
JAVASCRIPT:
BEST PRACTICE

CLEAN, MAINTAINABLE, PERFORMANT CODE

JavaScript: Best Practice
Copyright © 2018 SitePoint Pty. Ltd.

Product Manager: Simon Mackie
English Editor: Ralph Mason
Project Editor: James Hibbard
Cover Designer: Alex Walker

Notice of Rights
All rights reserved. No part of this book may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embodied in
critical articles or reviews.

Notice of Liability
The author and publisher have made every effort to ensure the accuracy of the
information herein. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors and SitePoint
Pty. Ltd., nor its dealers or distributors will be held liable for any damages to be
caused either directly or indirectly by the instructions contained in this book, or
by the software or hardware products described herein.

Trademark Notice
Rather than indicating every occurrence of a trademarked name as such, this
book uses the names only in an editorial fashion and to the benefit of the
trademark owner with no intention of infringement of the trademark.

ii JavaScript: Best Practice

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood
VIC Australia 3066

Web: www.sitepoint.com
Email: books@sitepoint.com

Printed and bound in the United States of America

About SitePoint
SitePoint specializes in publishing fun, practical, and easy-to-understand content
for web professionals. Visit http://www.sitepoint.com/ to access our blogs,
books, newsletters, articles, and community forums. You’ll find a stack of
information on JavaScript, PHP, Ruby, mobile development, design, and more.

JavaScript: Best Practice iii

http://www.sitepoint.com/

Table of Contents

Preface ..viii

Who Should Read This Book? ... viii

Conventions Used ... viii

Chapter 1: The Anatomy of a Modern JavaScript

Application .. 11

A Note About Node.js ... 12

JavaScript ES2015+ ... 12

Modular Code ... 17

Package Management ... 19

Build Tools ..20

Application Architecture ...22

Deployment ...24

Conclusion ...26

Chapter 2: Clean Code with ES6 Default Parameters

& Property Shorthands ...27

ES6 Default Parameters ..28

ES6 Property Shorthands.. 31

iv JavaScript: Best Practice

Conclusion ...33

Chapter 3: JavaScript Performance Optimization

Tips: An Overview ...34

Setting the Stage ..35

What Exactly is Performant JS Code?...38

Context is Everything .. 41

Parsing, Compiling and Executing .. 41

Bundle Sizes are Everything ..44

Conclusion ...47

Chapter 4: JavaScript Design Patterns: The

Singleton..48

Explaining ES6..49

What Is a Singleton ..49

The Old Way of Creating a Singleton in JavaScript..50

The New Way(s)... 51

Conclusion ...54

Chapter 5: JavaScript Object Creation: Patterns and

Best Practices...55

Object Literals ..56

Table of Contents v

Factory Functions ...56

Prototype Chains...57

ES5 Classes..58

ES6 Classes .. 60

Comparison... 60

Conclusion ...61

Chapter 6: Best Practices for Using Modern

JavaScript Syntax ...62

Something Solid to Cling To ..63

A Spoonful of Syntactic Sugar..64

When Your const Isn’t Consistent..64

Limiting the Scope of the Function ..67

Understand What You’re Getting .. 71

Chapter 7: Flow Control in Modern JS: Callbacks to

Promises to Async/Await ..73

Single-thread Processing ... 74

Going Asynchronous with Callbacks ...75

Promises..76

Async/Await..81

JavaScript Journey .. 86

vi JavaScript: Best Practice

Chapter 8: JavaScript’s New Private Class Fields,

and How to Use Them ...87

ES6 Class Basics... 88

Getters and Setters ... 89

Child or Sub-Classes .. 90

Static Methods and Properties ... 91

ESnext Class Fields ..93

Immediate Benefit: Cleaner React Code! ..97

Using Class Fields Today ... 98

Class Fields: an Improvement? ... 99

Table of Contents vii

Preface
There’s no doubt that the JavaScript ecosystem changes fast. Not only are new
tools and frameworks introduced and developed at a rapid rate, the language
itself has undergone big changes with the introduction of ES2015 (aka ES6).
Understandably, many articles have been written complaining about how difficult
it is to learn modern JavaScript development these days. We're aiming to
minimize that confusion with this set of books on modern JavaScript.

