML).

Syntax
Let’s use the example from above, and implement a simple media query expression:

<link rel="stylesheet" href="style.css" media="screen and (color)">

This tells the browser that the stylesheet in question should be used for all screen

devices that are in color. Simple—and it should cover nearly everyone in your

audience. You can do the same using @import:

@import url(color.css) screen and (color);

Additionally, you can implement media queries using the @media at-rule, which

we touched on earlier in this chapter when discussing @font-face. @media is

probably the most well-known usage for media queries, and is the method you’ll

likely use most often:

@media handheld and (max-width: 380px) {
 /* styles go here */
}

In the example above, this expression will apply to all handheld devices that have

a maximum display width of 380 pixels. Any styles within that block will apply

only to the devices that match the expression.

Here are a few more examples of media queries using @media, so that you can see

how flexible and varied the expressions can be. This style will apply only to screen-

based devices that have a minimum device width (or screen width) of 320px and a

maximum device width of 480px:

@media only screen and (min-device-width: 320px) and
➥(max-device-width: 480px) {
 /* styles go here */
}

221Embedded Fonts and Multicolumn Layouts

Here’s a slightly more complex example:

@media only screen and (-webkit-min-device-pixel-ratio: 1.5),
➥only screen and (min-device-pixel-ratio: 1.5) {
 /* styles go here */
}

In the above example, we use the only keyword, along with the and keyword in

addition to a comma—which behaves like an or keyword. This code will specifically

target the iPhone 4’s higher resolution display, which could come in handy if you

want that device to display a different set of images.

Flexibility of Media Queries
Using the above syntax, media queries allow you to change the layout of your site

or application based on a wide array of circumstances. For example, if your site

uses a two-column layout, you can specify that the sidebar column drop to the

bottom and/or become horizontally oriented, or you can remove it completely on

smaller resolutions. On small devices like smartphones, you can serve a completely

different stylesheet that eliminates everything except the bare necessities.

Additionally, you can change the size of images and other elements that aren’t

normally fluid to conform to the user’s device or screen resolution. This flexibility

allows you to customize the user experience for virtually any type of device, while

keeping the most important information and your site’s branding accessible to all

users.

Browser Support
Support for media queries is very good:

■ IE9+
■ Firefox 3.5+
■ Safari 3.2+
■ Chrome 8+
■ Opera 10.6+
■ iOS 3.2+
■ Opera Mini 5+
■ Opera Mobile 10+

HTML5 & CSS3 for the Real World222

■ Android 2.1+

The only area of concern is previous versions of Internet Explorer. There are two

options for dealing with this: you can supply these versions of IE with a “default”

stylesheet that’s served without using media queries, providing a layout suitable

for the majority of screen sizes, or you can use a JavaScript-based polyfill. One such

ready-made solution can be found at http://code.google.com/p/css3-mediaqueries-js/.

Thus, by taking advantage of CSS3 media queries, you can easily create a powerful

way to target nearly every device and platform conceivable.

Further Reading
In a book like this, we can’t possibly describe every aspect of media queries. That

could be another book in itself—and an important one at that. But if you’d like to

look into media queries a little further, be sure to check out the following articles:

■ “Responsive Web Design” on A List Apart18

■ “How to Use CSS3 Media Queries to Create a Mobile Version of Your Site” on

Smashing Magazine19

■ For a more critical perspective, “CSS Media Query for Mobile is Fool’s Gold”

on the Cloud Four blog20

18 http://www.alistapart.com/articles/responsive-web-design/
19 http://www.smashingmagazine.com/2010/07/19/how-to-use-css3-media-queries-to-create-a-mobile-

version-of-your-website/
20 http://www.cloudfour.com/css-media-query-for-mobile-is-fools-gold/

223Embedded Fonts and Multicolumn Layouts

Living in Style
We’ve now covered all the new features in CSS that went into making The HTML5

Herald—and quite a few that didn’t. While we haven’t covered everything CSS3

has to offer, we’ve mastered several techniques that you can use today, and a few

that should be usable in the very near future. Remember to check the specifications

—as these features are all subject to change—and keep up to date with the state of

browser support. Things are moving quickly for a change, which is both a great

boon and an additional responsibility for web developers.

Up next, we’ll switch gears to cover some of the new JavaScript APIs. While, as

we’ve mentioned, these aren’t strictly speaking part of HTML5 or CSS3, they’re often

bundled together when people speak of these new technologies. Plus, they’re a lot

of fun, so why not get our feet wet?

HTML5 & CSS3 for the Real World224

Chapter10
Geolocation, Offline Web Apps, and
Web Storage
Much of what is loosely considered to be a part of “HTML5” isn’t, strictly speaking,

HTML at all—it’s a set of additional APIs that provide a wide variety of tools to

make our websites even better. We introduced the concept of an API way back in

Chapter 1, but here’s a quick refresher: an API is an interface for programs. So, rather

than a visual interface where a user clicks on a button to make something happen,

an API gives your code a virtual “button” to press, in the form of a method it calls

that gives it access to a set of functionality. In this chapter, we’ll walk you through

a few of the most useful of these APIs, as well as give you a brief overview of the

others, and point you in the right direction should you want to learn more.

With these APIs, we can find a visitor’s current location, make our website available

offline as well as perform faster online, and store information about the state of our

web application so that when a user returns to our site, they can pick up where they

left off.

Here There be Dragons

A word of warning: as you know, the P in API stands for Programming—so there’ll

be some JavaScript code in the next two chapters. If you’re fairly new to JavaScript,

don’t worry! We’ll do our best to walk you through how to use these new features

using simple examples with thorough explanations. We’ll be assuming you have

a sense of the basics, but JavaScript is an enormous topic. To learn more, SitePoint’s

Simply JavaScript by Kevin Yank and Cameron Adams is an excellent resource

for beginners.1 You may also find the Mozilla Developer Network’s JavaScript

Guide useful.2

As with all the JavaScript examples in this book so far, we’ll be using the jQuery

library in the interests of keeping the examples as short and readable as possible.

We want to demonstrate the APIs themselves, not the intricacies of writing cross-

browser JavaScript code. Again, any of this code can just as easily be written in

plain JavaScript, if that’s your preference.

Geolocation
The first new API we’ll cover is geolocation. Geolocation allows your visitors to

share their current location.

Depending on how they’re visiting your site, their location may be determined by

any of the following:

■ IP address
■ wireless network connection
■ cell tower
■ GPS hardware on the device

Which of the above methods are used will depend on the browser, as well as the

device’s capabilities. The browser then determines the location and passes it back

to the Geolocation API. One point to note, as the W3C Geolocation spec states: “No

guarantee is given that the API returns the device’s actual location.”3

Geolocation is supported in:

1 Melbourne: SitePoint, 2007
2 https://developer.mozilla.org/en/JavaScript/Guide
3 http://dev.w3.org/geo/api/spec-source.html#introduction

HTML5 & CSS3 for the Real World226

■ Safari 5+
■ Chrome 5+
■ Firefox 3.5+
■ IE 9+
■ Opera 10.6+
■ iOS (Mobile Safari) 3.2+
■ Android 2.1+

Privacy Concerns
Not everyone will want to share their location with you, as there are privacy concerns

inherent to this information. Thus, your visitors must opt in to share their location.

Nothing will be passed along to your site or web application unless the user agrees.

The decision is made via a prompt at the top of the browser. Figure 10.1 shows what

this prompt looks like in Chrome.

Figure 10.1. Geolocation user prompt

Blocking of the Geolocation Prompt in Chrome

Be aware that Chrome may block your site from showing this prompt entirely if

you’re viewing your page locally, rather than from an internet server. If this hap-

pens, you’ll see an icon in the address bar alerting you to it.

There’s no way around this at present, but you can either test your functionality

in other browsers, or deploy your code to a testing server (this can be a local

server on your machine, a virtual machine, or an actual internet server).

Geolocation Methods
With geolocation, you can determine the user’s current position. You can also be

notified of changes to their position, which could be used, for example, in a web

application that provided real-time driving directions.

These different tasks are controlled through the three methods currently available

in the Geolocation API:

227Geolocation, Offline Web Apps, and Web Storage

■ getCurrentPosition

■ watchPosition

■ clearPosition

We’ll be focusing on the first method, getCurrentPosition.

Checking for Support with Modernizr
Before we attempt to use geolocation, we should ensure that our visitor’s browser

supports it. We can do that with Modernizr.

We’ll start by creating a function called called determineLocation. We’ve put it in

its own JavaScript file, geolocation.js, and included that file in our page.

Inside the function, we’ll first use Modernizr to check if geolocation is supported:

geolocation.js (excerpt)

function determineLocation() {
 if (Modernizr.geolocation) {
 navigator.geolocation.getCurrentPosition(displayOnMap);
 }
 else {
 // geolocation is not supported in this browser
 }
}

Let’s examine this line by line:

We declare a function called determineLocation to contain our location-

checking code.

We check the Modernizr object’s geolocation property to see whether geoloc-

ation is supported in the current browser. For more information on how the

Modernizr object works, consult Appendix A. If geolocation is supported, we

continue on to line three, which is inside the if statement. If geolocation is

unsupported, we move on to the code inside the else statement.

Let’s assume that geolocation is supported.

HTML5 & CSS3 for the Real World228

Retrieving the Current Position
The getCurrentPosition method takes one, two, or three arguments. Here is a

summary of the method’s definition from the W3C’s Geolocation API specification:4

void getCurrentPosition(successCallback, errorCallback, options);

Only the first argument, successCallback, is required. successCallback is the

name of the function you want to call once the position is determined.

In our example, if the location is successfully found, the displayOnMap function

will be called with a new Position object. This Position object will contain the

current location of the device.

Callbacks

A callback is a function that is passed as an argument to another function. A

callback is executed after the parent function is finished. In the case of

getCurrentPosition, the successCallback will only run once

getCurrentPosition is completed, and the location has been determined.

Geolocation’s Position Object
Let’s take a closer look at the Position object, as defined in the Geolocation API.

The Position object has two attributes: one that contains the coordinates of the

position (coords), and another that contains the timestamp of when the position

was determined (timestamp):

interface Position {
 readonly attribute Coordinates coords;
 readonly attribute DOMTimeStamp timestamp;
};

4 http://dev.w3.org/geo/api/spec-source.html

229Geolocation, Offline Web Apps, and Web Storage

Interfaces

The HTML5, CSS3, and related specifications contain plenty of “interfaces” like

the above. These can seem scary at first, but don’t worry. They’re just summarized

descriptions of everything that can go into a certain property, method, or object.

Most of the time the meaning will be clear—and if not, they’re always accompanied

by textual descriptions of the attributes.

But where are the latitude and longitude stored? They’re inside the Coordinates

object. The Coordinates object is also defined in the W3C Geolocation spec, and

here are its attributes :

interface Coordinates {
 readonly attribute double latitude;
 readonly attribute double longitude;
 readonly attribute double? altitude;
 readonly attribute double accuracy;
 readonly attribute double? altitudeAccuracy;
 readonly attribute double? heading;
 readonly attribute double? speed;
};

The question mark after double in some of those attributes simply means that there’s

no guarantee that the attribute will be there. If the browser can’t obtain these attrib-

utes, their value will be null. For example, very few computers or smartphones

contain an altimeter—so most of the time you won’t receive an altitude value from

a geolocation call. The only three attributes that are guaranteed to be there are

latitude, longitude, and accuracy.

latitude and longitude are self-explanatory, and give you exactly what you would

expect: the user’s latitude and longitude. The accuracy attribute tells you, in meters,

how accurate is the latitude and longitude information.

The altitude attribute is the altitude in meters, and the altitudeAccuracy attribute

is the altitude’s accuracy, also in meters.

The heading and speed attributes are only relevant if we’re tracking the user across

multiple positions. These attributes would be important if we were providing real-

time biking or driving directions, for example. If present, heading tells us, in degrees,

HTML5 & CSS3 for the Real World230

the direction the user is moving in relation to true north. And speed, if present,

tells us how quickly the user is moving in meters per second.

Grabbing the Latitude and Longitude
Our successCallback is set to the function displayOnMap. Here’s what this function

looks like:

geolocation.js (excerpt)

function displayOnMap(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;
 // Let’s use Google Maps to display the location
}

The first line of our function grabs the Coordinates object from the Position object

that was passed to our callback by the API. Inside the Coordinates object is the

property latitude, which we store inside a variable called latitude. We do the

same for longitude, storing it in the variable longitude.

In order to display the user’s location on a map, we’ll leverage the Google Maps

JavaScript API. But before we can use this, we need to add a reference to it in our

HTML page. Instead of downloading the Google Maps JavaScript library and storing

it on our server, we can point to Google’s publicly available version of the API:

geolocation.js (excerpt)

 ⋮
 <!-- google maps API -->
 <script type="text/javascript" src="http://maps.google.com/maps/
➥api/js?sensor=true">
 </script>
</body>
</html>

Google Maps has a sensor parameter to indicate whether this application uses a

sensor (GPS device) to determine the user’s location. That’s the sensor=true you

can see in the sample above. You must set this value explicitly to either true or

false. Because the W3C Geolocation API provides no way of knowing if the inform-

ation you’re obtaining comes from a sensor, you can safely specify false for most

231Geolocation, Offline Web Apps, and Web Storage

web applications (unless they’re intended specifically for devices that you know

have GPS capabilities, like iPhones).

Loading a Map
Now that we’ve included the Google Maps JavaScript, we need to, first, add an

element to the page to hold the map, and, second, provide a way for the user to call

our determineLocation method by clicking a button.

To take care of the first step, let’s create a fourth box in the sidebar of The HTML5

Herald, below the three advertisement boxes. We’ll wrap it inside an article ele-

ment, as we did for all the other ads. Inside it, we’ll create a div called mapDiv to

serve as a placeholder for the map. Let’s also add a heading to tell the user what

we’re trying to find out:

index.html (excerpt)

<article id="ad4">
 <div id="mapDiv">
 <h1>Where in the world are you?</h1>
 <form id="geoForm">
 <input type="button" id="geobutton" value="Tell us!">
 </form>
 </div>
</article>

We’ll also add a bit of styling to this new HTML:

css/styles.css (excerpt)

#ad4 h1 {
 font-size: 30px;
 font-family: AcknowledgementMedium;
 text-align: center;
}

#ad4 {
 height: 140px;
}

#mapDiv {

HTML5 & CSS3 for the Real World232

 height: 140px;
 width: 236px;
}

Figure 10.2 reveals what our new sidebar box looks like.

Figure 10.2. The new widget that lets users tell us their location

The second step is to call determineLocation when we hit the button. Using jQuery,

it’s a cinch to attach our function to the button’s click event:

js/geolocation.js (excerpt)

$('document').ready(function(){
 $('#geobutton').click(determineLocation);
});

Document Ready

In the above code snippet, the second line is the one that’s doing all the heavy

lifting. The $('document’).ready(function(){ … }); bit is just telling

jQuery not to run our code until the page has fully loaded. It’s necessary because,

otherwise, our code might go looking for the #geobutton element before that

element even exists, resulting in an error.

This is a very common pattern in JavaScript and jQuery. If you’re just getting

started with front-end programming, trust us, you’ll be seeing a lot of it.

With this code in place, determineLocation will be called whenever the button is

clicked.

233Geolocation, Offline Web Apps, and Web Storage

Now, let’s return to our displayOnMap function and deal with the nitty-gritty of

actually displaying the map. First, we’ll create a myOptions variable to store some

of the options that we’ll pass to the Google Map:

js/geolocation.js (excerpt)

function displayOnMap(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;

 // Let’s use Google Maps to display the location
 var myOptions = {
 zoom: 14,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

The first option we’ll set is the zoom level. For a complete map of the Earth, use

zoom level 0. The higher the zoom level, the closer you’ll be to the location, and

the smaller your frame (or viewport) will be. We’ll use zoom level 14 to zoom in to

street level.

The second option we’ll set is the kind of map we want to display. We can choose

from the following:

■ google.maps.MapTypeId.ROADMAP

■ google.maps.MapTypeId.SATELLITE

■ google.maps.MapTypeId.HYBRID

■ google.maps.MapTypeId.TERRAIN

If you’ve used the Google Maps website before, you’ll be familiar with these map

types. ROADMAP is the default, while SATELLITE shows you photographic tiles. HYBRID

is a combination of ROADMAP and SATELLITE, and TERRAIN will display elements

like elevation and water. We’ll use the default, ROADMAP.

Options in Google Maps

To learn more about Google Maps’ options, see the Map Options section of the

Google Maps tutorial.5

5 http://code.google.com/apis/maps/documentation/javascript/tutorial.html#MapOptions

HTML5 & CSS3 for the Real World234

Now that we’ve set our options, it’s time to create our map! We do this by creating

a new Google Maps object with new google.maps.Map().

The first parameter we pass is the result of the DOM method getElementById, which

we use to grab the placeholder div we put in our index.html page. Passing the results

of this method into the new Google Map means that the map created will be placed

inside that element.

The second parameter we pass is the collection of options we just set. We store the

resulting Google Maps object in a variable called map:

js/geolocation.js (excerpt)

function displayOnMap(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;

 // Let’s use Google Maps to display the location
 var myOptions = {
 zoom: 16,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

var map = new google.maps.Map(document.getElementById("mapDiv"),
➥myOptions);

Now that we have a map, let’s add a marker with the location we found for the user.

A marker is the little red drop we see on Google Maps that marks our location.

In order to create a new Google Maps marker object, we need to pass it another kind

of object: a google.maps.LatLng object—which is just a container for a latitude and

longitude. The first new line creates this by calling new google.maps.LatLng and

passing it the latitude and longitude variables as parameters.

Now that we have a google.maps.LatLng object, we can create a marker. We call

new google.maps.Marker, and then between two curly braces ({}) we set position

to the LatLng object, map to the map object, and title to "Hello World!". The title

is what will display when we hover our mouse over the marker:

235Geolocation, Offline Web Apps, and Web Storage

js/geolocation.js (excerpt)

function displayOnMap(position) {
 var latitude = position.coords.latitude;
 var longitude = position.coords.longitude;

 // Let’s use Google Maps to display the location
 var myOptions = {
 zoom: 16,
 mapTypeId: google.maps.MapTypeId.ROADMAP
 };

 var map = new google.maps.Map(document.getElementById("mapDiv"),
➥myOptions);

 var initialLocation = new google.maps.LatLng(latitude, longitude);

 var marker = new google.maps.Marker({
 position: initialLocation,
 map: map,
 title: "Hello World!"
 });
}

The final step is to center our map at the initial point, and we do this by calling

map.setCenter with the LatLng object:

map.setCenter(initialLocation);

You can find a plethora of documentation about Google Maps’ JavaScript API, version

3 in the online documentation.6

A Final Word on Older Mobile Devices
While the W3C Geolocation API is well-supported in current mobile device browsers,

you may need to account for older mobile devices, and support all the geolocation

APIs available. If this is the case, you should take a look at the open source library

geo-location-javascript.7

6 http://code.google.com/apis/maps/documentation/javascript/
7 http://code.google.com/p/geo-location-javascript/

HTML5 & CSS3 for the Real World236

Offline Web Applications
The visitors to our websites are increasingly on the go. With many using mobile

devices all the time, it’s unwise to assume that our visitors will always have a live

internet connection. Wouldn’t it be nice for our visitors to browse our site or use

our web application even if they’re offline? Thankfully, we can, with Offline Web

Applications.

HTML5’s Offline Web Applications allows us to interact with websites offline. This

initially might sound like a contradiction: a web application exists online by

definition. But there are an increasing number of web-based applications that could

benefit from being usable offline. You probably use a web-based email client, such

as Gmail; wouldn’t it be useful to be able to compose drafts in the app while you

were on the subway traveling to work? What about online to-do lists, contact man-

agers, or office applications? These are all examples of applications that benefit

from being online, but which we’d like to continue using if our internet connection

cuts out in a tunnel.

The Offline Web Applications spec is supported in:

■ Safari 4+
■ Chrome 5+
■ Firefox 3.5+
■ Opera 10.6+
■ iOS (Mobile Safari) 2.1+
■ Android 2.0+

It is currently unsupported in all versions of IE.

How It Works: the HTML5 Application Cache
Offline Web Applications work by leveraging what is known as the application

cache. The application cache can store your entire website offline: all the JavaScript,

HTML, and CSS, as well as all your images and resources.