This book presents modern JavaScript best practice, utilizing the features now
available in the language, enabling you to write more powerful code that is clean,
performant, maintainable, and resusable.

Who Should Read This Book?
This book is for all front-end developers who wish to improve their JavaScript
skills. You’ll need to be familiar with HTML and CSS and have a reasonable level
of understanding of JavaScript in order to follow the discussion.

Conventions Used
You’ll notice that we’ve used certain typographic and layout styles throughout
this book to signify different types of information. Look out for the following
items.

Code Samples

Code in this book is displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>

<p>It was a lovely day for a walk in the park.

viii JavaScript: Best Practice

The birds were singing and the kids were all back at school.</p>

Where existing code is required for context, rather than repeat all of it, ⋮ will be

displayed:

function animate() {

⋮
new_variable = "Hello";

}

Some lines of code should be entered on one line, but we’ve had to wrap them

because of page constraints. An ➥ indicates a line break that exists for
formatting purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/responsive-web-

➥design-real-user-testing/?responsive1");

Preface ix

Tips, Notes, and Warnings

Hey, You!

Tips provide helpful little pointers.

Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic
at hand. Think of them as extra tidbits of information.

Make Sure You Always ...

... pay attention to these important points.

Watch Out!

Warnings highlight any gotchas that are likely to trip you up along the
way.

Live Code

This example has a Live Codepen.io Demo you can play with.

Github

This example has a code repository available at Github.com.

x JavaScript: Best Practice

James Kolce

The Anatomy of
a Modern

JavaScript
Application

Chapter

1

The Anatomy of a Modern JavaScript Application 11

There’s no doubt that the JavaScript ecosystem changes fast. Not only are
new tools and frameworks introduced and developed at a rapid rate, the
language itself has undergone big changes with the introduction of ES2015
(aka ES6). Understandably, many articles have been written complaining
about how difficult it is to learn modern JavaScript development these days.

In this article, I’ll introduce you to modern JavaScript. We’ll take a look at recent
developments in the language and get an overview of the tools and techniques
currently used to write front-end web applications. If you’re just starting out with
learning the language, or you’ve not touched it for a few years and are wondering
what happened to the JavaScript you used to know, this article is for you.

A Note About Node.js
Node.js is a runtime that allows server-side programs to be written in JavaScript.
It’s possible to have full-stack JavaScript applications, where both the front and
back end of the app is written in the same language. Although this article is
focused on client-side development, Node.js still plays an important role.

The arrival of Node.js had a significant impact on the JavaScript ecosystem,
introducing the npm package manager and popularizing the CommonJS module
format. Developers started to build more innovative tools and develop new
approaches to blur the line between the browser, the server, and native
applications.

JavaScript ES2015+
In 2015, the sixth version of ECMAScript — the specification that defines the
JavaScript language — was released under the name of ES2015 (still often
referred to as ES6). This new version included substantial additions to the
language, making it easier and more feasible to build ambitious web applications.
But improvements don’t stop with ES2015; each year, a new version is released.

12 JavaScript: Best Practice

https://en.wikipedia.org/wiki/ECMAScript
http://www.ecma-international.org/ecma-262/6.0/

Declaring variables

JavaScript now has two additional ways to declare variables: let and const.

let is the successor to var . Although var is still available, let limits the

scope of variables to the block (rather than the function) they’re declared within,
which reduces the room for error:

// ES5

for (var i = 1; i < 5; i++) {

console.log(i);

}

// <-- logs the numbers 1 to 4

console.log(i);

// <-- 5 (variable i still exists outside the loop)

// ES2015

for (let j = 1; j < 5; j++) {

console.log(j);

}

console.log(j);

// <-- 'Uncaught ReferenceError: j is not defined'

Using const allows you to define variables that cannot be rebound to new

values. For primitive values such as strings and numbers, this results in
something similar to a constant, as you cannot change the value once it has been
declared:

const name = 'Bill';

name = 'Steve';

// <-- 'Uncaught TypeError: Assignment to constant variable.'