This sounds great, but you may be wondering, what happens when there’s a change?

That’s the beauty of the application cache: your application is automatically updated

every time the user visits your page while online. If even one byte of data has

changed in one of your files, the application cache will reload that file.

237Geolocation, Offline Web Apps, and Web Storage

Application Cache versus Browser Cache

Browsers maintain their own caches in order to speed up the loading of websites;

however, these caches are only used to avoid having to reload a given file—and

not in the absence of an internet connection. Even all the files for a page are cached

by the browser. If you try to click on a link while your internet connection is

down, you’ll receive an error message.

With Offline Web Applications, we have the power to tell the browser which files

should be cached or fetched from the network, and what we should fall back to

in the event that caching fails. It gives us far more control about how our websites

are cached.

Setting Up Your Site to Work Offline
There are three steps to making an Offline Web Application:

1. Create a cache.manifest file.

2. Ensure that the manifest file is served with the correct content type.

3. Point all your HTML files to the cache manifest.

The HTML5 Herald isn’t really an application at all, so it’s not the sort of site for

which you’d want to provide offline functionality. Yet it’s simple enough to do,

and there’s no real downside, so we’ll go through the steps of making it available

offline to illustrate how it’s done.

The cache.manifest File
Despite its fancy name, the cache.manifest file is really nothing more than a text file

that adheres to a certain format.

Here’s an example of a simple cache.manifest file:

CACHE MANIFEST
CACHE:
index.html
photo.jpg
main.js

HTML5 & CSS3 for the Real World238

NETWORK:
*

The first line of the cache.manifest file must read CACHE MANIFEST. After this line,

we enter CACHE:, and then list all the files we’d like to store on our visitor’s hard

drive. This CACHE: section is also known as the explicit section (since we’re explicitly

telling the browser to cache these files).

Upon first visiting a page with a cache.manifest file, the visitor’s browser makes a

local copy of all files defined in the section. On subsequent visits, the browser will

load the local copies of the files.

After listing all the files we’d like to be stored offline, we can specify an online

whitelist. Here, we define any files that should never be stored offline—usually

because they require internet access for their content to be meaningful. For example,

you may have a PHP script, lastTenTweets.php, that grabs your last ten updates from

Twitter and displays them on an HTML page. The script would only be able to pull

your last ten tweets while online, so it makes no sense to store the page offline.

The first line of this section is the word NETWORK. Any files specified in the NETWORK

section will always be reloaded when the user is online, and will never be available

offline.

Here’s what that example online whitelist section would look like:

NETWORK
lastTenTweets.php

Unlike the explicit section, where we had to painstakingly list every file we wanted

to store offline, in the online whitelist section we can use a shortcut: the wildcard

*. This asterisk tells the browser that any files or URLs not mentioned in the explicit

section (and therefore not stored in the application cache) should be fetched from

the server.

Here’s an example of an online whitelist section that uses the wildcard:

NETWORK
*

239Geolocation, Offline Web Apps, and Web Storage

All Accounted For

Every URL in your website must be accounted for in the cache.manifest file, even

URLs that you simply link to. If it’s unaccounted for in the manifest file, that re-

source or URL will fail to load, even if you’re online. To avoid this problem, you

should use the * in the NETWORK section.

You can also add comments to your cache.manifest file by beginning a line with #.

Everything after the # will be ignored. Be careful to avoid having a comment as the

first line of your cache.manifest file—as we mentioned earlier, the first line must be

CACHE MANIFEST. You can, however, add comments to any other line.

It’s good practice to have a comment with the version number of your cache.manifest

file (we’ll see why a bit later on):

CACHE MANIFEST
version 0.1
CACHE:
index.html
photo.jpg
main.js

NETWORK:
*

Setting the Content Type on Your Server
The next step in making your site available offline is to ensure that your server is

configured to serve the manifest files correctly. This is done by setting the content

type provided by your server along with the cache.manifest file—we discussed content

type in the section called “MIME Types” in Chapter 5, so you can skip back there

now if you need a refresher.

Assuming you’re using the Apache web server, add the following to your .htaccess

file:

AddType text/cache-manifest .manifest

HTML5 & CSS3 for the Real World240

Pointing Your HTML to the Manifest File
The final step to making your website available offline is to point your HTML pages

to the manifest file. We do that by setting the manifest attribute on the html element

in each of our pages:

<!doctype html>
<html manifest="/cache.manifest">

Once we’ve done that, we’re finished! Our web page will now be available offline.

Better still, since any content that hasn’t changed since the page has been viewed

will be stored locally, our page will now load much faster—even when our visitors

are online.

Do This for Every Page

Each HTML page on your website must set the manifest attribute on the html

element. Ensure you do this, or your application might not be stored in the applic-

ation cache! While it’s true that you should only have one cache.manifest file for

the entire application, every HTML page of your web application needs <html

manifest="/cache.manifest">.

Getting Permission to Store the Site Offline
As with geolocation, browsers provide a permission prompt when a website is using

a cache.manifest file. Unlike geolocation, however, not all browsers are required to

do this. When present, the prompt asks the user to confirm that they’d like the

website to be available offline. Figure 10.3 shows the prompt’s appearance in Firefox.

Figure 10.3. Prompt to allow offline web application storage in the app cache

Going Offline to Test
Once we have completed all three steps to make an offline website, we can test out

our page by going offline. Firefox and Opera provide a menu option that lets you

work offline, so there’s no need to cut your internet connection. To do that in Firefox,

go to File > Work Offline, as shown in Figure 10.4.

241Geolocation, Offline Web Apps, and Web Storage

Figure 10.4. Testing offline web applications with Firefox’s Work Offline mode

While it’s convenient to go offline from the browser menu, it’s most ideal to turn

off your network connection altogether when testing Offline Web Applications.

Testing If the Application Cache Is Storing Your Site
Going offline is a good way to spot-check if our application cache is working, but

for more in-depth debugging, we’ll need a finer instrument. Fortunately, Chrome’s

Web Inspector tool has some great features for examining the application cache.

To check if our cache.manifest file has the correct content type, here are the steps to

follow in Chrome (http://html5laboratory.com/s/offline-application-cache.html has

a sample you can use to follow along):

1. Navigate to the URL of your home page in Chrome.

2. Open up the Web Inspector (click the wrench icon, then choose Tools > Developer

Tools).

3. Click on the Console tab, and look for any errors that may be relevant to the

cache.manifest file. If everything is working well, you should see a line that

starts with “Document loaded from Application Cache with manifest” and ends

HTML5 & CSS3 for the Real World242

with the path to your cache.manifest file. If you have any errors, they will show

up in the Console, so be on the lookout for errors or warnings here.

4. Click on the Resources tab.

5. Expand the Application Cache section. Your domain (www.html5laboratory.com

in our example) should be listed.

6. Click on your domain. Listed on the right should be all the resources stored in

Chrome’s application cache, as shown in Figure 10.5.

Figure 10.5. Viewing what is stored in Chrome’s Application Cache

Making The HTML5 Herald Available Offline
Now that we understand the ingredients required to make a website available offline,

let’s practice what we’ve learned on The HTML5 Herald. The first step is to create

our cache.manifest file. You can use a program like TextEdit on the Mac or Notepad

on Windows to create it, but you have to make sure the file is formatted as plain

text. If you’re using Windows, you’re in luck! As long as you use Notepad to create

this file, it will already be formatted as plain text. To format a file as plain text in

TextEdit on the Mac, choose Format > Make Plain Text. Start off your file by including

the line CACHE MANIFEST at the top.

Next, we need to add all the resources we’d like to be available offline in the explicit

section, which starts with the word CACHE:. We must list all our files in this section.

Since there’s nothing on the site that requires network access (well, there’s one

243Geolocation, Offline Web Apps, and Web Storage

thing, but we’ll get to that in a bit), we’ll just add an asterisk to the NETWORK section

to catch any files we may have missed in the explicit section.

Here’s an excerpt from our cache.manifest file:

cache.manifest (excerpt)

CACHE MANIFEST
#v1
index.html
register.html

js/hyphenator.js
js/modernizr-1.7.min.js
css/screen.css
css/styles.css
images/bg-bike.png
images/bg-form.png
⋮
fonts/League_Gothic-webfont.eot
fonts/League_Gothic-webfont.svg
⋮

NETWORK:
*

Once you’ve added all your resources to the file, save it as cache.manifest. Be sure

the extension is set to .manifest rather than .txt or something else.

Then, if you’re yet to do so already, configure your server to deliver your manifest

file with the appropriate content type.

The final step is to add the manifest attribute to the html element in our two HTML

pages.

We add the manifest attribute to both index.html and register.html, like this:

<!doctype html>
<html lang="en" manifest="cache.manifest">

And we’re set! We can now browse The HTML5 Herald at our leisure, whether we

have an internet connection or not.

HTML5 & CSS3 for the Real World244

Limits to Offline Web Application Storage
While the Offline Web Applications spec doesn’t define a specific storage limit for

the application cache, it does state that browsers should create and enforce a storage

limit. As a general rule, it’s a good idea to assume that you’ve no more than 5MB

of space to work with.

Several of the files we specified to be stored offline are video files. Depending on

how large your video files are, it mightn’t make any sense to have them available

offline, as they could exceed the browser’s storage limit.

What can we do in that case? We could place large video files in the NETWORK section,

but then our users will simply see an unpleasant error when the browser tries to

pull the video while offline.

A better alternative is to use an optional section of the cache.manifest file: the fallback

section.

The Fallback Section
This section allows us to define what the user will see should a resource fail to load.

In the case of The HTML5 Herald, rather than storing our video file offline and

placing it in the explicit section, it makes more sense to leverage the fallback section.

Each line in the fallback section requires two entries. The first is the file for which

you want to provide fallback content. You can specify either a specific file, or a

partial path like media/, which would refer to any file located in the media folder.

The second entry is what you would like to display in case the file specified fails

to load.

If the files are unable to be loaded, we can load a still image of the film’s first frame

instead. We’ll use the partial path media/ to define the fallback for both video files

at once:

cache.manifest (excerpt)

FALLBACK:
media/ images/ford-plane-still.png

245Geolocation, Offline Web Apps, and Web Storage

Of course, this is a bit redundant since, as you know from Chapter 5, the HTML5

video element already includes a fallback image to be displayed in case the video

fails to load.

So, for some more practice with this concept, let’s add another fallback. In the event

that any of our pages don’t load, it would be nice to define a fallback file that tells

you the site is offline. We can create a simple offline.html file:

offline.html

<!doctype html>
<html lang="en" manifest="/cache.manifest">
 <head>
 <meta charset="utf-8">
 <title>We are offline!</title>
 <link rel="stylesheet" href="css/styles.css?v=1.0"/>
 </head>
 <body>
 <header>
 <h1>Sorry, we are now offline!</h1>
 </header>
 </body>
</html>

Now, in the fallback section of our cache manifest, we can specify /, which will

match any page on the site. If any page fails to load or is absent from the application

cache, we’ll fall back to the offline.html page:

cache.manifest (excerpt)

FALLBACK:
media/ images/video-fallback.jpg
/ /offline.html

Safari Offline Application Cache Fails to Load Media Files

There is currently a bug in Safari 5 where media files such as .mp3 and .mp4 won’t

load from the offline application cache.

HTML5 & CSS3 for the Real World246

Refreshing the Cache
When using a cache manifest, the files you’ve specified in your explicit section will

be cached until further notice. This can cause headaches while developing: you

might change a file and be left scratching your head when you’re unable to see your

changes reflected on the page.

Even more importantly, once your files are sitting on a live website, you’ll want a

way to tell browsers that they need to update their application caches. This can be

done by modifying the cache.manifest file. When a browser loads a site for which it

already has a cache.manifest file, it will check to see if the manifest file has changed.

If it hasn’t, it will assume that its existing application cache is all it needs to run

the application, so it won’t download anything else. If the cache.manifest file has

changed, the browser will rebuild the application cache by re-downloading all the

specified files.

This is why we specified a version number in a comment in our cache.manifest. This

way, even if the list of files remains exactly the same, we have a way of indicating

to browsers that they should update their application cache; all we need to do is

increment the version number.

Caching the Cache
This might sound absurd, but your cache.manifest file may itself be cached by the

browser. Why, you may ask? Because of the way HTTP handles caching.

In order to speed up performance of web pages overall, caching is done by browsers,

according to rules set out via the HTTP specification.8 What do you need to know

about these rules? That the browser receives certain HTTP headers, including Expire

headers. These Expire headers tell the browser when a file should be expired from

the cache, and when it needs updating from the server.

If your server is providing the manifest file with instructions to cache it (as is often

the default for static files), the browser will happily use its cached version of the

file instead for fetching your updated version from the server. As a result, it won’t

re-download any of your application files because it thinks the manifest has not

changed!

8 http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

247Geolocation, Offline Web Apps, and Web Storage

If you’re finding that you’re unable to force the browser to refresh its application

cache, try clearing the regular browser cache. You could also change your server

settings to send explicit instructions not to cache the cache.manifest file.

If your site’s web server is running Apache, you can tell Apache not to cache the

cache.manifest file by adding the following to your .htaccess file:

.htaccess (excerpt)

<Files cache.manifest>
 ExpiresActive On
 ExpiresDefault "access"
</Files>

The <Files cache.manifest> tells Apache to only apply the rules that follow to

the cache.manifest file. The combination of ExpiresActive On and ExpiresDefault

"access" forces the web server to always expire the cache.manifest file from the

cache. The effect is, the cache.manifest file will never be cached by the browser.

Are we online?
Sometimes, you’ll need to know if your user is viewing the page offline or online.

For example, in a web mail app, saving a draft while online involves sending it to

the server to be saved in a database; but while offline, you would want to save that

information locally instead, and wait until the user is back online to send it to your

server.

The offline web apps API provides a few handy methods and events for managing

this. For The HTML5 Herald, you may have noticed that the page works well enough

while offline: you can navigate from the home page to the sign-up form, play the

video, and generally mess around without any difficulty. However, when you try

to use the geolocation widget we built earlier in this chapter, things don’t go so

well. This makes sense: without an internet connection, there’s no way for our page

to figure out your location (unless your device has a GPS), much less communicate

with Google Maps to retrieve the map.

Let’s look at how we can fix this. We would like to simply provide a message to

users indicating that this functionality is unavailable while offline. It’s actually very

easy; browsers that support Offline Web Applications give you access to the

HTML5 & CSS3 for the Real World248

navigator.onLine property, which will be true if the browser is online, and false

if it’s not. Here’s how we’d use it in our determineLocation method:

js/geolocation.js (excerpt)

function determineLocation(){
if (navigator.onLine) {

 // find location and call displayOnMap
 } else {
 alert("You must be online to use this feature.");
 }
}

Give it a spin. Using Firefox or Opera, first navigate to the page and click the button

to load the map. Once you’re satisfied that it works, choose Work Offline, reload

the page, and try clicking the button again. This time you’ll receive a helpful message

telling you that you’ll need to be online to access the map.

Some other features that might be of use to you include events that fire when the

browser goes online or offline. These events fire on the window element, and are

simply called window.online and window.offline. These can, for example, allow

your scripts to respond to a change in state by either synchronizing information up

to the server when you go online, or saving data locally when you drop offline.

There are a few other events and methods available to you for dealing with the ap-

plication cache, but the ones we’ve covered here are the most important. They’ll

suffice to have most websites and applications working offline without a hitch.

Further Reading
If you would like to learn more about Offline Web Applications, here are a few good

resources:

■ The WHATWG Offline Web Applications spec9

■ HTML5 Laboratory’s “Using the cache manifest to work offline”10

■ Opera’s Offline Application Developer’s Guide11

9 http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html#offline
10 http://www.html5laboratory.com/working-offline.php
11 http://dev.opera.com/articles/view/offline-applications-html5-appcache/

249Geolocation, Offline Web Apps, and Web Storage

■ Peter Lubbers’ Slide Share presentation on Offline Web Applications12

■ Mark Pilgrim’s walk-through of Offline Web Applications13

■ Safari’s Offline Applications Programming Guide14

Web Storage
The Web Storage API defines a standard for how we can save simple data locally

on a user’s computer or device. Before the emergence of the Web Storage standard,

web developers often stored user information in cookies, or by using plugins. With

Web Storage, we now have a standardized definition for how to store up to 5MB of

simple data created by our websites or web applications. Better still, Web Storage

already works in Internet Explorer 8.0!

Web Storage is a great complement to Offline Web Applications, because you need

somewhere to store all that user data while you’re working offline, and Web Storage

provides it.

Web Storage is supported in these browsers:

■ Safari 4+
■ Chrome 5+
■ Firefox 3.6+
■ Internet Explorer 8+
■ Opera 10.5+
■ iOS (Mobile Safari) 3.2+
■ Android 2.1+

Two Kinds of Storage
There are two kinds of HTML5 Web Storage: session storage and local storage.

12 http://www.slideshare.net/robinzimmermann/html5-offline-web-applications-silicon-valley-user-

group
13 http://diveintohtml5.org/offline.html
14 http://developer.apple.com/library/safari/#documentation/iPhone/Conceptual/SafariJSData-

baseGuide/OfflineApplicationCache/OfflineApplicationCache.html

HTML5 & CSS3 for the Real World250

Session Storage
Session storage lets us keep track of data specific to one window or tab. It allows

us to isolate information in each window. Even if the user is visiting the same site

in two windows, each window will have its own individual session storage object

and thus have separate, distinct data.

Session storage is not persistent—it only lasts for the duration of a user’s session

on a specific site (in other words, for the time that a browser window or tab is open

and viewing that site).

Local Storage
Unlike session storage, local storage allows us to save persistent data to the user’s

computer, via the browser. When a user revisits a site at a later date, any data saved

to local storage can be retrieved.

Consider shopping online: it’s not unusual for users to have the same site open in

multiple windows or tabs. For example, let’s say you’re shopping for shoes, and

you want to compare the prices and reviews of two brands. You may have one

window open for each brand, but regardless of what brand or style of shoe you’re

looking for, you’re always going to be searching for the same shoe size. It’s cumber-

some to have to repeat this part of your search in every new window.

Local storage can help. Rather than require the user to specify again the shoe size

they’re browsing for every time they launch a new window, we could store the in-

formation in local storage. That way, when the user opens a new window to browse

for another brand or style, the results would just present items available in their

shoe size. Furthermore, because we’re storing the information to the user’s computer,

we’ll be able to still access this information when they visit the site at a later date.

Web Storage is Browser-specific

One important point to remember when working with web storage is that if the

user visits your site in Safari, any data will be stored to Safari’s Web Storage store.

If the user then revisits your site in Chrome, the data that was saved via Safari

will be unavailable. Where the Web Storage data is stored depends on the browser,

and each browser’s storage is separate and independent.

251Geolocation, Offline Web Apps, and Web Storage

Local Storage versus Cookies

Local storage can at first glance seem to play a similar role to HTTP cookies, but

there are a few key differences. First of all, cookies are intended to be read on the

server side, whereas local storage is only available on the client side. If you need

your server-side code to react differently based on some saved values, cookies are

the way to go. Yet, cookies are sent along with each HTTP request to your server

—and this can result in significant overhead in terms of bandwidth. Local storage,

on the other hand, just sits on the user’s hard drive waiting to be read, so it costs

nothing to use.

In addition, we have significantly more size to store things using local storage.

With cookies, we could only store 4KB of information in total. With local storage,

the maximum is 5MB.

What Web Storage Data Looks Like
Data saved in Web Storage is stored as key/value pairs.

A few examples of simple key/value pairs:

■ key: name, value: Alexis
■ key: painter, value: Picasso
■ key: email, value: info@me.com

Getting and Setting Our Data
The methods most relevant to Web Storage are defined in an object called Storage.

Here is the complete definition of Storage:15

interface Storage {
 readonly attribute unsigned long length;
 DOMString key(in unsigned long index);
 getter any getItem(in DOMString key);
 setter creator void setItem(in DOMString key, in any value);
 deleter void removeItem(in DOMString key);
 void clear();
};

15 http://dev.w3.org/html5/webstorage/#the-storage-interface

HTML5 & CSS3 for the Real World252

The first methods we’ll discuss are getItem and setItem. We store a key/value pair

in either local or session storage by calling setItem, and we retrieve the value from

a key by calling getItem.

If we want to store the data in or retrieve it from session storage, we simply call

setItem or getItem on the sessionStorage global object. If we want to use local

storage instead, we’d call setItem or getItem on the localStorage global object.

In the examples to follow, we’ll be saving items to local storage.

When we use the setItem method, we must specify both the key we want to save

the value under, and the value itself. For example, if we’d like to save the value "6"

under the key "size", we’d call setItem like this:

localStorage.setItem("size", "6");

To retrieve the value we stored to the "size" key, we’d use the getItem method,

specifying only the key:

var size = localStorage.getItem("size");

Converting Stored Data
Web Storage stores all values as strings, so if you need to use them as anything else,

such as a number or even an object, you’ll need to convert them. To convert from

a string to a numeric value, we can use JavaScript’s parseInt method.

For our shoe size example, the value returned and stored in the size variable will

actually be the string "6", rather than the number 6. To convert it to a number, we’ll

use parseInt:

var size = parseInt(localStorage.getItem("size"));

The Shortcut Way
We can quite happily continue to use getItem(key) and setItem(key, value);

however, there’s a shortcut we can use to save and retrieve data.

Instead of localStorage.getItem(key), we can simply say localStorage[key].

For example, we could rewrite our retrieval of the shoe size like this:

253Geolocation, Offline Web Apps, and Web Storage

var size = localStorage["size"];

And instead of localStorage.setItem(key, value), we can say localStorage[key]

= value:

localStorage["size"] = 6;

There Are No Keys for That!

What happens if you request getItem on a key that was never saved? In this case,

getItem will return null.

Removing Items and Clearing Data
To remove a specific item from Web Storage, we can use the removeItem method.

We pass it the key we want to remove, and it will remove both the key and its value.

To remove all data stored by our site on a user’s computer, we can use the clear

method. This will delete all keys and all values stored for our domain.

Storage Limits
Internet Explorer “allows web applications to store nearly 10MB of user data.”16

Chrome, Safari, Firefox, and Opera all allow for up to 5MB of user data, which is

the amount suggested in the W3C spec. This number may evolve over time, as the

spec itself states: “A mostly arbitrary limit of five megabytes per origin is recommen-

ded. Implementation feedback is welcome and will be used to update this suggestion

in the future.” In addition, Opera allows users to configure how much disk space

is allocated to Web Storage.

Rather than worrying about how much storage each browser has, a better approach

is to test to see if the quota is exceeded before saving important data. The way you

test for this is by catching the QUOTA_EXCEEDED_ERR exception. Here’s one example

of how we can do this:

16 http://msdn.microsoft.com/en-us/library/cc197062%28VS.85%29.aspx

HTML5 & CSS3 for the Real World254

try
{
 sessionStorage["name"] = "Tabatha";
}
catch (exception)
{
 if (exception == QUOTA_EXCEEDED_ERR)
 {
 // we should tell the user their quota has been exceeded.
 }
}

Try/Catch and Exceptions

Sometimes, problems happen in our code. Designers of APIs know this, and in

order to mitigate the effects of these problems, they rely on exceptions. An excep-

tion occurs when something unexpected happens. The authors of APIs can define

specific exceptions to be thrown when particular kinds of problems occur. Then,

developers using those APIs can decide how they’d like to respond to a given type

of exception.

In order to respond to exceptions, we can wrap any code we think may throw an

exception in a try/catch block. This works the way you might expect: first, you

try to do something. If it fails with an exception, you can catch that exception and

attempt to recover gracefully.

To read more about try/catch blocks, see the “try…catch” article at the Mozilla

Developer Networks’ JavaScript Reference.17

Security Considerations
Web Storage has what’s known as origin-based security. What this means is that

data stored via Web Storage from a given domain is only accessible to pages from

that domain. It’s impossible to access any Web Storage data stored by a different

domain. For example, assume we control the domain html5isgreat.com, and we

store data created on that site using local storage. Another domain, say, google.com,

does not have access to any of the data stored by html5isgreat.com. Likewise,

html5isgreat.com has no access to any of the local storage data saved by google.com.

17 https://developer.mozilla.org/en/JavaScript/Reference/Statements/try...catch

255Geolocation, Offline Web Apps, and Web Storage

Adding Web Storage to The HTML5 Herald
We can use Web Storage to add a “Remember me on this computer” checkbox to

our registration page. This way, once the user has registered, any other forms they

may need to fill out on the site in the future would already have this information.

Let’s define a function that grabs the value of the form’s input elements for name

and email address, again using jQuery:

js/rememberMe.js (excerpt)

function saveData() {
 var email = $("#email").val();
 var name = $("#name").val();
}

Here we’re simply storing the value of the email and name form fields, in variables

called email and name, respectively.

Once we have retrieved the values in the two input elements, our next step is to

actually save these values to localStorage:

js/rememberMe.js (excerpt)

function saveData() {
 var email = $("#email").val();
 var name = $("#name").val();

 localStorage["name"] = name;
 localStorage["email"] = email;
}

Let’s also store the fact that the “Remember me” checkbox was checked by saving

this information to local storage as well:

js/rememberMe.js (excerpt)

function saveData() {
 var email = $("#email").val();
 var name = $("#name").val();

 localStorage["name"] = name;

HTML5 & CSS3 for the Real World256

 localStorage["email"] = email;
localStorage["remember"] = "true";

}

Now that we have a function to save the visitor’s name and email address, let’s call

it if they check the “Remember me on this computer” checkbox. We’ll do this by

watching for the change event on the checkbox—this event will fire whenever the

checkbox’s state changes, whether due to a click on it, a click on its label, or a key-

board press:

js/rememberMe.js (excerpt)

$('document').ready(function() {
$('#rememberme').change(saveData);

});

Next, let’s make sure the checkbox is actually checked, since the change event will

fire when the checkbox is unchecked as well:

js/rememberMe.js (excerpt)

function saveData() {
if ($("#rememberme").attr("checked"))

 {
 var email = $("#address").val();
 var name = $("#register-name").val();

 localStorage["name"] = name;
 localStorage["email"] = email;
 localStorage["remember"] = “true”;
}

}

This new line of code calls the jQuery method attr("checked"), which will return

true if the checkbox is checked, and false if not.

Finally, let’s ensure that Web Storage is present in our visitor’s browser:

257Geolocation, Offline Web Apps, and Web Storage

js/rememberMe.js (excerpt)

function saveData() {
if (Modernizr.localstorage) {

 if ($("#rememberme").attr("checked"))
 {
 var email = $("#address").val();
 var name = $("#register-name").val();

 localStorage["name"] = name;
 localStorage["email"] = email;
 localStorage["remember"] = “true”;
 }
 }
 else
 {
 // no support for Web Storage
 }
}

Now we’re saving our visitor’s name and email whenever the checkbox is checked,

so long as local storage is supported. The problem is, we have yet to actually do

anything with that data!

Let’s add another function to check and see if the name and email have been saved

and, if so, fill in the appropriate input elements with that information. Let’s also

precheck the “Remember me” checkbox if we’ve set the key "remember" to "true"

in local storage:

js/rememberMe.js (excerpt)

function loadStoredDetails() {
 var name = localStorage["name"];
 var email = localStorage["email"];
 var remember = localStorage["remember"];

 if (name) {
 $("#name").val(name);
 }
 if (email) {
 $("#email").val(name);
 }
 if (remember =="true") {

HTML5 & CSS3 for the Real World258

 $("#rememberme").attr("checked", "checked");
 }
}

Again, we want to check and make sure Web Storage is supported by the browser

before taking these actions:

js/rememberMe.js (excerpt)

function loadStoredDetails() {
if (Modernizr.localstorage) {

 var name = localStorage["name"];
 var email = localStorage["email"];
 var remember = localStorage["remember"];

 if (name) {
 $("#name").val(name);
 }
 if (email) {
 $("#email").val(name);
 }
 if (remember =="true") s{
 $("#rememberme").attr("checked", "checked");
 }
 } else {
 // no support for Web Storage
 }
}

As a final step, we call the loadStoredDetails function as soon as the page loads:

js/rememberMe.js (excerpt)

$('document').ready(function(){
loadStoredDetails();

 $('#rememberme').change(saveData);
});

Now, if the user has previously visited the page and checked “Remember me on

this computer,” their name and email will already be populated on subsequent

visits to the page.

259Geolocation, Offline Web Apps, and Web Storage

Viewing Our Web Storage Values with the Web
Inspector
We can use the Safari or Chrome Web Inspector to look at, or even change, the values

of our local storage. In Safari, we can view the stored data under the Storage tab, as

shown in Figure 10.6.

Figure 10.6. Viewing the values stored in local and session storage

In Chrome, the data can be viewed through the Resources tab.

Since the user owns any data saved to their hard drive, they can actually modify

the data in Web Storage, should they choose to do so.

Let’s try this ourselves. If you double-click on the “email” value in Web Inspector’s

Storage tab while viewing the register.html page, you can actually modify the value

stored there, as Figure 10.7 shows.

Figure 10.7. Modifying the values stored in Web Storage

HTML5 & CSS3 for the Real World260

There’s nothing we as developers can do to prevent this, since our users own the

data on their computers. We can and should, however, bear in mind that savvy

users have the ability to change their local storage data. In addition, the Web Storage

spec states that any dialogue in browsers asking users to clear their cookies should

now also allow them to clear their local storage. The message to retain is that we

can’t be 100% sure that the data we store is accurate, nor that it will always be there.

Thus, sensitive data should never be kept in local storage.

If you’d like to learn more about Web Storage, here are a few resources you can

consult:

■ The W3C’s Web Storage specification18

■ The Mozilla Developer Network’s Web Storage documentation19

■ Web Storage tutorial from IBM’s developerWorks20

Additional HTML5 APIs
There are a number of other APIs that are outside the scope of this book. However,

we’d like to mention them briefly here, to give you an overview of what they are,

as well as give you some resources should you want to learn more.

Web Workers
The new Web Workers API allows us to run large scripts in the background without

interrupting our main page or web app. Prior to Web Workers, it was impossible to

run multiple JavaScript scripts concurrently. Have you ever come across a dialogue

like the one shown in Figure 10.8?

Figure 10.8. A script that runs for too long freezes the whole page

18 http://dev.w3.org/html5/webstorage/#the-storage-interface
19 https://developer.mozilla.org/en/DOM/Storage
20 http://www.ibm.com/developerworks/xml/library/x-html5mobile2/

261Geolocation, Offline Web Apps, and Web Storage

With Web Workers, we should see less of these types of warnings. The new API

allows us to take scripts that take a long time to run, and require no user interaction,

and run them behind the scenes concurrently with any other scripts that do handle

user interaction. This concept is known as threading in programming, and Web

Workers brings us thread-like features. Each “worker” handles its own chunk of

script, without interfering with other workers or the rest of the page. To ensure the

workers stay in sync with each other, the API defines ways to pass messages from

one worker to another.

Web Workers are supported in:

■ Safari 4+
■ Chrome 5+
■ Firefox 3.5+
■ Opera 10.6+

Web Workers are currently unsupported in all versions of IE, iOS, and Android.

To learn more about Web Workers, see:

■ HTML5 Rocks, “The Basics of Web Workers”21

■ Mozilla Developer Network, “Using Web Workers”22

■ The W3C Web Workers’ specification23

Web Sockets
Web Sockets defines a “protocol for two-way communication with a remote host.”24

We’ll skip covering this topic for a couple of reasons. First, this API is of great use

to server-side developers, but is less relevant to front-end developers and designers.

Second, Web Sockets are still in development and have actually run into some se-

curity issues. Firefox 4 and Opera 11 have disabled Web Sockets by default due to

these issues.25

21 http://www.html5rocks.com/tutorials/workers/basics/
22 https://developer.mozilla.org/En/Using_web_workers
23 http://dev.w3.org/html5/workers/
24 http://www.w3.org/TR/websockets/
25 See http://hacks.mozilla.org/2010/12/websockets-disabled-in-firefox-4/ and

http://dev.opera.com/articles/view/introducing-web-sockets/ .

HTML5 & CSS3 for the Real World262

Web Sockets are supported in:

■ Safari 5+
■ Chrome 4+
■ Firefox 4+ (but disabled by default)
■ Opera 11+ (but disabled by default)
■ iOS (Mobile Safari) 4.2+

Web Sockets are currently unsupported in all versions of IE and on Android.

To learn more about Web Sockets, see the specification at the W3C:

http://dev.w3.org/html5/websockets/.

Web SQL and IndexedDB
There are times when the 5MB of storage and simplistic key/value pairs offered by

the Web Storage API just aren’t enough. If you need to store substantial amounts of

data, and more complex relationships between your data, you likely need a full-

fledged database to take care of your storage requirements.

Usually databases have been unique to the server side, but there are currently two

database solutions proposed to fill this need on the client side: Web SQL and the

Indexed Database API (called IndexedDB for short). The Web SQL specification is

no longer being updated, and though it currently looks like IndexedDB is gaining

steam, it remains to be seen which of these will become the future standard for

serious data storage in the browser.

Web SQL is supported in:

■ Safari 3.2+
■ Chrome
■ Opera 10.5+
■ iOS (Mobile Safari) 3.2+
■ Android 2.1+

Web SQL is currently unsupported in all versions of IE and Firefox. IndexedDB,

meanwhile, is currently only supported in Firefox 4.

If you would like to learn more, here are a few good resources:

263Geolocation, Offline Web Apps, and Web Storage

■ Mark Pilgrim’s summary of local storage in HTML526

■ The W3C’s IndexedDB specification27

■ The W3C’s Web SQL specification28

Back to the Drawing Board
In this chapter, we’ve had a glimpse into the new JavaScript APIs available in the

latest generation of browsers. While these might for some time lack full browser

support, tools like Modernizr can help us gradually incorporate them into our real-

world projects, bringing an extra dimension to our sites and applications.

In the next—and final—chapter, we’ll look at one more API, as well as two tech-

niques for creating complex graphics in the browser. These open up a lot of potential

avenues for creating web apps that leap off the page.

26 http://diveintohtml5.org/storage.html#future
27 http://dev.w3.org/2006/webapi/IndexedDB/
28 http://dev.w3.org/html5/webdatabase/

HTML5 & CSS3 for the Real World264

Chapter11
Canvas, SVG, and Drag and Drop
The HTML5 Herald is really becoming quite dynamic for an “ol’ timey” newspaper!

We’ve added a video with the new video element, made our site available offline,

added support to remember the user’s name and email address, and used geolocation

to detect the user’s location.

But there’s still more we can do to make it even more fun. First, the video is a little

at odds with the rest of the paper, since it’s in color. Second, the geolocation feature,

while fairly speedy, could use a progress indicator that lets the user know we haven’t

left them stranded. And finally, it would be nice to add just one more dynamic

piece to our page. We’ll take care of all three of these using the APIs we’ll discuss

in this chapter: Canvas, SVG, and Drag and Drop.

Canvas
With HTML5’s Canvas API, we’re no longer limited to drawing rectangles on our

sites. We can draw anything we can imagine, all through JavaScript. This can im-

prove the performance of our websites by avoiding the need to download images

off the network. With canvas, we can draw shapes and lines, arcs and text, gradients

and patterns. In addition, canvas gives us the power to manipulate pixels in images

and even video. We’ll start by introducing some of the basic drawing features of

canvas, but then move on to using its power to transform our video—taking our

modern-looking color video and converting it into conventional black and white to

match the overall look and feel of The HTML5 Herald.

The Canvas 2D Context spec is supported in:

■ Safari 2.0+
■ Chrome 3.0+
■ Firefox 3.0+
■ Internet Explorer 9.0+
■ Opera 10.0+
■ iOS (Mobile Safari) 1.0+
■ Android 1.0+

A Bit of Canvas History
Canvas was first developed by Apple. Since they already had a framework—Quartz

2D—for drawing in two-dimensional space, they went ahead and based many of

the concepts of HTML5’s canvas on that framework. It was then adopted by Mozilla

and Opera, and then standardized by the WHATWG (and subsequently picked up

by the W3C, along with the rest of HTML5).

There’s some good news here. If you aspire to do development for the iPhone or

iPad (referred to jointly as iOS), or for the Mac, what you learn in canvas should

help you understand some of the basics concepts of Quartz 2D. If you already develop

for the Mac or iOS and have worked with Quartz 2D, many canvas concepts will

look very familiar to you.

Creating a canvas Element
The first step to using canvas is to add a canvas element to the page:

canvas/demo1.html (excerpt)

<canvas>
Sorry! Your browser doesn’t support Canvas.
</canvas>

HTML5 & CSS3 for the Real World266

The text in between the canvas tags will only be shown if the canvas element is

not supported by the visitor’s browser.

Since drawing on the canvas is done using JavaScript, we’ll need a way to grab the

element from the DOM. We’ll do so by giving our canvas an id:

canvas/demo1.html (excerpt)

<canvas id="myCanvas">
Sorry! Your browser doesn’t support Canvas.
</canvas>

All drawing on the canvas happens via JavaScript, so let’s make sure we’re calling

a JavaScript function when our page is ready. We’ll add our jQuery document ready

check to a script element at the bottom of the page:

canvas/demo1.html (excerpt)

<script>
$('document').ready(function(){
 draw();
});
</script>

The canvas element takes both a width and height attribute, which should also be

set:

canvas/demo1.html (excerpt)

<canvas id="myCanvas" width="200" height="200">
Sorry! Your browser doesn’t support Canvas.
</canvas>

Finally, let’s add a border to our canvas to visually distinguish it on the page, using

some CSS. Canvas has no default styling, so it’s difficult to see where it is on the

page unless you give it some kind of border:

css/canvas.css (excerpt)

#myCanvas {
 border: dotted 2px black;
}

267Canvas, SVG, and Drag and Drop

Now that we’ve styled it, we can actually view the canvas container on our page

—Figure 11.1 shows what it looks like.

Figure 11.1. An empty canvas with a dotted border

Drawing on the Canvas
All drawing on the canvas happens via the Canvas JavaScript API. We’ve called a

function called draw() when our page is ready, so let’s go ahead and create that

function. We’ll add the function to our script element. The first step is to grab hold

of the canvas element on our page:

canvas/demo1.html (excerpt)

<script>
⋮
function draw() {
 var canvas = document.getElementById("myCanvas");
}
</script>

Getting the Context
Once we’ve stored our canvas element in a variable, we need to set up the canvas’s

context. The context is the place where your drawing is rendered. Currently, there’s

only wide support for drawing to a two-dimensional context. The W3C Canvas spec

defines the context in the CanvasRenderingContext2D object. Most methods we’ll

be using to draw onto the canvas are methods of this object.

HTML5 & CSS3 for the Real World268

We obtain our drawing context by calling the getContext method and passing it

the string "2d", since we’ll be drawing in two dimensions:

canvas/demo1.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
var context = canvas.getContext("2d");

}

The object that’s returned by getContext is a CanvasRenderingContext2D object.

In this chapter, we’ll refer to it as simply “the context object” for brevity.

WebGL

WebGL is a new API for 3D graphics being managed by the Khronos Group, with

a WebGL working group that includes Apple, Mozilla, Google, and Opera.

By combining WebGL with HTML5 Canvas, you can draw in three dimensions.

WebGL is currently supported in Firefox 4+, Chrome 8+, and Safari 6. To learn

more, see http://www.khronos.org/webgl/.

Filling Our Brush with Color
On a regular painting canvas, before you can begin, you must first saturate your

brush with paint. In the HTML5 Canvas, you must do the same, and we do so with

the strokeStyle or fillStyle properties. Both strokeStyle and fillStyle are

set on a context object. And both take one of three values: a string representing a

color, a CanvasGradient, or a CanvasPattern.

Let’s start by using a color string to style the stroke. You can think of the stroke as

the border of the shape you’re going to draw. To draw a rectangle with a red border,

we first define the stroke color:

canvas/demo1.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
context.strokeStyle = "red";

}

269Canvas, SVG, and Drag and Drop

To draw a rectangle with a red border and blue fill, we must also define the fill

color:

canvas/demo1.html (excerpt)

function draw() {
 ⋮
 context.fillStyle = "blue";
}

We can use any CSS color value to set the stroke or fill color, as long as we specify

it as a string: a hexadecimal value like #00FFFF, a color name like red or blue, or

an RGB value like rgb(0, 0, 255). We can even use RGBA to set a semitransparent

stroke or fill color. Let’s change our blue fill to blue with a 50% opacity:

canvas/demo1.html (excerpt)

function draw() {
 ⋮
 context.fillStyle = "rgba(0, 0, 255, 0.5)";
}

Drawing a Rectangle to the Canvas
Once we’ve defined the color of the stroke and the fill, we’re ready to actually start

drawing! Let’s begin by drawing a rectangle. We can do this by calling the fillRect

and strokeRectmethods. Both of these methods take the X and Y coordinates where

you want to begin drawing the fill or the stroke, and the width and the height of

the rectangle. We’ll add the stroke and fill 10 pixels from the top and 10 pixels from

the left of the canvas’s top left corner:

canvas/demo1.html (excerpt)

function draw() {
 ⋮
 context.fillRect(10,10,100,100);
 context.strokeRect(10,10,100,100);
}

This will create a semitransparent blue rectangle with a red border, like the one in

Figure 11.2.