// Gotcha

const person = { name: 'Bill' };

person.name = 'Steve';

// person.name is now Steve.

// As we're not changing the object that person is bound to, JavaScript doesn't

The Anatomy of a Modern JavaScript Application 13

https://www.sitepoint.com/how-to-declare-variables-javascript/

// complain.

Arrow functions

Arrow functions provide a cleaner syntax for declaring anonymous functions
(lambdas), dropping the function keyword and the return keyword when the

body function only has one expression. This can allow you to write functional
style code in a nicer way:

// ES5

var add = function(a, b) {

return a + b;

}

// ES2015

const add = (a, b) => a + b;

The other important feature of arrow functions is that they inherit the value of
this from the context in which they are defined:

function Person(){

this.age = 0;

// ES5

setInterval(function() {

this.age++; // |this| refers to the global object

}, 1000);

// ES2015

setInterval(() => {

this.age++; // |this| properly refers to the person object

}, 1000);

}

var p = new Person();

14 JavaScript: Best Practice

https://www.sitepoint.com/es6-arrow-functions-new-fat-concise-syntax-javascript/

Improved Class syntax

If you’re a fan of object-oriented programming, you might like the addition of
classes to the language on top of the existent mechanism based on prototypes.
While it’s mostly just syntactic sugar, it provides a cleaner syntax for developers
trying to emulate classical object-orientation with prototypes.

class Person {

constructor(name) {

this.name = name;

}

greet() {

console.log(`Hello, my name is ${this.name}`);

}

}

Promises / Async functions

The asynchronous nature of JavaScript has long represented a challenge; any
non-trivial application ran the risk of falling into a callback hell when dealing with
things like Ajax requests.

Fortunately, ES2015 added native support for promises. Promises represent
values that don’t exist at the moment of the computation but that may be
available later, making the management of asynchronous function calls more
manageable without getting into deeply nested callbacks.

ES2017 introduced async functions (sometimes referred to as async/await) that
make improvements in this area, allowing you to treat asynchronous code as if it
were synchronous:

async function doAsyncOp () {

var val = await asynchronousOperation();

The Anatomy of a Modern JavaScript Application 15

https://www.sitepoint.com/object-oriented-javascript-deep-dive-es6-classes/
https://www.sitepoint.com/object-oriented-javascript-deep-dive-es6-classes/
https://www.sitepoint.com/overview-javascript-promises/
https://www.sitepoint.com/simplifying-asynchronous-coding-async-functions/

console.log(val);

return val;

};

Modules

Another prominent feature added in ES2015 is a native module format, making
the definition and usage of modules a part of the language. Loading modules
was previously only available in the form of third-party libraries. We’ll look at
modules in more depth in the next section.

There are other features we won’t talk about here, but we’ve covered at some of
the major differences you’re likely to notice when looking at modern JavaScript.
You can check a complete list with examples on the Learn ES2015 page on the
Babel site, which you might find useful to get up to date with the language. Some
of those features include template strings, block-scoped variables and
constants, iterators, generators, new data structures such as Map and Set, and
more.

Code linting

Linters are tools that parse your code and compare it against a set of rules,
checking for syntax errors, formatting, and good practices. Although the use of a
linter is recommended to everyone, it’s especially useful if you’re getting started.
When configured correctly for your code editor/IDE, you can get instant
feedback to ensure you don’t get stuck with syntax errors as you’re learning new
language features.

You can check out ESLint, which is one of the most popular and supports
ES2015+.

16 JavaScript: Best Practice

https://babeljs.io/learn-es2015/
https://babeljs.io/
https://www.sitepoint.com/up-and-running-with-eslint-the-pluggable-javascript-linter/

Modular Code
Modern web applications can have thousands (even hundred of thousands) of
lines of code. Working at that size becomes almost impossible without a
mechanism to organize everything in smaller components, writing specialized
and isolated pieces of code that can be reused as necessary in a controlled way.
This is the job of modules.