HTML5 & CSS3 for the Real World270

Figure 11.2. A simple rectangle—not bad for our first canvas drawing!

The Canvas Coordinate System
As you may have gathered, the coordinate system in the canvas element is different

from the Cartesian coordinate system you learned in math class. In the canvas co-

ordinate system, the top-left corner is (0,0). If the canvas is 200 pixels by 200 pixels,

then the bottom-right corner is (200, 200), as Figure 11.3 illustrates.

Figure 11.3. The canvas coordinate system goes top-to-bottom and left-to-right

Variations on fillStyle
Instead of a color as our fillStyle, we could have also used a CanvasGradient or

a CanvasPattern.

271Canvas, SVG, and Drag and Drop

We create a CanvasPattern by calling the createPattern method. createPattern

takes two parameters: the image to create the pattern with, and how that image

should be repeated. The repeat value is a string, and the valid values are the same

as those in CSS: repeat, repeat-x, repeat-y, and no-repeat.

Instead of using a semitransparent blue fillStyle, let’s create a pattern using our

bicycle image. First, we must create an Image object, and set its src property to our

image:

canvas/demo2.html (excerpt)

function draw() {
 ⋮
 var img = new Image();
 img.src = "../images/bg-bike.png";
}

Setting the src attribute will tell the browser to start downloading the image—but

if we try to use it right away to create our gradient, we’ll run into some problems,

because the image will still be loading. So we’ll use the image’s onload property to

create our pattern once the image has been fully loaded by the browser:

canvas/demo2.html (excerpt)

function draw() {
 ⋮
 var img = new Image();
 img.src = "../images/bg-bike.png";

 img.onload = function() {

 };
}

In our onload event handler, we call createPattern, passing it the Image object

and the string repeat, so that our image repeats along both the X and Y axes. We

store the results of createPattern in the variable pattern, and set the fillStyle

to that variable:

HTML5 & CSS3 for the Real World272

canvas/demo2.html (excerpt)

function draw() {
 ⋮
 var img = new Image();
 img.src = "../images/bg-bike.png";
 img.onload = function() {
 pattern = context.createPattern(img, "repeat");
 context.fillStyle = pattern;
 context.fillRect(10,10,100,100);
 context.strokeRect(10,10,100,100);
 };
}

Anonymous Functions

You may be asking yourself, “what is that function statement that comes right

before the call to img.onload?” It’s an anonymous function. Anonymous functions

are much like regular functions except, as you might guess, they don’t have names.

When you see an anonymous function inside of an event listener, it means that

the anonymous function is being bound to that event. In other words, the code

inside that anonymous function will be run when the load event is fired.

Now, our rectangle’s fill is a pattern made up of our bicycle image, as Figure 11.4

shows.

Figure 11.4. A pattern fill on a canvas

273Canvas, SVG, and Drag and Drop

We can also create a CanvasGradient to use as our fillStyle. To create a

CanvasGradient, we call one of two methods: createLinearGradient(x0, y0,

x1, y1) or createRadialGradient(x0, y0, r0, x1, y1, r1); then we add one

or more color stops to the gradient.

createLinearGradient’s x0 and y0 represent the starting location of the gradient.

x1 and y1 represent the ending location.

To create a gradient that begins at the top of the canvas and blends the color down

to the bottom, we’d define our starting point at the origin (0,0), and our ending point

200 pixels down from there (0,200):

canvas/demo3.html (excerpt)

function draw() {
 ⋮
 var gradient = context.createLinearGradient(0, 0, 0, 200);
}

Next, we specify our color stops. The color stop method is simply

addColorStop(offset, color).

The offset is a value between 0 and 1. An offset of 0 is at the starting end of the

gradient, and an offset of 1 is at the other end. The color is a string value that, as

with the fillStyle, can be a color name, a hexadecimal color value, an rgb() value,

or an rgba() value.

To make a gradient that starts as blue and begins to blend into white halfway down

the gradient, we can specify a blue color stop with an offset of 0 and a purple

color stop with an offset of 1:

canvas/demo3.html (excerpt)

function draw() {
 ⋮
 var gradient = context.createLinearGradient(0, 0, 0, 200);
 gradient.addColorStop(0,"blue");
 gradient.addColorStop(1,"white");
 context.fillStyle = gradient;
 context.fillRect(10,10,100,100);
 context.strokeRect(10,10,100,100);
}

HTML5 & CSS3 for the Real World274

Figure 11.5 is the result of setting our CanvasGradient to be the fillStyle of our

rectangle.

Figure 11.5. Creating a linear gradient with Canvas

Drawing Other Shapes by Creating Paths
We’re not limited to drawing rectangles—we can draw any shape we can imagine!

Unlike rectangles and squares, however, there’s no built-in method for drawing

circles, or other shapes. To draw more interesting shapes, we must first lay out the

path of the shape.

Paths create a blueprint for your lines, arcs, and shapes, but paths are invisible until

you give them a stroke! When we drew rectangles, we first set the strokeStyle and

then called fillRect. With more complex shapes, we need to take three steps: lay

out the path, stroke the path, and fill the path. As with drawing rectangles, we can

just stroke the path, or fill the path—or we can do both.

Let’s start with a simple circle:

canvas/demo4.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

context.beginPath();
}

275Canvas, SVG, and Drag and Drop

Now we need to create an arc. An arc is a segment of a circle; there’s no method for

creating a circle, but we can simply draw a 360° arc. We create it using the arc

method:

canvas/demo4.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 context.beginPath();
context.arc(50, 50, 30, 0, Math.PI*2, true);

}

The arguments for the arc method are as follows: arc(x, y, radius, startAngle,

endAngle, anticlockwise).

x and y represent where on the canvas you want the arc’s path to begin. Imagine

this as the center of the circle that you’ll be drawing. radius is the distance from

the center to the edge of the circle.

startAngle and endAngle represent the start and end angles along the circle’s cir-

cumference that you want to draw. The units for the angles are in radians, and a

circle is 2π radians. We want to draw a complete circle, so we will use 2π for the

endAngle. In JavaScript, we can get this value by multiplying Math.PI by 2.

anticlockwise is an optional argument. If you wanted the arc to be drawn counter-

clockwise instead of clockwise, you would set this value to true. Since we are

drawing a full circle, it doesn’t matter which direction we draw it in, so we omit

this argument.

Our next step is to close the path, since we’ve now finished drawing our circle. We

do that with the closePath method:

canvas/demo4.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 context.beginPath();

HTML5 & CSS3 for the Real World276

 context.arc(100, 100, 50, 0, Math.PI*2, true);
context.closePath();

}

Now we have a path! But unless we stroke it or fill it, we’ll be unable to see it. Thus,

we must set a strokeStyle if we would like to give it a border, and we must set a

fillStyle if we’d like our circle to have a fill color. By default, the width of the

stroke is 1 pixel—this is stored in the lineWidth property of the context object.

Let’s make our border a bit bigger by setting the lineWidth to 3:

canvas/demo4.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 context.beginPath();
 context.arc(50, 50, 30, 0, Math.PI*2, true);
 context.closePath();
 context.strokeStyle = "red";
 context.fillStyle = "blue";
 context.lineWidth = 3;
}

Lastly, we fill and stroke the path. Note that this time, the method names are different

than those we used with our rectangle. To fill a path, you simply call fill, and to

stroke it you call stroke:

canvas/demo4.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");

 context.beginPath();
 context.arc(100, 100, 50, 0, Math.PI*2, true);
 context.closePath();
 context.strokeStyle = "red";
 context.fillStyle = "blue";
 context.lineWidth = 3;
 context.fill();
 context.stroke();
}

277Canvas, SVG, and Drag and Drop

Figure 11.6 shows the finished circle.

Figure 11.6. Our shiny new circle

To learn more about drawing shapes, the Mozilla Developer Network has an excellent

tutorial.1

Saving Canvas Drawings
If we create an image programmatically using the Canvas API, but decide we’d like

to have a local copy of our drawing, we can use the API’s toDataURL method to save

our drawing as a PNG or JPEG file.

To preserve the circle we just drew, we could add a new button to our HTML, and

open the canvas drawing as an image in a new window once the button is clicked.

To do that, let’s define a new JavaScript function:

canvas/demo5.html (excerpt)

function saveDrawing() {
 var canvas = document.getElementById("myCanvas");
 window.open(canvas.toDataURL("image/png"));
}

Next, we’ll add a button to our HTML and call our function when it’s clicked:

1 https://developer.mozilla.org/en/Canvas_tutorial/Drawing_shapes

HTML5 & CSS3 for the Real World278

canvas/demo5.html (excerpt)

<canvas id="myCanvas" width="200" height="200">
Sorry! Your browser doesn’t support Canvas.
</canvas>
<form>
 <input type="button" name="saveButton" id="saveButton"
➥value="Save Drawing">
</form>
⋮
<script>

$('document').ready(function(){
 draw();
 $('#saveButton').click(saveDrawing);
});
⋮

When the button is clicked, a new window or tab opens up with a PNG file loaded

into it, as shown in Figure 11.7.

Figure 11.7. Our image loads in a new window

279Canvas, SVG, and Drag and Drop

To learn more about saving our canvas drawings as files, see the W3C Canvas spec2

and the “Saving a canvas image to file” section of Mozilla’s Canvas code snippets.3

Drawing an Image to the Canvas
We can also draw images into the canvas element. In this example, we’ll be redraw-

ing into the canvas an image that already exists on the page.

For the sake of illustration, we’ll be using the HTML5 logo4 as our image for the

next few examples. Let’s start by adding it to our page in an img element:

canvas/demo6.html (excerpt)

<canvas id="myCanvas" width="200" height="200">
Your browser does not support canvas.
</canvas>

Next, after grabbing the canvas element and setting up the canvas’s context, we can

grab an image from our page via document.getElementById:

canvas/demo6.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 var image = document.getElementById("myImageElem");
}

We’ll use the same CSS we used before to make the canvas element visible:

css/canvas.css (excerpt)

#myCanvas {
 border: dotted 2px black;
}

Let’s modify it slightly to space out our canvas and our image:

2 http://www.w3.org/TR/html5/the-canvas-element.html#dom-canvas-todataurl
3 https://developer.mozilla.org/en/Code_snippets/Canvas
4 http://www.w3.org/html/logo/

HTML5 & CSS3 for the Real World280

css/canvas.css (excerpt)

#myCanvas {
 border: dotted 2px black;
margin: 0px 20px;

}

Figure 11.8 shows our empty canvas next to our image.

Figure 11.8. An image and a canvas sitting on a page, not doing much

We can use canvas’s drawImage method to redraw the image from our page into the

canvas:

canvas/demo6.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 var image = document.getElementById("myImageElem");
context.drawImage(image, 0, 0);

}

Because we’ve drawn the image to the (0,0) coordinate, the image appears in the

top-left of the canvas, as you can see in Figure 11.9.

281Canvas, SVG, and Drag and Drop

Figure 11.9. Redrawing an image inside a canvas

We could instead draw the image at the center of the canvas, by changing the X and

Y coordinates that we pass to drawImage. Since the image is 64 by 64 pixels, and

the canvas is 200 by 200 pixels, if we draw the image to (68, 68),5 the image will

be in the center of the canvas, as in Figure 11.10.

Figure 11.10. Displaying the image in the center of the canvas

Manipulating Images
Redrawing an image element from the page onto a canvas is fairly unexciting. It’s

really no different from using an img element! Where it does become interesting is

how we can manipulate an image after we’ve drawn it into the canvas.

5 Half of the canvas’s dimensions minus half of the image’s dimensions: (200/2) - (64/2) = 68.

HTML5 & CSS3 for the Real World282

Once we’ve drawn an image on the canvas, we can use the getImageData method

from the Canvas API to manipulate the pixels of that image. For example, if we

wanted to convert our logo from color to black and white, we can do so using

methods in the Canvas API.

getImageData will return an ImageData object, which contains three properties:

width, height, and data. The first two are self-explanatory, but it’s the last one,

data, that interests us.

data contains information about the pixels in the ImageData object, in the form of

an array. Each pixel on the canvas will have four values in the data array—these

correspond to that pixel’s R, G, B, and A values.

The getImageData method allows us to examine a small section of a canvas, so let’s

use this feature to become more familiar with the data array. getImageData takes

four parameters, corresponding to the four corners of a rectangular piece of the

canvas we’d like to inspect. If we call getImageData on a very small section of the

canvas, say context.getImageData(0, 0, 1, 1), we’d be examining just one pixel

(the rectangle from 0,0 to 1,1). The array that’s returned is four items long, as it

contains a red, green, blue, and alpha value for this lone pixel:

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 var image = document.getElementById("myImageElem");
 // draw the image at x=0 and y=0 on the canvas
 context.drawImage(image, 68, 68);
 var imageData = context.getImageData(0, 0, 1, 1);
 var pixelData = imageData.data;
 alert(pixelData.length);
}

The alert prompt confirms that the data array for a one-pixel section of the canvas

will have four values, as Figure 11.11 demonstrates.

283Canvas, SVG, and Drag and Drop

Figure 11.11. The data array for a single pixel contains four values

Converting an Image from Color to Black and White
Let’s look at how we’d go about using getImageData to convert a full color image

into black and white on a canvas. Assuming we’ve already placed an image onto

the canvas, as we did above, we can use a for loop to iterate through each pixel in

the image, and change it to grayscale.

First, we’ll call getImageData(0,0,200,200) to retrieve the entire canvas. Then,

we need to grab the red, green, and blue values of each pixel, which appear in the

array in that order:

canvas/demo7.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 var image = document.getElementById("myImageElem");
 context.drawImage(image, 68, 68);

 var imageData = context.getImageData(0, 0, 200, 200);
 var pixelData = imageData.data;

 for (var i = 0; i < pixelData.length; i += 4) {
 var red = pixelData[i];
 var green = pixelData[i + 1];
 var blue = pixelData[i + 2];
 }
}

HTML5 & CSS3 for the Real World284

Notice that our for loop is incrementing i by 4 instead of the usual 1. This is because

each pixel takes up four values in the imageData array—one number each for the

R, G, B, and A values.

Next, we must determine the grayscale value for the current pixel. It turns out that

there’s a mathematical formula for converting RGB to grayscale: you simply need

to multiply each of the red, green, and blue values by some specific numbers, seen

in the code block below:

canvas/demo7.html (excerpt)

⋮
for (var i = 0; i < pixelData.length; i += 4) {
 var red = pixelData[i];
 var green = pixelData[i + 1];
 var blue = pixelData[i + 2];

 var grayscale = red * 0.3 + green * 0.59 + blue * 0.11;
}
⋮

Now that we have the proper grayscale value, we’re going to store it back into the

red, green, and blue values in the data array:

canvas/demo7.html (excerpt)

⋮
for (var i = 0; i < pixelData.length; i += 4) {
 var red = pixelData[i];
 var green = pixelData[i + 1];
 var blue = pixelData[i + 2];

 var grayscale = red * 0.3 + green * 0.59 + blue * 0.11;

 pixelData[i] = grayscale;
 pixelData[i + 1] = grayscale;
 pixelData[i + 2] = grayscale;
}
⋮

So now we’ve modified our pixel data by individually converting each pixel to

grayscale. The final step? Putting the image data we’ve modified back into the canvas

285Canvas, SVG, and Drag and Drop

via a method called putImageData. This method does exactly what you’d expect:

it takes image data and writes it onto the canvas. Here’s the method in action:

canvas/demo7.html (excerpt)

function draw() {
 var canvas = document.getElementById("myCanvas");
 var context = canvas.getContext("2d");
 var image = document.getElementById("myImageElem");
 context.drawImage(image, 60, 60);

 var imageData = context.getImageData(0, 0, 200, 200);
 var pixelData = imageData.data;

 for (var i = 0; i < pixelData.length; i += 4) {
 var red = pixelData[i];
 var green = pixelData[i + 1];
 var blue = pixelData[i + 2];

 var grayscale = red * 0.3 + green * 0.59 + blue * 0.11;

 pixelData[i] = grayscale;
 pixelData[i + 1] = grayscale;
 pixelData[i + 2] = grayscale;
 }
context.putImageData(imageData, 0, 0);

}

With that, we’ve drawn a black-and-white version of the validation image into the

canvas.

Security Errors with getImageData
If you tried out this code in Chrome or Firefox, you may have noticed that it failed

to work—the image on the canvas is in color. That’s because in these two browsers,

if you try to convert an image on your desktop in an HTML file that’s also on your

desktop, an error will occur in getImageData. The error is a security error, though

in our case it’s an unnecessary one.

The true security issue that Chrome and Firefox are attempting to stop is a user on

one domain from manipulating images on another domain. For example, stopping

me from loading an official logo from http://google.com/ and then manipulating

the pixel data.

HTML5 & CSS3 for the Real World286

The W3C Canvas spec6 describes it this way:

Information leakage can occur if scripts from one origin can access

information (e.g. read pixels) from images from another origin (one

that isn’t the same). To mitigate this, canvas elements are defined

to have a flag indicating whether they are origin-clean.

This origin-clean flag will be set to false if the image you want to manipulate is

on a different domain from the JavaScript doing the manipulating. Unfortunately,

in Chrome and Firefox, this origin-clean flag is also set to false while you’re testing

from files on your hard drive—they’re seen as files living on different domains.

If you want to test pixel manipulation using canvas in Firefox or Chrome, you’ll

need to either test it on a web server running on your computer (http://localhost/),

or test it online on a real web server.

Manipulating Video with Canvas
We can take the code we’ve already written to convert a color image to black and

white, and enhance it to make our color video black and white, to match the old-

timey feel of The HTML5 Herald page. We’ll do this in a new, separate JavaScript

file called videoToBW.js, so that we can include it on the site’s home page.

The file begins, as always, by setting up the canvas and the context:

js/videoToBW.js (excerpt)

function makeVideoOldTimey ()
{
 var video = document.getElementById("video");
 var canvas = document.getElementById("canvasOverlay");
 var context = canvas.getContext("2d");
}

Next, we’ll add a new event listener to react to the play event firing on the video

element.

We want to call a draw function when the video begins playing. To do so, we’ll add

an event listener to our video element that responds to the play event:

6 http://dev.w3.org/html5/2dcontext/

287Canvas, SVG, and Drag and Drop

js/videoToBW.js (excerpt)

function makeVideoOldTimey ()
{
 var video = document.getElementById("video");
 var canvas = document.getElementById("canvasOverlay");
 var context = canvas.getContext("2d");

 video.addEventListener("play", function(){
 draw(video,context,canvas);
 },false);
}

The draw function will be called when the play event fires, and it will be passed

the video, context, and canvas objects. We’re using an anonymous function here

instead of a normal named function because we can’t actually pass parameters to

named functions when declaring them as event handlers.

Since we want to pass several parameters to the draw function—video, context,

and canvas—we must call it from inside an anonymous function.

Let’s look at the draw function:

js/videoToBW.js (excerpt)

function draw(video, context, canvas)
{
 if (video.paused || video.ended)
 {
 return false;
 }

 drawOneFrame(video, context, canvas);
}

Before doing anything else, we check to see if the video is paused or has ended, in

which case we’ll just cut the function short by returning false. Otherwise, we

continue onto the drawOneFrame function. The drawOneFrame function is nearly

identical to the code we had above for converting an image from color to black and

white, except that we’re drawing the video element onto the canvas instead of a

static image:

HTML5 & CSS3 for the Real World288

js/videoToBW.js (excerpt)

function drawOneFrame(video, context, canvas){
 // draw the video onto the canvas
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 var imageData = context.getImageData(0, 0, canvas.width,
➥canvas.height);
 var pixelData = imageData.data;
 // Loop through the red, green and blue pixels,
 // turning them grayscale
 for (var i = 0; i < pixelData.length; i += 4) {
 var red = pixelData[i];
 var green = pixelData[i + 1];
 var blue = pixelData[i + 2];
 //we'll ignore the alpha value, which is in position i+3

 var grayscale = red * 0.3 + green * 0.59 + blue * 0.11;

 pixelData[i] = grayscale;
 pixelData[i + 1] = grayscale;
 pixelData[i + 2] = grayscale;
 }

 imageData.data = pixelData;

 context.putImageData(imageData, 0, 0);
}

After we’ve drawn one frame, what’s the next step? We need to draw another frame!