CommonJS modules

A handful of module formats have emerged over the years, the most popular of
which is CommonJS. It’s the default module format in Node.js, and can be used in
client-side code with the help of module bundlers, which we’ll talk about shortly.

It makes use of a module object to export functionality from a JavaScript file and

a require() function to import that functionality where you need it.

// lib/math.js

function sum(x, y) {

return x + y;

}

const pi = 3.141593

module.exports = {

sum: sum,

pi: pi

};

// app.js

const math = require("lib/math");

console.log("2π = " + math.sum(math.pi, math.pi));

The Anatomy of a Modern JavaScript Application 17

https://en.wikipedia.org/wiki/CommonJS

ES2015 modules

ES2015 introduces a way to define and consume components right into the
language, which was previously possible only with third-party libraries. You can
have separate files with the functionality you want, and export just certain parts
to make them available to your application.

Here’s an example:

// lib/math.js

export function sum(x, y) {

return x + y;

}

export const pi = 3.141593;

Here we have a module that exports a function and a variable. We can include
that file in another one and use those exported functions:

// app.js

import * as math from "lib/math";

console.log("2π = " + math.sum(math.pi, math.pi));

Or we can also be specific and import only what we need:

// otherApp.js

Native Browser Support

At the time of writing, native browser support for ES2015 modules is
still under development, so you currently need some additional tools
to be able to use them.

18 JavaScript: Best Practice

import {sum, pi} from "lib/math";

console.log("2π = " + sum(pi, pi));

These examples have been extracted from the Babel website. For an in-depth
look, check out Understanding ES6 Modules.

Package Management
Other languages have long had their own package repositories and managers to
make it easier to find and install third-party libraries and components. Node.js
comes with its own package manager and repository, npm. Although there are
other package managers available, npm has become the de facto JavaScript
package manager and is said to be the largest package registry in the world.

In the npm repository you can find third-party modules that you can easily
download and use in your projects with a single npm install <package>

command. The packages are downloaded into a local node_modules directory,

which contains all the packages and their dependencies.

The packages that you download can be registered as dependencies of your
project in a package.json file, along with information about your project or
module (which can itself be published as a package on npm).

You can define separate dependencies for both development and production.
While the production dependencies are needed for the package to work, the
development dependencies are only necessary for the developers of the
package.

Example package.json file

{

The Anatomy of a Modern JavaScript Application 19

https://babeljs.io/learn-es2015
https://www.sitepoint.com/understanding-es6-modules/
https://www.sitepoint.com/beginners-guide-node-package-manager/
https://www.npmjs.com/
https://docs.npmjs.com/files/package.json

"name": "demo",

"version": "1.0.0",

"description": "Demo package.json",

"main": "main.js",

"dependencies": {

"mkdirp": "^0.5.1",

"underscore": "^1.8.3"

},

"devDependencies": {},

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

},

"author": "Sitepoint",

"license": "ISC"

}

Build Tools
The code that we write when developing modern JavaScript web applications
almost never is the same code that will go to production. We write code in a
modern version of JavaScript that may not be supported by the browser, we
make heavy use of third-party packages that are in a node_modules folder along

with their own dependencies, we can have processes like static analysis tools or
minifiers, etc. Build tooling exists to help transform all this into something that
can be deployed efficiently and that’s understood by most web browsers.

Module bundling

When writing clean, reusable code with ES2015/CommonJS modules, we need
some way to load these modules (at least until browsers support ES2015 module
loading natively). Including a bunch of script tags in your HTML isn’t really a
viable option, as it would quickly become unwieldy for any serious application,
and all those separate HTTP requests would hurt performance.

We can include all the modules where we need them using the import

20 JavaScript: Best Practice

statement from ES2015 (or require , for CommonJS) and use a module bundler

to combine everything together into one or more files (bundles). It’s this bundled
file that we’re going to upload to our server and include in our HTML. It will
include all your imported modules and their necessary dependencies.

There are currently a couple of popular options for this, the most popular ones
being Webpack, Browserify and Rollup.js. You can choose one or another
depending on your needs.

Transpilation

While support for modern JavaScript is pretty good among newer browsers, your
target audience may include legacy browsers and devices with partial or no
support.