The setTimeout method allows us to keep calling the draw function over and over

again, without pause: the final parameter is the value for delay—or how long, in

milliseconds, the browser should wait before calling the function. Because it’s set

to 0, we are essentially running draw continuously. This goes on until the video has

either ended, or been paused:

js/videoToBW.js (excerpt)

function draw(video, context, canvas) {
 if (video.paused || video.ended)
 {
 return false;
 }

289Canvas, SVG, and Drag and Drop

 var status = drawOneFrame(video, context, canvas);

 // Start over!
setTimeout(function(){ draw(video, context, canvas); }, 0);

}

The net result? Our color video of a plane taking off now plays in black and white!

Displaying Text on the Canvas
If we were to view The HTML5 Herald from a file on our computer, we’d encounter

security errors in Firefox and Chrome when trying to manipulate an entire video,

as we would a simple image.

We can add a bit of error-checking in order to make our video work anyway, even

if we view it from our local machine in Chrome or Firefox.

The first step is to add a try/catch block to catch the error:

js/videoToBW.js (excerpt)

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 var imageData = context.getImageData(0, 0, canvas.width,
➥canvas.height);
 var pixelData = imageData.data;
 for (var i = 0; i < pixelData.length; i += 4) {
 var red = pixelData[i];
 var green = pixelData[i + 1];
 var blue = pixelData[i + 2];
 var grayscale = red * 0.3 + green * 0.59 + blue * 0.11;
 pixelData[i] = grayscale;
 pixelData[i + 1] = grayscale;
 pixelData[i + 2] = grayscale;
 }

 imageData.data = pixelData;
 context.putImageData(imageData, 0, 0);
 }
 catch (err) {

HTML5 & CSS3 for the Real World290

 // error handling code will go here
 }
}

When an error occurs in trying to call getImageData, it would be nice to give some

sort of message to the user in order to give them a hint about what may be going

wrong. We’ll do just that, using the fillText method of the Canvas API.

Before we write any text to the canvas, we should clear what’s already drawn to it.

We’ve already drawn the first frame of the video into the canvas using the call to

drawImage. How can we clear that out?

It turns out that if we reset the width or height on the canvas, the canvas will be

cleared. So, let’s reset the width:

js/videoToBW.js (excerpt)

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 ⋮
 }
 catch (err) {
 canvas.width = canvas.width;
 }
}

Next, let’s change the background color from black to transparent, since the canvas

element is positioned on top of the video:

js/videoToBW.js (excerpt)

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 ⋮
 }
 catch (err) {
 canvas.width = canvas.width;

291Canvas, SVG, and Drag and Drop

 canvas.style.backgroundColor = "transparent";
 }
}

Before we can draw any text to the now transparent canvas, we first must set up

the style of our text—similar to what we did with paths earlier. We do that with the

fillStyle and textAlign methods:

js/videoToBW.js (excerpt)

videoToBW.js (excerpt)
function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 ⋮
 }
 catch (err) {
 canvas.width = canvas.width;
 canvas.style.backgroundColor = "transparent";
 context.fillStyle = "white";
 context.textAlign = "left";
 }
}

We must also set the font we’d like to use. The font property of the context object

works the same way the CSS font property does. We’ll specify a font size of 18px

and a comma-separated list of font families:

js/videoToBW.js (excerpt)

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 ⋮
 }
 catch (err) {
 canvas.width = canvas.width;
 canvas.style.backgroundColor = "transparent";
 context.fillStyle = "white";
 context.textAlign = "left";

HTML5 & CSS3 for the Real World292

 context.font = "18px LeagueGothic, Tahoma, Geneva, sans-serif";
 }
}

Notice that we’re using League Gothic; any fonts you’ve included with @font-face

are also available for you to use on your canvas. Finally, we draw the text. We use

a method of the context object called fillText, which takes the text to be drawn

and the (x,y) coordinates where it should be placed. Since we want to write out a

fairly long message, we’ll split it up into several sections, placing each one on the

canvas separately:

js/videoToBW.js (excerpt)

function drawOneFrame(video, context, canvas){
 context.drawImage(video, 0, 0, canvas.width, canvas.height);

 try {
 ⋮
 }
 catch (err) {
 canvas.width = canvas.width;
 canvas.style.backgroundColor = "transparent";
 context.fillStyle = "white";
 context.textAlign = "left";
 context.font = "18px LeagueGothic, Tahoma, Geneva, sans-serif";
 context.fillText("There was an error rendering ", 10, 20);
 context.fillText("the video to the canvas.", 10, 40);
 context.fillText("Perhaps you are viewing this page from", 10,
➥70);
 context.fillText("a file on your computer?", 10, 90);
 context.fillText("Try viewing this page online instead.", 10,
➥130);

 return false;
 }
}

As a last step, we return false. This lets us check in the draw function whether an

exception was thrown. If it was, we want to stop calling drawOneFrame for each

video frame, so we exit the draw function:

293Canvas, SVG, and Drag and Drop

js/videoToBW.js (excerpt)

function draw(video, context, canvas) {
 if (video.paused || video.ended)
 {
 return false;
 }

 var status = drawOneFrame(video, context, canvas);

 if (status == false)
 {
 return false;
 }
 // Start over!
 setTimeout(function(){ draw(video, context, canvas); }, 0);
}

Accessibility Concerns
A major downside of canvas in its current form is its lack of accessibility. The canvas

doesn’t create a DOM node, is not a text-based format, and is thus essentially invis-

ible to tools like screen readers. For example, even though we wrote text to the

canvas in our last example, that text is essentially no more than a bunch of pixels,

and is therefore inaccessible.

The HTML5 community is aware of these failings, and while no solution has been

finalized, debates on how canvas could be changed to make it accessible are under-

way. You can read a compilation of the arguments and currently proposed solutions

on the W3C’s wiki page.7

Further Reading
To read more about canvas and the Canvas API, here are a couple of good resources:

■ “HTML5 canvas—the basics” at Dev.Opera8

■ Safari’s HTML5 Canvas Guide9

7 http://www.w3.org/html/wg/wiki/AddedElementCanvas
8 http://dev.opera.com/articles/view/html-5-canvas-the-basics/
9 http://developer.apple.com/library/safari/#documentation/AudioVideo/Conceptual/HTML-canvas-

guide/Introduction/Introduction.html

HTML5 & CSS3 for the Real World294

SVG
We already learned a bit about SVG back in Chapter 7, when we used SVG files as

a fallback for gradients in IE9 and older versions of Opera. In this chapter, we’ll

dive into SVG in more detail and learn how to use it in other ways.

First, a quick refresher: SVG stands for Scalable Vector Graphics. SVG is a specific

file format that allows you to describe vector graphics using XML. A major selling

point of vector graphics in general is that, unlike bitmap images (such as GIF, JPEG,

PNG, and TIFF), vector images preserve their shape even as you blow them up or

shrink them down. We can use SVG to do many of the same tasks we can do with

canvas, including drawing paths, shapes, text, gradients, and patterns. There are

also some very useful open source tools relevant to SVG, some of which we will

leverage in order to add a spinning progress indicator to The HTML5 Herald’s geo-

location widget.

Basic SVG, including using SVG in an HTML img element, is supported in:

■ Safari 3.2+
■ Chrome 6.0+
■ Firefox 4.0+
■ Internet Explorer 9.0+
■ Opera 10.5+

There is currently no support for SVG in Android’s browser.

XML

XML stands for eXtensible Markup Language. Like HTML, it’s a markup language,

which means it’s a system meant to annotate text. Just as we can use HTML tags

to wrap our content and give it meaning, so can XML tags be used to describe the

content of files.

Unlike canvas, images created with SVG are available via the DOM. This allows

technologies like screen readers to see what’s present in an SVG object through its

DOM node—and it also allows you to inspect SVG using your browser’s developer

tools. Since SVG is an XML file format, it’s also more accessible to search engines

than canvas.

295Canvas, SVG, and Drag and Drop

Drawing in SVG
Drawing a circle in SVG is arguably easier than drawing a circle with canvas. Here’s

how we do it:

images/circle.svg

<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 400 400">
 <circle cx="50" cy="50" r="25" fill="red"/>
</svg>

The viewBox attribute defines the starting location, width, and height of the SVG

image.

The circle element defines a circle, with cx and cy the X and Y coordinates of the

center of the circle. The radius is represented by r, while fill is for the fill style.

To view an SVG file, you simply open it via the File menu in any browser that sup-

ports SVG. Figure 11.12 shows what our circle looks like.

Figure 11.12. A circle drawn using SVG

We can also draw rectangles in SVG, and add a stroke to them, as we did with

canvas.

This time, let’s take advantage of SVG being an XML—and thus text-based—file

format, and utilize the desc tag, which allows us to provide a description for the

image we’re going to draw:

HTML5 & CSS3 for the Real World296

images/rectangle.svg (excerpt)

<svg xmlns="http://www.w3.org/2000/svg" viewbox="0 0 400 400">
 <desc>Drawing a rectangle</desc>
</svg>

Next, we populate the rect tag with a number of attributes that describe the rect-

angle. This includes the X and Y coordinate where the rectangle should be drawn,

the width and height of the rectangle, the fill, the stroke, and the width of the stroke:

images/rectangle.svg

<svg xmlns="http://www.w3.org/2000/svg" viewbox="0 0 400 400">
 <desc>Drawing a rectangle</desc>
<rect x="10" y="10" width="100" height="100"

 fill="blue" stroke="red" stroke-width="3" />
</svg>

Figure 11.13 shows our what our rectangle looks like.

Figure 11.13. A rectangle drawn with SVG

Unfortunately, it’s not always this easy. If you want to create complex shapes, the

code begins to look a little scary. Figure 11.14 shows a fairly simple-looking star

image from openclipart.org:

297Canvas, SVG, and Drag and Drop

Figure 11.14. A line drawing of a star

And here are just the first few lines of SVG for this image:

<svg xmlns="http://www.w3.org/2000/svg"
 width="122.88545" height="114.88568">
<g
 inkscape:label="Calque 1"
 inkscape:groupmode="layer"
 id="layer1"
 transform="translate(-242.42282,-449.03699)">
 <g
 transform="matrix(0.72428496,0,0,0.72428496,119.87078,183.8127)"
 id="g7153">
 <path
 style="fill:#ffffff;fill-opacity:1;stroke:#000000;stroke-width
➥:2.761343;stroke-linecap:round;stroke-linejoin:round;stroke-miterl
➥imit:4;stroke-opacity:1;stroke-dasharray:none;stroke-dashoffset:0"
 d="m 249.28667,389.00422 -9.7738,30.15957 -31.91999,7.5995 c -
➥2.74681,1.46591 -5.51239,2.92436 -1.69852,6.99979 l 30.15935,12.57
➥796 -11.80876,32.07362 c -1.56949,4.62283 -0.21957,6.36158 4.24212
➥,3.35419 l 26.59198,-24.55691 30.9576,17.75909 c 3.83318,2.65893 6
➥.12086,0.80055 5.36349,-3.57143 l -12.10702,-34.11764 22.72561,-13
➥.7066 c 2.32805,-1.03398 5.8555,-6.16054 -0.46651,-6.46042 l -33.5
➥0135,-0.66887 -11.69597,-27.26175 c -2.04282,-3.50583 -4.06602,-7.
➥22748 -7.06823,-0.1801 z"
 id="path7155"
 inkscape:connector-curvature="0"
 sodipodi:nodetypes="cccccccccccccccc" />
⋮

Eek!

HTML5 & CSS3 for the Real World298

Using Inkscape to Create SVG Images
To save ourselves some work (and sanity), instead of creating SVG images by hand,

we can use an image editor to help. One open source tool that you can use to make

SVG images is Inkscape. Inkscape is an open source vector graphics editor that

outputs SVG. Inkscape is available for download at http://inkscape.org/.

For our progress-indicating spinner, instead of starting from scratch, we’ve searched

the public domain to find a good image from which to begin. A good resource to

know about for public domain images is http://openclipart.org, where you can find

images that are copyright-free and free to use. The images have been donated by

the creators for use in the public domain, even for commercial purposes, without

the need to ask for permission.

We will be using an image of three arrows as the basis of our progress spinner,

shown in Figure 11.15. The original can be found at openclipart.org.10

Figure 11.15. The image we’ll be using for our progress indicator

SVG Filters
To make our progress spinner match our page a bit better, we can use a filter in

Inkscape to make it black and white. Start by opening the file in Inkscape, then

choose Filters > Color > Moonarize.

You may notice if you test out The HTML5 Herald in Safari that our black-and-white

spinner is still ... in color. That’s because SVG filters are a specific feature of SVG

yet to be implemented in Safari 5, though it will be part of Safari 6. SVG filters are

10 http://www.openclipart.org/people/JoBrad/arrows_3_circular_interlocking.svg

299Canvas, SVG, and Drag and Drop

supported in Firefox, Chrome, and Opera. They’re currently unsupported in all

versions of Safari, Internet Explorer, the Android browser, and iOS.

A safer approach would be to avoid using filters, and instead simply modify the

color of the original image.

We can do this in Inkscape by selecting the three arrows in the spinner.svg image,

and then selecting Object > Fill and Stroke. The Fill and Stroke menu will appear on

the right-hand side of the screen, as seen in Figure 11.16.

Figure 11.16. Modifying color using Fill and Stroke

From this menu, we can choose to edit the existing linear gradient by clicking the

Edit button. We can then change the Red, Green, and Blue values all to 0 to make our

image black and white.

We’ve saved the resulting SVG as spinnerBW.svg.

HTML5 & CSS3 for the Real World300

Using the Raphaël Library
Raphaël11 is an open source JavaScript library that wraps around SVG. It makes

drawing and animating with SVG much easier than with SVG alone.

Drawing an Image to Raphaël’s Container
Much as with canvas, you can also draw images into a container you create using

Raphaël.

Let’s add a div to our main index file, which we’ll use as the container for the SVG

elements we’ll create using Raphaël. We’ve named this div spinner:

css/styles.css (excerpt)

<article id="ad4">
 <div id="mapDiv">
 <h1 id="geoHeading">Where in the world are you?</h1>
 <form id="geoForm">
 <input type="button" id="geobutton" value="Tell us!">
 </form>

<div id="spinner"></div>
 </div>
</article>

We have styled this div to be placed in the center of the parent mapDiv using the

following CSS:

css/styles.css (excerpt)

#spinner {
 position:absolute;
 top:8px;
 left:55px;
}

Now, in our geolocation JavaScript, let’s put the spinner in place while we’re

fetching the map. The first step is to turn our div into a Raphaël container. This is

as simple as calling the Raphael method, and passing in the element we’d like to

use, along with a width and height:

11 http://raphaeljs.com/

301Canvas, SVG, and Drag and Drop

js/geolocation.js (excerpt)

function determineLocation(){
 if (navigator.onLine) {
 if (Modernizr.geolocation) {
 navigator.geolocation.getCurrentPosition(displayOnMap);

var container = Raphael(document.getElementById("spinner"),
➥125, 125);

Next, we draw the spinner SVG image into the newly created container with the

Raphaël method image, which is called on a Raphaël container object. This method

takes the path to the image, the starting coordinates where the image should be

drawn, and the width and height of the image:

js/geolocation.js (excerpt)

var container = Raphael(document.getElementById("spinner"),125,125);
var spinner = container.image("images/spinnerBW.svg",0,0,125,125);

With this, our spinner image will appear when we click on the button in the geo-

location widget.

Rotating a Spinner with Raphaël
Now that we have our container and the spinner SVG image drawn into it, we want

to animate the image to make it spin. Raphaël has animation features built in with

the animate method. Before we can use this method, though, we first need to tell

it which attribute to animate. Since we want to rotate our image, we’ll create an

object that specifies how many degrees of rotation we want.

We create a new object attrsToAnimate, specifying that we want to animate the

rotation, and we want to rotate by 720 degrees (two full turns):

js/geolocation.js (excerpt)

var container = Raphael(document.getElementById("spinner"),125,125);
var spinner = container.image("images/spinnerBW.png",0,0,125,125);
var attrsToAnimate = { rotation: "720" };

HTML5 & CSS3 for the Real World302

The final step is to call the animate method, and specify how long the animation

should last. In our case, we will let it run for a maximum of sixty seconds. Since

animate takes its values in milliseconds, we’ll pass it 60000:

js/geolocation.js (excerpt)

var container = Raphael(document.getElementById("spinner"),125,125);
var spinner = container.image("images/spinnerBW.png",0,0,125,125);
var attrsToAnimate = { rotation: "720" };
spinner.animate(attrsToAnimate, 60000);

That’s great! We now have a spinning progress indicator to keep our visitors in the

know while our map is loading. There’s still one problem though: it remains after

the map has loaded. We can fix this by adding one line to the beginning of the ex-

isting displayOnMap function:

js/geolocation.js (excerpt)

function displayOnMap(position){
document.getElementById("spinner").style.visibility = "hidden";

This line sets the visibility property of the spinner element to hidden, effectively

hiding the spinner div and the SVG image we’ve loaded into it.

Canvas versus SVG
Now that we’ve learned about canvas and SVG, you may be asking yourself, which

is the right one to use? The answer is: it depends on what you’re doing.

Both canvas and SVG allow you to draw custom shapes, paths, and fonts. But what’s

unique about each?

Canvas allows for pixel manipulation, as we saw when we turned our video from

color to black and white. One downside of canvas is that it operates in what’s known

as immediate mode. This means that if you ever want to add more to the canvas,

you can’t simply add to what’s already there. Everything must be redrawn from

scratch each time you want to change what’s on the canvas. There’s also no access

to what’s drawn on the canvas via the DOM. However, canvas does allow you to

save the images you create to a PNG or JPEG file.

303Canvas, SVG, and Drag and Drop

By contrast, what you draw to SVG is accessible via the DOM, because its mode is

retained mode—the structure of the image is preserved in the XML document that

describes it. SVG also has, at this time, a more complete set of tools to help you

work with it, like the Raphaël library and Inkscape. However, since SVG is a file

format—rather than a set of methods that allows you to dynamically draw on a

surface—you can’t manipulate SVG images the way you can manipulate pixels on

canvas. It would have been impossible, for example, to use SVG to convert our

color video to black and white as we did with canvas.

In summary, if you need to paint pixels to the screen, and have no concerns about

the ability to retrieve and modify your shapes, canvas is probably the better choice.

If, on the other hand, you need to be able to access and change specific aspects of

your graphics, SVG might be more appropriate.

It’s also worth noting that neither technology is appropriate for static images—at

least not while browser support remains a stumbling block. In this chapter, we’ve

made use of canvas and SVG for a number of such static examples, which is fine

for the purpose of demonstrating what they can do. But in the real world, they’re

only really appropriate for cases where user interaction defines what’s going to be

drawn.

Drag and Drop
In order to add one final dynamic effect to our site, we’re going to examine the new

Drag and Drop API. This API allows us to specify that certain elements are draggable,

and then specify what should happen when these draggable elements are dragged

over or dropped onto other elements on the page.

Drag and Drop is supported in:

■ Safari 3.2+
■ Chrome 6.0+
■ Firefox 3.5+ (there is an older API that was supported in Firefox 3.0)
■ Internet Explorer 7.0+
■ Android 2.1+

HTML5 & CSS3 for the Real World304

There is currently no support for Drag and Drop in Opera. The API is unsupported

by design in iOS, as Apple directs you to use the DOM Touch API12 instead.

There are two major kinds of functionality you can implement with Drag and Drop:

dragging files from your computer into a web page—in combination with the File

API—or dragging elements into other elements on the same page. In this chapter,

we’ll focus on the latter.

Drag and Drop and the File API

If you’d like to learn more about how to combine Drag and Drop with the File

API, in order to let users drag files from their desktop onto your websites, an ex-

cellent guide can be found at the Mozilla Developer Network.13

The File API is currently only supported in Firefox 3.6+ and Chrome.

There are several steps to adding Drag and Drop to your page:

1. Set the draggable attribute on any HTML elements you’d like to be draggable.

2. Add an event listener for the dragstart event on any draggable HTML elements.

3. Add an event listener for the dragover and drop events on any elements you

want to have accept dropped items.

Feeding the WAI-ARIA Cat
In order to add a bit of fun and frivolity to our page, let’s add a few images of mice,

so that we can then drag them onto our cat image and watch the cat react and devour

them. Before you start worrying (or call the SPCA), rest assured that we mean, of

course, computer mice. We’ll use another image from OpenClipArt for our mice.14

The first step is to add these new images to our index.html file. We’ll give each mouse

image an id as well:

12 http://developer.apple.com/library/safari/#documentation/AppleApplications/Reference/SafariWeb-

Content/HandlingEvents/HandlingEvents.html
13 https://developer.mozilla.org/en/Using_files_from_web_applications
14 http://www.openclipart.org/detail/111289

305Canvas, SVG, and Drag and Drop

js/dragDrop.js (excerpt)

<article id="ac3">
 <hgroup>
 <h1>Wai-Aria? HAHA!</h1>
 <h2>Form Accessibility</h2>
 </hgroup>

 <div class="content">
 <p id=”mouseContainer”>
 <img src="images/computer-mouse-pic.svg" width="30"
➥alt="mouse treat" id="mouse1">
 <img src="images/computer-mouse-pic.svg" width="30"
➥alt="mouse treat" id="mouse2">
 <img src="images/computer-mouse-pic.svg" width="30"
➥alt="mouse treat" id="mouse3">
 </p>
⋮

Figure 11.17 shows our images in their initial state.

Figure 11.17. Three little mice, ready to be fed to the WAI-ARIA cat

Making Elements Draggable
The next step is to make our images draggable. In order to do that, we add the

draggable attribute to them, and set the value to true:

HTML5 & CSS3 for the Real World306

js/dragDrop.js (excerpt)

<img src="images/computer-mouse-pic.svg" width="30"
➥alt="mouse treat" id="mouse1" draggable="true">
<img src="images/computer-mouse-pic.svg" width="30"
➥alt="mouse treat" id="mouse2" draggable="true">
<img src="images/computer-mouse-pic.svg" width="30"
➥alt="mouse treat" id="mouse3" draggable="true">

draggable Must Be Set

Note that draggable is not a Boolean attribute; you have to explicitly set it to

true.

Now that we have set draggable to true, we have to set an event listener for the

dragstart event on each image. We’ll use jQuery’s bind method to attach the event

listener:

js/dragDrop.js (excerpt)

$('document').ready(function() {
 $('#mouseContainer img').bind('dragstart', function(event) {
 // handle the dragstart event
 });
});

The DataTransfer Object
DataTransfer objects are one of the new objects outlined in the Drag and Drop API.

These objects allow us to set and get data about the objects that are being dragged.

Specifically, DataTransfer lets us define two pieces of information:

1. the type of data we’re saving about the draggable element

2. the value of the data itself

In the case of our draggable mouse images, we want to be able to store the id of

these images, so we know which image is being dragged around.

To do this, we first need to tell DataTransfer that we want to save some plain text

by passing in the string text/plain. Then we give it the id of our mouse image:

307Canvas, SVG, and Drag and Drop

js/dragDrop.js (excerpt)

$('#mouseContainer img').bind('dragstart', function(event) {
event.originalEvent.dataTransfer.setData("text/plain",

➥event.target.getAttribute('id'));
});

When an element is dragged, we save the id of the element in the DataTransfer

object, to be used again once the element is dropped. The target property of a

dragstart event will be the element that’s being dragged.

dataTransfer and jQuery

The jQuery library’s Event object only gives you access to properties it knows

about. This causes problems when you’re using new native events like

DataTransfer; trying to access the dataTransfer property of a jQuery event

will result in an error. However, you can always retrieve the original DOM event

by calling the originalEvent method on your jQuery event, as we did above.

This will give you access to any properties your browser supports—in this case

that includes the new DataTransfer object.

Of course, this isn’t an issue if you’re rolling your own JavaScript from scratch!

Accepting Dropped Elements
Now our mouse images are set up to be dragged. Yet, when we try to drag them

around, we’re unable to drop them anywhere, which is no fun.

The reason is that by default, elements on the page aren’t set up to receive dragged

items. In order to override the default behavior on a specific element, we must stop

it from happening. We can do that by creating two more event listeners.

The two events we need to monitor for are dragover and drop. As you’d expect,

dragover fires when you drag something over an element, and drop fires when you

drop something on it.

We’ll need to prevent the default behavior for both these events—since the default

prohibits you from dropping an element.

Let’s start by adding an id to our cat image so that we can bind event handlers to

it:

HTML5 & CSS3 for the Real World308

js/dragDrop.js (excerpt)

<article id="ac3">
 <hgroup>
 <h1>Wai-Aria? HAHA!</h1>
 <h2 id="catHeading">Form Accessibility</h2>
 </hgroup>

You may have noticed that we also gave an id to the h2 element. This is so we can

change this text once we’ve dropped a mouse onto the cat.

Now, let’s handle the dragover event:

js/dragDrop.js (excerpt)

$('#cat').bind('dragover', function(event) {
 event.preventDefault();
});

That was easy! In this case, we merely ensured that the mouse picture can actually

be dragged over the cat picture. We simply need to prevent the default behavior

—and jQuery’s preventDefault method serves this purpose exactly.

The code for the drop handler is a bit more complex, so let us review it piece by

piece. Our first task is to figure out what the cat should say when a mouse is dropped

on it. In order to demonstrate that we can retrieve the id of the dropped mouse from

the DataTransfer object, we’ll use a different phrase for each mouse, regardless of

the order they’re dropped in. We’ve given three cat-appropriate options: “MEOW!”,

“Purr ...”, and “NOMNOMNOM.”

We’ll store these options inside an object called mouseHash. The first step is to declare

our object:

js/dragDrop.js (excerpt)

$('#cat').bind('drop', function(event) {
 var mouseHash = {};

309Canvas, SVG, and Drag and Drop

Next, we’re going to take advantage of JavaScript’s objects allowing us to store

key/value pairs inside them, as well as storing each response in the mouseHash object,

associating each response with the id of one of the mouse images:

js/dragDrop.js (excerpt)

$('#cat').bind('drop', function(event) {
 var mouseHash = {};
 mouseHash['mouse1'] = "NOMNOMNOM";
 mouseHash['mouse2'] = "MEOW!";
 mouseHash['mouse3'] = "Purr...";

Our next step is to grab the h2 element that we’ll change to reflect the cat’s response:

js/dragDrop.js (excerpt)

var catHeading = document.getElementById('catHeading');

Remember when we saved the id of the dragged element to the DataTransfer object

using setData? Well, now we want to retrieve that id. If you guessed that we will

need a method called getData for this, you guessed right:

js/dragDrop.js (excerpt)

var item = event.originalEvent.dataTransfer.getData("text/plain");

Note that we’ve stored the mouse’s id in a variable called item. Now that we know

which mouse was dropped, and we have our heading, we just need to change the

text to the appropriate response:

js/dragDrop.js (excerpt)

catHeading.innerHTML = mouseHash[item];

We use the information stored in the item variable (the dragged mouse’s id) to re-

trieve the correct message for the h2 element. For example, if the dragged mouse is

mouse1, calling mouseHash[item] will retrieve “NOMNOMNOM” and set that as

the h2 element’s text.

Given that the mouse has now been “eaten,” it makes sense to remove it from the

page:

HTML5 & CSS3 for the Real World310

js/dragDrop.js (excerpt)

var mousey = document.getElementById(item);
mousey.parentNode.removeChild(mousey);

Last but not least, we must also prevent the default behavior of not allowing elements

to be dropped on our cat image, as before:

js/dragDrop.js (excerpt)

event.preventDefault();

Figure 11.18 shows our happy cat, with one mouse to go.

Figure 11.18. This cat’s already eaten two mice

Further Reading
We’ve only touched on the basics of the Drag and Drop API, to give you a taste of

what’s available. We’ve shown you how you can use DataTransfer to pass data

from your dragged items to their drop targets. What you do with this power is up

to you!

To learn more about the Drag and Drop API, here are a couple of good resources:

■ The Mozilla Developer Center’s Drag and Drop documentation15

■ The W3C’s Drag and Drop specification16

15 https://developer.mozilla.org/En/DragDrop/Drag_and_Drop
16 http://dev.w3.org/html5/spec/dnd.html

311Canvas, SVG, and Drag and Drop

That’s All, Folks!
With these final bits of interactivity, our work on The HTML5 Herald has come to

an end, and your journey into the world of HTML5 and CSS3 is well on its way!

We’ve tried to provide a solid foundation of knowledge about as many of the cool

new features available in today’s browsers as possible—but how you build on that

is up to you.

We hope we’ve given you a clear picture of how most of these features can be used

today on real projects. Many are already well-supported, and browser development

is once again progressing at a rapid clip. And when it comes to those elements for

which support is still lacking, you have the aid of an online army of ingenious de-

velopers. These community-minded individuals are constantly working at coming

up with fallbacks and polyfills to help us push forward and build the next generation

of websites and applications.

Get to it!

HTML5 & CSS3 for the Real World312

Appendix A: Modernizr
Modernizr is an open source JavaScript library that allows us to test for individual

features of HTML5 in our users’ browsers. Instead of testing just for a particular

browser and trying to make decisions based on that, Modernizr allows us to ask

specific questions like: “Does this browser support geolocation?” and receive a clear

“yes” or “no” answer.

The first step to using Modernizr is to download it from the Modernizr site, at

http://modernizr.com.

Once you have a copy of the script, you’ll need to include the script file in your

pages. We’ll add it to the head in this example:

<!doctype html>
<html>
<head>
 <meta charset="utf-8">
 <title>My Beautiful Sample Page</title>
 <script src="modernizr-1.7.min.js"></script>
</head>

You can use Modernizr in two ways: with CSS, and with JavaScript.

Using Modernizr with CSS
When Modernizr runs, it will add an entry in the class attribute of the HTML

<html> tag for every feature it detects, prefixing the feature with no- if the browser

doesn’t support it.

For example, if you’re using Safari 5, which supports almost everything in HTML5

and CSS3, your opening <html> tag will look a little like this after Modernizr runs:

<html class=" js flexbox canvas canvastext no-webgl no-touch
geolocation postmessage websqldatabase no-indexeddb hashchange
history draganddrop websockets rgba hsla multiplebgs backgroundsize
borderimage borderradius boxshadow textshadow opacity cssanimations
csscolumns cssgradients cssreflections csstransforms csstransforms3d
csstransitions fontface video audio localstorage sessionstorage
webworkers applicationcache svg no-inlinesvg smil svgclippaths">

Here’s what Modernizr adds to the <html> tag in Firefox 4:

<html class=" js flexbox canvas canvastext webgl no-touch
geolocation postmessage no-websqldatabase indexeddb hashchange
history draganddrop no-websockets rgba hsla multiplebgs
backgroundsize borderimage borderradius boxshadow textshadow opacity
no-cssanimations csscolumns cssgradients no-cssreflections
csstransforms no-csstransforms3d csstransitions fontface video audio
localstorage no-sessionstorage webworkers applicationcache svg
inlinesvg smil svgclippaths">

To make better use of this feature of Modernizr, we should first add the class no-js

to our html element in our HTML source:

<html class="no-js">

Why do we do this? If JavaScript is disabled, Modernizr won’t run at all—but if

JavaScript is enabled, the first thing Modernizr will do is change no-js to js, as we

saw in the Safari 5 and Firefox 4 samples above. This way, you’ll have hooks to

base your styles on the presence or absence of JavaScript.

You might be thinking, “That sounds pretty cool, but what am I actually supposed

to do with this information?” What we can do is use these classes to provide two

flavors of CSS: styles for browsers that support certain features, and different styles

for browsers that don’t.

Because the classes are set on the html element, we can use descendant selectors

to target any element on the page based on support for a given feature.

Here’s an example. Any element with an id of #ad2 that lives inside an element

with a class of cssgradients (in other words, the html element when Modernizr

has detected support for gradients) will receive whatever style we specify here:

.cssgradients #ad2 {
 /* gradients are supported! Let’s use some! */
 background-image:
 -moz-linear-gradient(0% 0% 270deg,
 rgba(0,0,0,0.4) 0,
 rgba(0,0,0,0) 37%,
 rgba(0,0,0,0) 83%,
 rgba(0,0,0,0.06) 92%,

HTML5 & CSS3 for the Real World314

 rgba(0,0,0,0) 98%);
 ⋮
}

But what if CSS gradients aren’t supported? We could change the styling to use a

simple PNG background image that recreates the same gradient look. Here’s how

we might do that:

.no-cssgradients #ad2 {
 background-image:
 url(../images/put_a_replacement_img_here.png)
}

Another way we could use the classes Modernizr adds to the html element is with

Drag and Drop. We discussed Drag and Drop in Chapter 11, where we added several

images of computer mice that can be dragged onto our cat picture to be eaten. These

images are all stored in a div with an id of mouseContainer.

But in Opera, where Drag and Drop will fail to work, why even show the mouse

images at all? We can use Modernizr to hide the div if Drag and Drop is unsupported:

css/styles.css (excerpt)

.no-draganddrop #mouseContainer {
 visibility:hidden;
 height:0px;
}

If Drag and Drop is supported, we simply align all the content in the div horizontally:

css/styles.css (excerpt)

.draganddrop #mouseContainer {
 text-align:center;
}

Using Modernizr with JavaScript
We can also use Modernizr in our JavaScript to provide some fallback if the visitor’s

browser lacks support for any of the HTML5 elements you use.

315Appendix A: Modernizr

When Modernizr runs, as well as adding all those classes to your <html> element,

it will also create a global JavaScript object that you can use to test for feature sup-

port. The object is called, appropriately enough, Modernizr. This object contains a

property for every HTML5 feature.

Here are a few examples:

Modernizr.draganddrop;
Modernizr.geolocation;
Modernizr.textshadow;

Each property will be either true or false, depending on whether or not the feature

is available in the visitor’s browser. This is useful, because we can ask questions

like “Is geolocation supported in my visitor’s browser?” and then take actions de-

pending on the answer.

Here’s an example of using an if/else block to test for geolocation support using

Modernizr:

if (Modernizr.geolocation) {
 // go ahead and use the HTML5 geolocation API,
 // it’s supported!
}
else {
 // There is no support for HTML5 geolocation.
 // We may try another library, like Google Gears
 // (http://gears.google.com/), to locate the user.
}

HTML5 & CSS3 for the Real World316

Support for Styling HTML5 Elements in IE8
and Earlier
As mentioned in Chapter 2, IE8 and earlier versions will forbid unrecognized ele-

ments to be styled. We then introduced a solution by Remy Sharp, the “HTML5

shiv,” that solves this problem. However, as we alluded to then, Modernizr also

solves this problem for us!

As stated on the Modernizr documentation page: “Modernizr runs through a little

loop in JavaScript to enable the various elements from HTML5 (as well as abbr) for

styling in Internet Explorer. Note that this does not mean it suddenly makes IE

support the audio or video element, it just means that you can use section instead

of div and style them in CSS.”

In other words, we now no longer need the HTML5 shiv for styling the new semantic

elements in IE8 and below—if we’re using Modernizr anyway, it will take care of

that for us.

Location, Location, Location

If you’re using Modernizr instead of the HTML5 shiv, it will need to be placed at

the very top of the page. Otherwise, your elements will appear unstyled in IE until

the browser has reached the location of the Modernizr script and executed it.

Further Reading
To learn more about Modernizr, see:

■ Modernizr documentation: http://www.modernizr.com/docs/

■ A fairly comprehensive and up-to-date list of polyfills for HTML5 and CSS3

properties that can be used in conjunction with Modernizr is maintained at

https://github.com/Modernizr/Modernizr/wiki/HTML5-Cross-browser-Polyfills

■ A List Apart article, “Taking Advantage of HTML5 and CSS3 with Modernizr”:

http://www.alistapart.com/articles/taking-advantage-of-html5-and-css3-with-modernizr/

317Appendix A: Modernizr

Appendix B: WAI-ARIA
In Chapter 2 and Chapter 3, we covered considerable ground explaining the potential

benefits of using HTML5’s new semantic elements for greater accessibility and

portability of our pages. Yet, improved semantics alone is sometimes insufficient

to make a sophisticated web application fully accessible.

In order to have the content and functionality of our pages as accessible as possible

for our users, we need the boost that WAI-ARIA provides, extending what HTML5

(or any markup language) already does.

We’ll avoid going into an extensive discussion on WAI-ARIA here—that’s a topic

that could fill many chapters—but we felt it was important to mention it here so

that you’re aware of your options.

WAI-ARIA stands for Web Accessibility Initiative-Accessible Rich Internet Applic-

ations. The overview of WAI-ARIA on the W3C site explains it as:1

[…] a way to make Web content and Web applications more access-

ible to people with disabilities. It especially helps with dynamic

content and advanced user interface controls developed with Ajax,

HTML, JavaScript, and related technologies.

Users who rely on screen reader technology, or who are unable to use a mouse, are

often excluded from using certain website and web application functionality—for

example, sliders, progress bars, and tabbed interfaces. With WAI-ARIA, you’re able

to deal with these shortcomings in your pages—even if the content and functionality

is trapped in complex application architecture. Thus, parts of a website that would

normally be inaccessible can be made available to users who are reliant on assistive

technology.

How WAI-ARIA Complements Semantics
WAI-ARIA assigns roles to elements, and gives those roles properties and states.

Here’s a simple example:

1 http://www.w3.org/WAI/intro/aria.php

<li role="menuitemcheckbox" aria-checked="true">Sort by Date

The application might be using the list item as a linked element to sort content; yet

without the role and aria-checked attributes, a screen reader would have no way

to determine what this element is for. Semantics alone (in this case, a list item) tells

it nothing. By adding these attributes, the assistive device is better able to understand

what this function is for.

For semantic elements—for example header, h1, and nav—WAI-ARIA attributes

are unnecessary, as those elements already express what they are. Instead, they

should be used for elements whose functionality and purpose cannot be immediately

discerned from the elements themselves.

The Current State of WAI-ARIA
The WAI-ARIA specification is new, as is HTML5, so these technologies are yet to

provide all the benefits we would like. Although we’ve described the way that WAI-

ARIA can extend the semantics of our page elements, it may be necessary to include

WAI-ARIA roles on elements that already express their meaning in their names,

because assistive technology doesn’t support all the new HTML5 semantics yet. In

other words, WAI-ARIA can serve as a sort of stopgap, to provide accessibility for

HTML5 pages while the screen readers are catching up.

Let’s look at a site navigation, for example:

<nav>
 <ul role="navigation">
 ⋮

</nav>

It would seem that we’re doubling up here: the nav element implies that the list of

links contained within it make up a navigation control, but we’ve still added the

WAI-ARIA role navigation to the list. Because WAI-ARIA and HTML5 are new

technologies, this sort of doubling up will often be necessary: some browsers and

screen readers that may lack support for HTML5 will have support for WAI-ARIA

—and the inverse is possible too.

HTML5 & CSS3 for the Real World320

Does this mean that WAI-ARIA will become redundant once HTML5 is fully sup-

ported? No. There are roles in WAI-ARIA without corresponding HTML5 elements;

for example, the timer2 role. While you might represent a timer using the HTML5

time element and then update it with JavaScript, you’d have no way of indicating

to a screen reader that it was a timer, rather than just an indication of a static time.

For a screen reader to access WAI-ARIA roles, the browser must expose them through

an accessibility API. This allows the screen reader to interact with the elements

similarly to how it would access native desktop controls.

An article on A List Apart, published in late 2010, summarized WAI-ARIA support

in browsers and assistive devices by saying:3

Support for some parts of WAI-ARIA […] is already quite good in

later versions of browser and screen readers. However, many prob-

lems remain.

Finally, it’s worth noting that not all users who could benefit from WAI-ARIA roles

are utilizing them. In December, 2010, an organization called WebAIM (Web Access-

ibility In Mind) conducted their third screen reader user survey,4 which revealed

that more than 50% of participants didn’t use WAI-ARIA features, nor knew they

existed.