In order to make our modern JavaScript work, we need to translate the code we
write to its equivalent in an earlier version (usually ES5). The standard tool for
this task is Babel — a compiler that translates your code into compatible code for
most browsers. In this way, you don’t have to wait for vendors to implement
everything; you can just use all the modern JS features.

There are a couple of features that need more than a syntax translation. Babel
includes a Polyfill that emulates some of the machinery required for some
complex features such as promises.

Further Reading on Module Bundling

If you want to learn more about module bundling and how it fits into
the bigger picture of app development, I recommend reading
Understanding JavaScript Modules: Bundling & Transpiling.

The Anatomy of a Modern JavaScript Application 21

http://webpack.js.org/
http://browserify.org/
http://rollupjs.org/
https://www.sitepoint.com/javascript-modules-bundling-transpiling/
http://kangax.github.io/compat-table/es6/
https://babeljs.io/
http://babeljs.io/docs/usage/polyfill/

Build systems & task runners

Module bundling and transpilation are just two of the build processes that we
may need in our projects. Others include code minification (to reduce file sizes),
tools for analysis, and perhaps tasks that don’t have anything to do with
JavaScript, like image optimization or CSS/HTML pre-processing.

The management of tasks can become a laborious thing to do, and we need a
way to handle it in an automated way, being able to execute everything with
simpler commands. The two most popular tools for this are Grunt.js and Gulp.js,
which provide a way to organize your tasks into groups in an ordered way.

For example, you can have a command like gulp build which may run a code

linter, the transpilation process with Babel, and module bundling with Browserify.
Instead of having to remember three commands and their associated arguments
in order, we just execute one that will handle the whole process automatically.

Wherever you find yourself manually organizing processing steps for your
project, think if it can be automatized with a task runner.

Application Architecture
Web applications have different requirements from websites. For example, while
page reloads may be acceptable for a blog, that’s certainly not the case for an
application like Google Docs. Your application should behave as closely as
possible to a desktop one. Otherwise, the usability will be compromised.

Old-style web applications were usually done by sending multiple pages from a
web server, and when a lot of dynamism was needed, content was loaded via

Further Reading on Gulp.js

Further reading: An Introduction to Gulp.js.

22 JavaScript: Best Practice

http://gruntjs.com/
http://gulpjs.com/
https://www.sitepoint.com/introduction-gulp-js/

Ajax by replacing chunks of HTML according to user actions. Although it was a
big step forward to a more dynamic web, it certainly had its complications.
Sending HTML fragments or even whole pages on each user action represented
a waste of resources — especially of time, from the user’s perspective. The
usability still didn’t match the responsiveness of desktop applications.

Looking to improve things, we created two new methods to build web
applications — from the way we present them to the user, to the way we
communicate between the client and the server. Although the amount of
JavaScript required for an application also increased drastically, the result is now
applications that behave very closely to native ones, without page reloading or
extensive waiting periods each time we click a button.

Single Page Applications (SPAs)

The most common, high-level architecture for web applications is called SPA,
which stands for Single Page Application. SPAs are big blobs of JavaScript that
contain everything the application needs to work properly. The UI is rendered
entirely client-side, so no reloading is required. The only thing that changes is the
data inside the application, which is usually handled with a remote API via Ajax or
another asynchronous method of communication.

One downside to this approach is that the application takes longer to load for the
first time. Once it has been loaded, however, transitions between views (pages)
are generally a lot quicker, since it’s only pure data being sent between client and
server.

Universal / Isomorphic Applications

Although SPAs provide a great user experience, depending on your needs, they
might not be the optimal solution — especially if you need quicker initial
response times or optimal indexing by search engines.

There’s a fairly recent approach to solving these problems, called Isomorphic (or

The Anatomy of a Modern JavaScript Application 23

https://en.wikipedia.org/wiki/Single-page_application
https://en.wikipedia.org/wiki/Ajax_(programming)
http://isomorphic.net/javascript

Universal) JavaScript applications. In this type of architecture, most of the code
can be executed both on the server and the client. You can choose what you
want to render on the server for a faster initial page load, and after that, the
client takes over the rendering while the user is interacting with the app.
Because pages are initially rendered on the server, search engines can index
them properly.