In short, there is some support for WAI-ARIA—and you won’t hurt your HTML5

documents by including these attributes, as they validate in HTML5. Even though

the full benefits are yet to be seen, they’ll only increase over time.

Further Reading
As mentioned, a full primer on all of the WAI-ARIA roles is beyond the scope of

this book, but if you’re interested in learning more, we recommend the official

specification5 first and foremost. The W3C has also put together a shorter Primer6

and an Authoring Practices guide.7

2 http://www.w3.org/TR/wai-aria/roles#timer
3 http://www.alistapart.com/articles/the-accessibility-of-wai-aria/
4 http://webaim.org/projects/screenreadersurvey3/
5 http://www.w3.org/TR/wai-aria/
6 http://www.w3.org/TR/wai-aria-primer/
7 http://www.w3.org/TR/wai-aria-practices/

321Appendix B: WAI-ARIA

Appendix C: Microdata
Microdata is another technology that’s rapidly gaining adoption and support, but

unlike WAI-ARIA, it’s actually part of HTML5. The Microdata Specification1 is still

early in development, but it’s worth mentioning this technology here, because it

provides a peek into what may be the future of document readability and semantics.

In the spec, Microdata is defined as a mechanism that “allows machine-readable

data to be embedded in HTML documents in an easy-to-write manner, with an un-

ambiguous parsing model.”

With Microdata, page authors can add specific labels to HTML elements to annotate

them so that they are able to be read by machines or bots. This is done by means of

a customized vocabulary. For example, you might want a script or other third-party

service to be able to access your pages and interact with specific elements on the

page in a certain manner. With Microdata, you can extend existing semantics (like

article and figure) to allow those services to have specialized access to the anno-

tated content.

This can appear confusing, so let’s think about a real-world example. Let’s say your

site includes reviews of movies. You might have each review in an article element,

with a number of stars or a percentage score for your review. But when a machine

comes along, like Google’s search spider, it has no way of knowing which part of

your content is the actual review—all it sees is a bunch of text on the page.

Why would a machine want to know what you thought of a movie? It’s worth con-

sidering that Google has recently started displaying richer information in its search

results pages, in order to provide searchers with more than just textual matches for

their queries. It does this by reading the review information encoded into those

sites’ pages using Microdata or other similar technologies. An example of movie

review information is shown in Figure C.1.

1 http://www.w3.org/TR/microdata/

Figure C.1. Google leverages Microdata to show additional information in search results

By using Microdata, you can specify exactly which parts of your page correspond

to reviews, people, events, and more—in a consistent vocabulary that software ap-

plications can understand and make use of.

Aren’t HTML5’s semantics enough?
You might be thinking that if a specific element is unavailable using existing HTML,

then how useful could it possibly be? After all, the HTML5 spec now includes a

number of new elements to allow for more expressive markup. But the creators of

HTML5 have been careful to ensure that the elements that are part of the HTML5

spec are ones that will most likely be used.

It would be counterproductive to add elements to HTML that would only be used

by a handful of people. This would unnecessarily bloat the language, making it

unmaintainable from the perspective of a specification author or standards body.

Microdata, on the other hand, allows you to create your own custom vocabularies

for very specific situations—situations that aren’t possible using HTML5’s semantic

elements. Thus, existing HTML elements and new elements added in HTML5 are

kept as a sort of semantic baseline, while specific annotations can be created by

developers to target their own particular needs.

The Microdata Syntax
Microdata works with existing, well-formed HTML content, and is added to a doc-

ument by means of name-value pairs (also called properties). Microdata does not

allow you to create new elements; instead it gives you the option to add customized

attributes that expand on the semantics of existing elements.

Here’s a simple example:

HTML5 & CSS3 for the Real World324

<aside itemscope>
 <h1 itemprop="name">John Doe</h1>
 <p><img src="http://www.sitepoint.com/bio-photo.jpg"
➥alt="John Doe" itemprop="photo"></p>
 <p>Author’s
➥website</p>
</aside>

In the example above, we have a run-of-the-mill author bio, placed inside an aside

element. The first oddity you’ll notice is the itemscope attribute. This identifies

the aside element as the container that defines the scope of our Microdata vocabu-

lary. The presence of the itemscope attribute defines what the spec refers to as an

item. Each item is characterized by a group of name-value pairs.

The ability to define the scope of our vocabularies allows us to define multiple

vocabularies on a single page. In the example above, all name-value pairs inside

the aside element are part of a single Microdata vocabulary.

After the itemscope attribute, the next item of interest is the itemprop attribute,

which has a value of name. At this point, it’s probably a good idea to explain how

a script would obtain information from these attributes, as well as what we mean

by “name-value pairs.”

Understanding Name-Value Pairs
A name is a property defined with the help of the itemprop attribute. In our example,

the first property name happens to be one called name. There are two additional

property names in this scope: photo and url.

The values for a given property are defined differently, depending on the element

the property is declared on. For most elements, the value is taken from its text

content; for instance, the name property in our example would get its value from

the text content between the opening and closing <h1> tags. Other elements are

treated differently.

The photo property takes its value from the src attribute of the image, so the value

consists of a URL pointing to the author’s photo. The url property, although defined

on an element that has text content (namely, the phrase “Author’s website”), doesn’t

325Appendix C: Microdata

use this text content to determine its value; instead, it gets its value from the href

attribute.

Other elements that don’t use their associated text content to define Microdata

values include meta, iframe, object, audio, link, and time. For a comprehensive

list of elements that obtain their values from somewhere other than the text content,

see the Values section of the Microdata specification.2

Microdata Namespaces
What we’ve described so far is acceptable for Microdata that’s not intended to be

reused, but that’s a little impractical. The real power of Microdata is unleashed

when, as we discussed, third-party scripts and page authors can access our name-

value pairs and find beneficial uses for them.

In order for this to happen, each item must define a type by means of the itemtype

attribute. Remember that an item in the context of Microdata is the element that

has the itemscope attribute set. Every element and name-value pair inside that

element is part of that item. The value of the itemtype attribute, therefore, defines

the namespace for that item’s vocabulary. Let’s add an itemtype to our example:

<aside itemscope itemtype="http://www.data-vocabulary.org/Person">
 <h1 itemprop="name">John Doe</h1>
 <p><img src="http://www.sitepoint.com/bio-photo.jpg"
➥alt="John Doe" itemprop="photo"></p>
 <p>Author’s
➥website</p>
</aside>

In our item, we’re using the URL http://www.data-vocabulary.org/, a domain owned

by Google. It houses a number of Microdata vocabularies, including Organization,

Person, Review, Breadcrumb, and more.

2 http://www.w3.org/TR/microdata/#values

HTML5 & CSS3 for the Real World326

Further Reading
This brief introduction to Microdata barely does the topic justice, but we hope it

will provide you with a taste of what’s possible when extending the semantics of

your documents with this technology.

It’s a very broad topic that requires reading and research outside of this source. With

that in mind, here are a few links to check out if you want to delve deeper into the

possibilities offered by Microdata:

■ “Extending HTML5—Microdata” on HTML5 Doctor3

■ The W3C Microdata specification4

■ Mark Pilgrim’s excellent overview of Microdata5

■ Google’s Rich Snippets Help6

3 http://html5doctor.com/microdata/
4 http://www.w3.org/TR/microdata/
5 http://diveintohtml5.org/extensibility.html
6 http://www.google.com/support/webmasters/bin/answer.py?hl=en&answer=99170

327Appendix C: Microdata

Index

Symbols
3D graphics, 269

? (question mark), in attributes, 230

@-rules, 199

A
a element, 47, 54

accessibility

audio/video, 116

canvas API and, 294

hovering and, 124

nav element and, 28

required attribute and, 62

WAI-ARIA, 319–321

Accessible Rich Internet Applications

(ARIA) (see WAI-ARIA)

action attribute, 84

:active pseudo-class, 124

addColorStop method, 274

addEventListener method, 104, 106

adjacent sibling selector, 121

::after pseudo-element, 129

alpha value, 131

animate method, 302

animation property, 195

animation-delay property, 194

animation-direction property, 193–194

animation-duration property, 193

animation-fill-mode property, 194

animation-iteration-count property, 193

animation-name property, 192–193

animation-play-state property, 194–195

animations

(see also Drag and Drop API; trans-

itions)

about, 190–191

browser support, 191

keyframes, 191–192

multiple, 195

properties for, 192–195

properties shorthand, 195

animation-timing-function property, 193

anonymous functions, 273

APIs (Application Programming Inter-

face), 5

about, 2

for database interaction, 263–264

for dragging/dropping (see Drag and

Drop API)

for drawing (see Canvas API)

for geolocation (see geolocation API)

for graphics (see SVG)

for offline site access (see offline site

access)

for running scripts in background,

261–262

for two-way communication, 262–263

for video (see video API)

for web storage (see web storage)

application cache, 237–238

arc method, 276

article element, 27, 31

aside element, 29, 31

async attribute, 52–53

at-rules, 199

attribute selectors, 122–123

attribute values, 22, 23, 54

audio

browser support, 88, 89–90, 115

captions, 116

controls, 115

muting, 94–95

audio attribute, 94–95

audio codecs, 89

audio element, 115

autocomplete attribute, 70–71, 84

autofocus attribute, 72

autoplay attribute, 92–93, 115

B
b element, 48

background images

(see also gradients)

multiple, 169–172

sizing, 172–174

background property, 169, 170, 172

background-color property, 170

background-image property, 169, 171

background-size property, 172–174

backwards selectors, 122

::before pseudo-element, 129

big element, 49

block elements, 35, 47–48, 54, 120, 177

blur distance, 140

bold text, 48

Boolean attributes, 23

border-radius property, 136–139

boxes

basic, 134–136

rounding corners, 136–139

shadows, 140–142

box-shadow property, 140–143

breaks, column, 216–217

browser cache, 238

browser support

about, 8–9

for 3D graphics, 269

for animations, 191

for audio, 88, 89–90, 115

for background sizing, 172–173

for canvas API, 266

character encoding and, 16

for columns, 211, 215, 217, 218, 219–

220

for debugging, 209

for Drag and Drop API, 304–305

for File API, 305

for fonts, 201–203, 208

for geolocation, 226–227

graceful degradation, 186

for gradients, 147, 148–150, 164, 165

for HTML5, 19–20, 119–120

for image manipulation, 286–287

for media queries, 222

for obsolete elements, 47

for offline API, 237

for pseudo-classes, 126

for required fields, 60

for RGBA, 132

for rounded corners, 136, 139

for shadows, 141–142, 143, 144

for SVG, 295

for transforms, 175, 177, 182–183

for unrecognized elements, 16–18

for video, 88, 89–90, 97–99

for WAI-ARIA, 321

for Web Sockets API, 263

for Web SQL, 263

for web storage, 250, 251

for Web Workers API, 262

buffered attribute, 115

330

button input, 60

C
cache, refreshing, 247–248

cache.manifest file, 238–240, 241, 247–

248

calculations, displaying, 83

calendar control, 80, 81

callbacks, 229

canplay event, 113

canplaythrough event, 105

canvas API

2D vs 3D, 268–269

about, 265–266

accessibility issues, 294

browser support for, 266

clearing canvas, 291

color, 269–270

color to grayscale, 284–286, 287–290

coordinate system, 271

creating elements, 266–268

displaying text, 290–294

drawing an image, 280–282

drawing circles, 275–278

drawing complex shapes, 278

drawing on canvas, 268

drawing rectangles, 270–271

gradients, 274–275

manipulating an image, 282–284

pattern fills, 271–273

resources, 294

saving drawings, 278–280

security issues, 286–287

setting context, 268–269

SVG vs, 303–304

canvas element, 266–268

CanvasGradient object, 269, 274

CanvasPattern object, 269, 271

CanvasRenderingContext2D object, 268–

269

captions, 116

case, upper vs lower, 22, 23, 54

character encoding, 15–16, 20

:checked pseudo-class, 125

child elements, selecting, 126–128

child selector, 121

Chrome

(see also browser support)

geolocation prompt, 227

local storage viewing/changing, 260–

261

circle element, 296

cite element, 50

clear input, 73

clear method, 254

clearPosition, 228

closePath method, 276

closing tags, 21–22, 23, 54

codecs, 89

collapsible text, 51

color

converting to grayscale, 284–286

fills, 269–270

grayscale conversion, 299–300

HSL notation, 132–133

opacity property, 133–134

pre-CSS3, 131

RGBA notation, 131–132

for shadows, 141

transparency, 270, 291

color input, 60, 79

color picker, 79

color stops, 151–152, 154–155, 159, 274

color-stop function, 154

331

column-count property, 211–212

column-fill property, 215

column-gap property, 212–213

Columnizer, 220

column-rule property, 216

columns

about, 211

borders on, 216

breaking, 216–217

browser support, 211, 215, 217, 218,

219–220

gaps between, 212–213

height of, 215–216

hyphenation in, 218–219

shorthand, 215

spanning, 217–218

specifying number, 211–212

width of, 213–214

columns property, 215

column-span property, 217–218

column-width property, 213–214

compatibility mode, 202–203

content, semantic types, 35–37

content-type, setting, 99–100, 240

context menu, 107–108

context object, 269

context, 2D or 3D, 268–269

controls attribute, 91–92, 115

cookies, 252

coordinates

geolocation API, 229–231

in canvas, 271

latitude/longitude, 231–232

corners

asymmetrical, 138

rounding, 136–139

createLinearGradient method, 274

createPattern method, 272–273

createRadialGradient method, 274

CSS3

about, 5–7

Modernizr and, 313–315

older browsers and, 19, 119–120

CSS3 Sandbox, 161

CSS3, Please, 161

cubic-bezier function, 187

currentSrc attribute, 114

currentTime property, 110, 111

D
database APIs, 263–264

datalist element, 71

DataTransfer Object, 307–308

date and time inputs, 79–82

dates, dynamic, 82

dates, encoding (see time element)

datetime attribute, 45–46

datetime input, 80

datetime-local input, 80

debugging tools, 242–243

:default pseudo-class, 125

defer attribute, 52–53

definition lists, 50

deprecated, vs. obsolete, 47

descendant selector, 121

description lists, 50

details element, 51

determineLocation method, 249

dialogue, encoding, 50

disabled attribute, 69

:disabled pseudo-class, 69, 124

:disabled pseudo-class, 69, 124

displayOnMap function, 229, 231

div element, 24, 25, 26, 31–32

332

dl element, 50

doctype, 14–15, 21

document outline, 37–39, 40–42

document ready check, 233

double colon, 129

DPI, 174

Drag and Drop API

about, 304–305

browser support, 304–305

dropping objects, 308–311

getting/setting data, 307–308

making draggable, 306–307

resources, 311

draggable attribute, 306–307

dragover event, 308

draw method, 268

drawImage method, 281

drawOneFrame functio, 288

drop event, 308

drop shadows, 140–142

duration attribute, 114

dynamic dates, 82

E
elements

moving, 176–178

resizing, 178–180

role attribute, 319–321

rotating, 180–181

selecting (see selectors)

(see also selectors)

skewing, 181

em element, 49

email input, 74–75

embedded content, 36

:empty pseudo-class, 127

:enabled pseudo-class, 124

ended event, 110

error event, 113

error handling

getImageData, 291

QUOTA_EXCEEDED_ERR, 254

try/catch, 255, 290

error messages, customizing, 75

exceptions, handling, 255

explicit section, 239

eXtensible Markup Language (XML), 295

F
fallback section, 245–246

figcaption element, 42–43

figure element, 42–43

File API, 305

fillRect method, 270

fillStyle property, 269

fillText method, 293

filters

for gradients, 160

for shadows, 142

in SVG, 299–300

for transforms, 183

Firebug, 209

Firefox (see browser support)

:first-child pseudo-class, 127

::first-letter pseudo-element, 129

::first-line pseudo-element, 129

:first-of-type pseudo-class, 127

flash of unstyled text (FOUT), 210

Flash Player plugin, 88, 97

float property, 211

flow content, 36

focus, 60, 72

focus event, 60

:focus pseudo-class, 124

333

font property descriptors, 203–204

Font Squirrel, 206–209

font stack, 205

fonts

using @font-face, 199–200

font-face rule, 198

font-family declaration, 200

fonts

browser support, 201–203, 208

converting formats, 206–209

declaring sources, 200–201

file size, 207, 208

in canvas, 292

licensing issues, 205–206

performance issues, 210

property descriptors, 203–204

setting font stack, 205

troubleshooting, 209

unicode support, 204

web font services, 206

footer element, 30

for attribute, 83

form attribute, 70

form attributes

about, 59–60

accessibility, 62

autocomplete, 70–71, 84

autofocus, 72

disabled, 69

form, 70

list, 71

multiple, 69–70

pattern, 67–68, 77

placeholder, 64–67, 81

readonly, 69

required, 60–62, 126

form element, 84

form elements

basic structure, 58–59

datalist, 71

form, 84

HTML5 vs XHTML, 54

keygen, 83–84

optgroup, 84

output, 83

textarea, 84–85

form inputs (see input types)

future-proofing, 10

G
general sibling selector, 121

generated content, 129–130

geolocation API

about, 226–227

browser support, 226–227

checking browser support, 228

coordinates available, 229–231

getting current position, 229

getting latitude/longitude, 231–232

getting timestamp, 229

loading a map, 232–236

methods, 227–228

mobile devices, 236

privacy issues, 227

geo-location-javascript library, 236

getContext method, 269

getCurrentPosition method, 228, 229

getImageData method, 283–284, 286–287

getItem method, 253, 254

Google Maps, 231, 234–236

graceful degradation, 186

Gradient Generator, 161

gradients

about, 147

334

images vs., 148

in canvas, 274–275

linear (see linear gradients)

radial (see radial gradients)

repeating, 168–169

grayscale, converting to, 284–286, 287–

290, 299–300

H
h5o, 39

head element, 15–16

header element, 24–25, 31

heading content, 36, 38

height attribute, 91

height property, 215–216

hgroup element, 40–42

Hickson, Ian, 29

hidden input, 60

high attribute, 45

hints, on forms, 64

:hover pseudo-class, 124

HSL notation, 132–133

.htaccess file, 99–100, 240, 248

html element, 15

HTML5

about, 1–5

basic page structure, 13–19

changes to existing features, 47–50

choice of new elements, 30

content types, 35–37

older browsers and, 19–20, 119–120

specifications, 3–4

validation changes, 53–55

XHTML vs, 21–23, 53–55

HTML5 shim (see HTML5 shiv)

HTML5 shiv, 17–18, 119, 317

hyphenation, 218–219

I
i element, 48–49

image method, 302

images

converting color to grayscale, 284–286

drawing, 280–282

as fills, 271–273

gradients vs., 148

manipulating, 282–284, 286–287

rotating, 302–303

implied sections, 38, 40

:indeterminate pseudo-class, 125

IndexedDB, 263–264

Inkscape, 299–300

inline elements, 35, 36, 177, 179, 180

input types

color, 60, 79

date and time, 79–82

email address, 74–75

full list, 72–73

numbers, 76–77

phone numbers, 76

range, 60, 78

search, 73–74

URLs, 75–76

:in-range pseudo-class, 125

inset shadows, 143

integer/string conversion, 253

interactive content, 37

Internet Explorer

(see also browser support)

font support, 201–203

gradient filters, 160

HTML5 support, 119–120

Modernizr and, 317

offline API and, 237

335

transforms support, 182–183

unrecognized elements, 17–18

:invalid pseudo-class, 63, 125

:invalid pseudo-class, 63, 125

italic text, 48–49

itemtype attribute, 326

J
JavaScript

(see also APIs (Application Program-

ming Interface); Modernizr)

caching, 103

collapsible text, 51

for columns, 220

default HTML5 styling, 120

disabled, 18

embedding, 19

focus event, 60

form validation and, 64

forms, 57

GoogleMaps, 231–232

h5o, 39

html5 shiv, 17–18, 119, 317

hyphenation, 219

jQuery library, 65, 308

placeholder attribute polyfill, 65–67

Raphaël Library, 301–303

resources, 226

running in background, 261–262

scoped styles, 52

string/integer conversion, 253

for transitions, 184

jQuery library, 65, 308

JW Player, 98

K
key/value pairs, 252

keyframes, 191–192

keygen element, 83–84

kind attribute, 116

L
lang attribute, 15

:lang pseudo-class, 128

:last-child pseudo-class, 127

:last-of-type pseudo-class, 127

Lawson, Bruce, 26

line breaks, 84

linear gradients

about, 148

browser support, 148–150, 164, 165

color stops, 151–152, 154–155, 159

direction, 150, 154

in Internet Explorer, 160

from Photoshop, 156–158

stripes, 153

SVG files, 158–160

tools for creating, 161

W3C syntax, 150–154

WebKit syntax, 154–155

linearGradient element, 159

link element, 16, 20

lint tools, 55

list attribute, 71

lists

datalists, 71

description/definition, 50

ordered, 52

loadeddata event, 113

loadedmetadata event, 113

local storage, 251–252, 260–261

336

localStorage[key], 253–254

loop attribute, 93, 115

low attribute, 45

M
manifest attribute, 241

mark element, 43–44

max attribute, 44, 45, 77, 78

media queries, 220–223

browser support, 222

syntax, 221

meta element, 15

metadata content, 36

metadata, loading video, 113

meter element, 44–45

microdata

about, 323–324

adding, 324–326

item types, 326

resources, 327

semantic elements vs, 324

MIME types, 99–100

min attribute, 44, 45, 77, 78

Miro Video Converter, 100

mobile devices, 9–10, 94, 174, 201, 230,

236

(see also offline web applications)

Modernizr

about, 313

with CSS, 313–315

geolocation API and, 228

HTML5 shiv and, 119

Internet Explorer and, 317

with JavaScript, 315–316

placeholder attribute, 66

resources, 317

video API and, 104

month input, 80

multiple attribute, 69–70

muted attribute, 109

muting/unmuting, 94–95, 108–109

N
names, in citations, 50

nav element, 27–29, 320

navigator.onLine property, 248–249

negative delays, 188

NEWT (New Exciting Web Technolo-

gies), 3

nightly builds (WebKit), 149

no-js class, 314

normalization (of date/time) (see time

element)

:not pseudo-class, 128

novalidate attribute, 84

:nth-child pseudo-class, 127

:nth-last-child pseudo-class, 127

:nth-last-of-type pseudo-class, 127

:nth-of-type pseudo-class, 127

number input, 76–77

numeric pseudo-classes, 128

O
obsolete, vs. deprecated, 47

offline site access

application cache, 237–238, 242–243

application cache size, 245

browser support, 237

cache refresh, 247–248

cache.manifest file, 238–240, 241,

247–248

handling load failure, 245–246

manifest attribute, 241

337

prompting for, 241

resources, 249–250

setting content type, 240

testing functionality, 241–243

testing whether user is online, 248–

249

ol element, 52

online/offline condition, testing, 248–

249

:only-child pseudo-class, 127

:only-of-type pseudo-class, 127

opacity property, 133–134

(see also transparency)

Opera (see browser support)

optgroup element, 84

optimum attribute, 45

:optional pseudo-class, 126

ordered lists, 52

originalEvent method, 308

origin-based security, 255

origin-based security issues, 286–287

outline, document, 37–39, 40–42

:out-of-range pseudo-class, 126

output element, 83

P
page structure, 24–33

parseInt method, 253

paths, 275–278

pattern attribute, 67–68, 77

pause method, 106

paused attribute, 105

persistent storage (see local storage)

phone number input, 76

phrasing content, 36

placeholder attribute, 64–67, 81

play method, 106

playbackRate attribute, 114

playing event, 114

polyfills, 8

Position object, 229–231

poster attribute, 94

prefixes, vendor, 7

preload attribute, 93–94, 115

preventDefault method, 309

progress element, 44

progress meter, 44, 299–300

pseudo-classes

(see also specific pseudo-classes by

name, e.g. :visited)

attribute or state, 124–126

numeric, 128

structural, 126–128

pseudo-elements, 129–130

pubdate attribute, 46

putImageData method, 286

Q
Quartz 2D, 266

quirks mode, 21

QUOTA_EXCEEDED_ERR, 254

R
radial gradients

about, 161, 162, 163, 164

W3C syntax, 162–164

WebKit syntax, 164–166

range input, 60, 78, 125–126

Raphaël Library, 301–303

Raphael method, 301

readonly attribute, 69

:read-only pseudo-class, 126

:read-write pseudo-class, 126

338

readyState attribute, 114

redundant values, 22, 23

regular expressions, matching, 67–68

relational selectors, 121–122

removeItem method, 254

repeating gradients, 168–169

required attribute, 60–62, 126

required fields

encoding, 60–62

error messages, 62–63

styling, 63–64

:required pseudo-class, 63–64, 126

:required pseudo-class, 63–64, 126

Resig, John, 17

reversed attribute, 52

reversed sliders, 78

RGB to grayscale formula, 285

RGBA notation, 131–132, 270

rivers, in text, 218–219

role attribute, 319–321

:root pseudo-class, 127

rotate function, 180–181

S
Safari

(see also browser support)

local storage viewing/changing, 260–

261

offline file loading, 246

Scalable Vector Graphics (SVG) (see SVG

(Scalable Vector Graphics))

scale function, 178–180

scoped element, 52

scoped styles, 52

screen pixel density, 174

screen readers (see accessibility)

script attribute, 52–53

script element, 18–19, 20

scripts, running in background, 261–262

search input, 73–74

section element, 25–27, 31, 32

sectioning content, 25, 36, 38

sectioning roots, 39

sections, implied, 38, 40

security issues

image manipulation, 286–287

:visited pseudo-class, 124

web storage, 255

seeked event, 114

seeking event, 114

::selection pseudo-element, 130

selectors

about, 120

attribute, 122–123

backwards, 122

pseudo-classes, 124–126

pseudo-elements, 129–130

relational, 121–122

structural, 126–128

semantic elements

about, 24, 26–27, 30

article, 27, 31

aside, 29, 31

footer, 30

header, 24–25, 31

microdata vs, 324

nav, 27–29, 320

section, 25–27, 31, 32

semantics, 24, 319–321

session storage, 251, 260–261

setCustomValidity method, 75, 76

setItem method, 253

setTimeout method, 289

339

shadows

drop, 140–142

inset, 143

text, 144–145

sibling selectors, 121

skew function, 181

sliders, 78

small element, 49

source element, 95–97

span tags, 44

spread distance, 140

src attribute, 90, 95, 114

src property, 200

standards mode, 21

start attribute, 52

step attribute, 77, 78, 82

storage object, 252–253

storage, web (see web storage)

strict validation, 55

string/integer conversion, 253

strokeRect method, 270

strokeStyle property, 269

strong element, 48

style element, 52

styles

default HTML5, 120

for required fields, 63–64

scoped, 52

stylesheets, linking to, 16

summary element, 51

SVG (Scalable Vector Graphics)

about, 295

browser support, 295

canvas vs, 303–304

drawing shapes, 296–298

filters, 299–300

font format, 201

gradients, 158–160

Inkscape, 299–300

Raphaël Library, 301–303

rotating objects, 302–303

(hash), in cache.manifest file, 240

$ (dollar sign), in attribute selectors, 123

* (asterisk)

in attribute selectors, 123

in cache.manifest file, 240

:: (double colon), 129

^ (caret), in attribute selectors, 123

| (vertical bar), in attribute selectors, 123

~ (tilde), in attribute selectors, 123

T
target attribute, 54

:target pseudo-class, 125

tel input, 76

text

(see also fonts)

bolding, 48

collapsing, 51

displaying in canvas, 290–294

FOUT effect, 210

italicizing, 48–49

rotating, 180–181

text shadows, 144–145

textarea element, 54, 84–85

text-shadow property, 144–145

time element, 45–47

time input, 80

timeupdate event, 110–112

toDataURL method, 278

track element, 116

transform-origin property, 182

transforms

about, 175–176

340

browser support, 175, 177, 182

in Internet Explorer, 182–183

order of, 180

rotation, 180–181

scaling, 178–180

setting origins, 182

skew, 181

translations, 176–178

transition property, 188–189

transition-delay property, 187–188

transition-duration property, 186

transition-property, 184–186

transitions

about, 183–184

delaying start of, 187–188

duration, 186

multiple, 189–190

older browsers and, 186

pace of, 187

properties available, 184–186

shorthand for, 188–189

transition-timing-function, 187

translate function, 176–178

transparency

animations, 192

in canvas, 270, 291

colors, 131–132, 133–134

opacity property, 133–134

shadows and, 142

try/catch blocks, 255, 290

two-way communication, 262–263

type attribute, 16, 19, 95

U
unicode-range descriptor, 204

unrecognized elements, 16–18, 317

url input, 75–76

user agents, 28

utf-8, 15

V
:valid pseudo-class, 63, 125

:valid pseudo-class, 63, 125

validation

client-side, 57

customizing error messages, 75

of email addresses, 75

of HTML5 files, 53–55

of phone numbers, 76

of required fields, 60, 62–63

of URLs, 75

value attribute, 44, 45

vendor prefixes, 7

video

autoplaying, 92–93

browser support, 88, 89–90, 97–99

captions, 116

color to grayscale conversion, 287–290

custom controls (see video API)

disabling "save as", 108

encoding for the web, 100

licensing issues, 90

looping, 93

MIME types, 99–100

multiple sources, 95–97

muting, 94–95

native controls, 91–92, 104

preloading, 93–94

setting dimensions, 91

teaser image, 94

video element, 90

video API

about, 101

addEventListener, 104, 106

341

attribute list, 114–115

canplaythrough event, 105

custom controls, 101

events, 113–114

HTML code, 101–103

muting/unmuting, 108–109

playing and pausing, 105–107

resetting to start, 110

timer, 110–112

videoEl variable, 103–104

video codecs, 89

video containers, 89

video conversion, 100, 287–290

video element, 90, 97–99, 101, 107–108

video object, 288

videoEl variable, 103–104

videoHeight attribute, 115

videoWidth attribute, 115

:visited pseudo-class, 124

volumechange event, 109

W
W3C, 3–4

WAI-ARIA, 62, 305, 319–321

watchPosition, 228

web font services, 206

Web Inspector, 242–243, 260–261

Web Sockets API, 262–263

Web SQL, 263–264

web storage

across domains, 255

browser dependence, 251

browser support, 250

clearing data, 254

converting data, 253

data format, 252

databases and, 263–264

exception handling, 255

getting/setting data, 252–254

local storage, 260–261

resources, 261

size limits, 254–255

types of, 250–252

Web Workers API, 261–262

WebGL, 269

WebKit browsers, 76, 149

(see also browser support)

webkit-gradient property, 154

week input, 80

WHATWG (Web Hypertext Application

Technology Working Group), 3–4

whitelist, 239

width attribute, 91

window.offline event, 249

window.online event, 249

"work offline" option, 241

wrap attribute, 84

X
XHTML, vs. HTML5, 21–23, 53–55

XML (eXtensible Markup Language), 295

xmlns attribute, 15, 20

Y
YouTube, 108

342

What’s Next?

Web designers: Prepare to master the
ways of the jQuery ninja!

JQUERY: NOVICE
TO NINJA
By Earle Castledine &
Craig Sharkie

jQuery has quickly become the
JavaScript library of choice, and
it’s easy to see why.

In this easy-to-follow guide, you’ll
master all the major tricks and
techniques that jQuery offers—
within hours.

Use this link to save 10% off the cover price of jQuery: Novice to
Ninja, compliments of the SitePoint publishing team.

www.sitepoint.com/launch/customers-only-jquery1

RICH, FAST, VERSATILE — JAVASCR PT THE WAY IT SHOULD BE!

JQUERY
NOVICE TO NINJA

BY EARLE CASTLEDINE
& CRAIG SHARKIE

SAVE
10%

Save 10% with this link:

This book has saved my life! I especially love the
“excerpt” indications, to avoid getting lost. JQuery
is easy to understand thanks to this book. It’s a
must-have for your development library, and you
truly go from Novice to Ninja!

Amanda Rodriguez, USA

	HTML5 & CSS3 for the Real World
	Table of Contents
	Foreword
	Preface
	Who Should Read This Book
	What’s in This Book
	Where to Find Help
	The SitePoint Forums
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Newsletters
	The SitePoint Podcast
	Your Feedback
	Acknowledgments
	Alexis Goldstein
	Louis Lazaris
	Estelle Weyl

	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Introducing HTML5 and CSS3
	What is HTML5?
	How did we get here?
	Would the real HTML5 spec please stand up?

	Why should I care about HTML5?
	What is CSS3?
	Why should I care about CSS3?
	What do we mean by the “real world”?
	The Varied Browser Market
	The Growing Mobile Market

	On to the Real Stuff

	Markup, HTML5 Style
	Introducing The HTML5 Herald
	A Basic HTML5 Template
	The Doctype
	The html Element
	The head Element
	Leveling the Playing Field
	The Rest is History

	HTML5 FAQ
	Why do these changes still work in older browsers?
	Shouldn’t all tags be closed?
	What about other XHTML-based syntax customs?

	Defining the Page’s Structure
	The header Element
	The section Element
	The article Element
	The nav Element
	The aside Element
	The footer Element

	Structuring The HTML5 Herald
	Wrapping Things Up

	More HTML5 Semantics
	A New Perspective on Types of Content
	The Document Outline
	Breaking News
	The hgroup Element

	More New Elements
	The figure and figcaption Elements
	The mark Element
	The progress and meter Elements
	The time Element

	Changes to Existing Features
	The Word “Deprecated” is Deprecated
	Block Elements Inside Links
	Bold Text
	Italicized Text
	Big and Small Text
	A cite for Sore Eyes
	Description (not Definition) Lists

	Other New Elements and Features
	The details Element
	Customized Ordered Lists
	Scoped Styles
	The async Attribute for Scripts

	Validating HTML5 Documents
	Summary

	HTML5 Forms
	Dependable Tools in Our Toolbox
	HTML5 Form Attributes
	The required Attribute
	Styling Required Form Fields

	The placeholder Attribute
	Polyfilling Support with JavaScript

	The pattern Attribute
	The disabled Attribute
	The readonly Attribute
	The multiple Attribute
	The form Attribute
	The autocomplete Attribute
	The datalist Element and the list Attribute
	The autofocus Attribute

	HTML5 New Form Input Types
	Search
	Email Addresses
	URLs
	Telephone Numbers
	Numbers
	Ranges
	Colors
	Dates and Times

	Other New Form Controls in HTML5
	The output Element
	The keygen Element

	Changes to Existing Form Controls and Attributes
	The form Element
	The optgroup Element
	The textarea Element

	In Conclusion

	HTML5 Audio and Video
	A Bit of History
	The Current State of Play
	Video Container Formats
	Video Codecs
	Audio Codecs
	What combinations work in current browsers?

	The Markup
	Enabling Native Controls
	The autoplay Attribute
	The loop Attribute
	The preload Attribute
	The poster Attribute
	The audio Attribute
	Adding Support for Multiple Video Formats
	source Order
	What about Internet Explorer 6–8?
	MIME Types

	Encoding Video Files for Use on the Web
	Creating Custom Controls
	Some Markup and Styling to Get Us Started
	Introducing the Media Elements API
	Playing and Pausing the Video
	Muting and Unmuting the Video’s Audio Track
	Responding When the Video Ends Playback
	Updating the Time as the Video Plays
	Further Features of the Media Elements API
	Events
	Attributes

	What about audio?
	Accessible Media
	It’s Showtime

	Introducing CSS3
	Getting Older Browsers on Board
	CSS3 Selectors
	Relational Selectors
	Attribute Selectors
	Pseudo-classes
	Structural Pseudo-classes
	Pseudo-elements and Generated Content
	Generated Content
	::selection

	CSS3 Colors
	RGBA
	HSL and HSLA
	Opacity

	Putting It into Practice
	Rounded Corners: border-radius
	Drop Shadows
	Inset and Multiple Shadows

	Text Shadow
	More Shadows
	Up Next

	CSS3 Gradients and Multiple Backgrounds
	Linear Gradients
	The W3C Syntax
	The Old WebKit Syntax
	Putting It All Together
	Linear Gradients with SVG
	Linear Gradients with IE Filters
	Tools of the Trade

	Radial Gradients
	The W3C Syntax
	The Old WebKit Syntax
	Putting it All Together

	Repeating Gradients
	Multiple Background Images
	Background Size
	In the Background

	CSS3 Transforms and Transitions
	Transforms
	Translation
	Scaling
	Rotation
	Skew
	Changing the Origin of the Transform
	Support for Internet Explorer 8 and Earlier

	Transitions
	transition-property
	transition-duration
	transition-timing-function
	transition-delay
	The transition Shorthand Property
	Multiple Transitions

	Animations
	Keyframes
	Animation Properties
	animation-name
	animation-duration
	animation-timing-function
	animation-iteration-count
	animation-direction
	animation-delay
	animation-fill-mode
	animation-play-state
	The Shorthand animation Property

	Moving On

	Embedded Fonts and Multicolumn Layouts
	Web Fonts with @font-face
	Implementing @font-face
	Declaring Font Sources
	Font Property Descriptors
	Unicode Range
	Applying the Font
	Legal Considerations
	Creating Various Font File Types: Font Squirrel
	Other Considerations

	CSS3 Multicolumn Layouts
	The column-count Property
	The column-gap Property
	The column-width Property
	The columns Shorthand Property
	Columns and the height Property
	Other Column Features
	The column-rule Property
	Column Breaks
	Spanning Columns

	Other Considerations
	Progressive Enhancement

	Media Queries
	What are Media Queries?
	Syntax
	Flexibility of Media Queries
	Browser Support
	Further Reading

	Living in Style

	Geolocation, Offline Web Apps, and Web Storage
	Geolocation
	Privacy Concerns
	Geolocation Methods
	Checking for Support with Modernizr
	Retrieving the Current Position
	Geolocation’s Position Object
	Grabbing the Latitude and Longitude
	Loading a Map
	A Final Word on Older Mobile Devices

	Offline Web Applications
	How It Works: the HTML5 Application Cache
	Setting Up Your Site to Work Offline
	The cache.manifest File
	Setting the Content Type on Your Server
	Pointing Your HTML to the Manifest File

	Getting Permission to Store the Site Offline
	Going Offline to Test
	Testing If the Application Cache Is Storing Your Site

	Making The HTML5 Herald Available Offline
	Limits to Offline Web Application Storage
	The Fallback Section
	Refreshing the Cache
	Caching the Cache

	Are we online?
	Further Reading

	Web Storage
	Two Kinds of Storage
	Session Storage
	Local Storage

	What Web Storage Data Looks Like
	Getting and Setting Our Data
	Converting Stored Data
	The Shortcut Way
	Removing Items and Clearing Data
	Storage Limits
	Security Considerations
	Adding Web Storage to The HTML5 Herald
	Viewing Our Web Storage Values with the Web Inspector

	Additional HTML5 APIs
	Web Workers
	Web Sockets
	Web SQL and IndexedDB

	Back to the Drawing Board

	Canvas, SVG, and Drag and Drop
	Canvas
	A Bit of Canvas History
	Creating a canvas Element
	Drawing on the Canvas
	Getting the Context
	Filling Our Brush with Color
	Drawing a Rectangle to the Canvas
	The Canvas Coordinate System
	Variations on fillStyle
	Drawing Other Shapes by Creating Paths
	Saving Canvas Drawings
	Drawing an Image to the Canvas
	Manipulating Images
	Converting an Image from Color to Black and White
	Security Errors with getImageData
	Manipulating Video with Canvas
	Displaying Text on the Canvas
	Accessibility Concerns
	Further Reading

	SVG
	Drawing in SVG
	Using Inkscape to Create SVG Images
	SVG Filters
	Using the Raphaël Library
	Drawing an Image to Raphaël’s Container
	Rotating a Spinner with Raphaël

	Canvas versus SVG

	Drag and Drop
	Feeding the WAI-ARIA Cat
	Making Elements Draggable
	The DataTransfer Object
	Accepting Dropped Elements
	Further Reading

	That’s All, Folks!

	Appendix A: Modernizr
	Using Modernizr with CSS
	Using Modernizr with JavaScript
	Support for Styling HTML5 Elements in IE8 and Earlier
	Further Reading

	Appendix B: WAI-ARIA
	How WAI-ARIA Complements Semantics
	The Current State of WAI-ARIA
	Further Reading

	Appendix C: Microdata
	Aren’t HTML5’s semantics enough?
	The Microdata Syntax
	Understanding Name-Value Pairs
	Microdata Namespaces
	Further Reading

	Index