Deployment
With modern JavaScript applications, the code you write is not the same as the
code that you deploy for production: you only deploy the result of your build
process. The workflow to accomplish this can vary depending on the size of your
project, the number of developers working on it, and sometimes the tools/
libraries you’re using.

For example, if you’re working alone on a simple project, each time you’re ready
for deployment you can just run the build process and upload the resulting files
to a web server. Keep in mind that you only need to upload the resulting files
from the build process (transpilation, module bundling, minification, etc.), which
can be just one .js file containing your entire application and dependencies.

You can have a directory structure like this:

├── dist

│ ├── app.js

│ └── index.html

├── node_modules

├── src

│ ├── lib

│ │ ├── login.js

│ │ └── user.js

│ ├── app.js

│ └── index.html

├── gulpfile.js

├── package.json

24 JavaScript: Best Practice

└── README

You thus have all of your application files in a src directory, written in ES2015+,

importing packages installed with npm and your own modules from a lib

directory.

Then you can run Gulp, which will execute the instructions from a gulpfile.js

to build your project — bundling all modules into one file (including the ones
installed with npm), transpiling ES2015+ to ES5, minifying the resulted file, etc.
Then you can configure it to output the result in a convenient dist directory.

Now you can just upload the files from the dist directory to a web server,

without having to worry about the rest of the files, which are only useful for
development.

Team development

If you’re working with other developers, it’s likely you’re also using a shared code
repository, like GitHub, to store the project. In this case, you can run the build
process right before making commits and store the result with the other files in
the Git repository, to later be downloaded onto a production server.

However, storing built files in the repository is prone to errors if several
developers are working together, and you might want to keep everything clean
from build artifacts. Fortunately, there’s a better way to deal with that problem:
you can put a service like Jenkins, Travis CI, CircleCI, etc. in the middle of the
process, so it can automatically build your project after each commit is pushed to

Files That Don't Need Processing

If you have files that don’t need any processing, you can just copy
them from src to the dist directory. You can configure a task for

that in your build system.

The Anatomy of a Modern JavaScript Application 25

http://jenkins.io/
http://travis-ci.org/
http://circleci.com/

the repository. Developers only have to worry about pushing code changes
without building the project first each time. The repository is also kept clean of
automatically generated files, and at the end, you still have the built files
available for deployment.

Conclusion
The transition from simple web pages to modern JavaScript applications can
seem daunting if you’ve been away from web development in recent years, but I
hope this article was useful as a starting point. I’ve linked to more in-depth
articles on each topic where possible so you can explore further.

And remember that if at some point, after looking all the options available,
everything seems overwhelming and messy, just keep in mind the KISS principle,
and use only what you think you need and not everything you have available. At
the end of the day, solving problems is what matters, not using the latest of
everything.

26 JavaScript: Best Practice

https://en.wikipedia.org/wiki/KISS_principle

Moritz Kröger

Clean Code with
ES6 Default

Parameters &
Property

Shorthands

Chapter

2

Clean Code with ES6 Default Parameters & Property Shorthands 27

Creating a method also means writing an API — whether it’s for yourself,
another developer on your team, or other developers using your project.
Depending on the size, complexity, and purpose of your function, you have to
think of default settings and the API of your input/output.

Default function parameters and property shorthands are two handy features of
ES6 that can help you write your API.

ES6 Default Parameters
Let’s freshen up our knowledge quickly and take a look at the syntax again.
Default parameters allow us to initialize functions with default values. A default
is used when an argument is either omitted or undefined — meaning null is a

valid value. A default parameter can be anything from a number to another
function.

// Basic syntax

function multiply (a, b = 2) {

return a * b;

}

multiply(5); // 10

// Default parameters are also available to later default parameters

function foo (num = 1, multi = multiply(num)) {

return [num, multi];

}

foo(); // [1, 2]

foo(6); // [6, 12]

A real-world example

Let’s take a basic function and demonstrate how default parameters can speed
up your development and make the code better organized.

Our example method is called createElement() . It takes a few configuration

28 JavaScript: Best Practice

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Functions/Default_parameters
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Operators/Object_initializer#New_notations_in_ECMAScript_2015

arguments, and returns an HTML element. The API looks like this:

// We want a <p> element, with some text content and two classes attached.

// Returns <p class="very-special-text super-big">Such unique text</p>

createElement('p', {

content: 'Such unique text',

classNames: ['very-special-text', 'super-big']

});

// To make this method even more useful, it should always return a default

// element when any argument is left out or none are passed at all.

createElement(); // <div class="module-text default">Very default</div>

The implementation of this won’t have much logic, but can become quite large
due to it’s default coverage.

// Without default parameters it looks quite bloated and unnecessary large.

function createElement (tag, config) {

tag = tag || 'div';

config = config || {};

const element = document.createElement(tag);

const content = config.content || 'Very default';

const text = document.createTextNode(content);

let classNames = config.classNames;

if (classNames === undefined) {

classNames = ['module-text', 'default'];

}

element.classList.add(...classNames);

element.appendChild(text);

return element;

}

So far, so good. What’s happening here? We’re doing the following:

Clean Code with ES6 Default Parameters & Property Shorthands 29

1

2

3

4

setting default values for both our parameters tag and config , in case

they aren’t passed (note that some linters don’t like parameter reassigning)

creating constants with the actual content (and default values)

checking if classNames is defined, and assigning a default array if not

creating and modifying the element before we return it.

Now let’s take this function and optimize it to be cleaner, faster to write, and so
that it’s more obvious what its purpose is:

// Default all the things

function createElement (tag = 'div', {

content = 'Very default',

classNames = ['module-text', 'special']

} = {}) {

const element = document.createElement(tag);

const text = document.createTextNode(content);

element.classList.add(...classNames);

element.appendChild(text);

return element;

}

We didn’t touch the function’s logic, but removed all default handling from the
function body. The function signature now contains all defaults.

Let me further explain one part, which might be slightly confusing:

// What exactly happens here?

function createElement ({

content = 'Very default',

classNames = ['module-text', 'special']

} = {}) {

// function body

30 JavaScript: Best Practice

http://eslint.org/docs/rules/no-param-reassign
https://developer.mozilla.org/en-US/docs/Glossary/Signature/Function

}

We not only declare a default object parameter, but also default object

properties. This makes it more obvious what the default configuration is
supposed to look like, rather than only declaring a default object (e.g. config =

{}) and later setting default properties. It might take some additional time to get

used to it, but in the end it improves your workflow.

Of course, we could still argue with larger configurations that it might create
more overhead and it’d be simpler to just keep the default handling inside of the
function body.

ES6 Property Shorthands
If a method accepts large configuration objects as an argument, your code can
become quite large. It’s common to prepare some variables and add them to said
object. Property shorthands are syntactic sugar to make this step shorter and
more readable:

const a = 'foo', b = 42, c = function () {};

// Previously we would use these constants like this.

const alphabet = {

a: a,

b: b,

c: c

};

// But with the new shorthand we can actually do this now,

// which is equivalent to the above.

const alphabet = { a, b, c };

Shorten Your API

Okay, back to another, more common example. The following function takes

Clean Code with ES6 Default Parameters & Property Shorthands 31

https://en.wikipedia.org/wiki/Syntactic_sugar

some data, mutates it and calls another method:

function updateSomething (data = {}) {

const target = data.target;

const veryLongProperty = data.veryLongProperty;

let willChange = data.willChange;

if (willChange === 'unwantedValue') {

willChange = 'wayBetter';

}

// Do more.

useDataSomewhereElse({

target: target,

property: veryLongProperty,

willChange: willChange,

// .. more

});

}

It often happens that we name variables and object property names the same.
Using the property shorthand, combined with destructuring, we actually can
shorten our code quite a bit:

function updateSomething (data = {}) {

// Here we use destructuring to store the constants from the data object.

const { target, veryLongProperty: property } = data;

let { willChange } = data;

if (willChange === 'unwantedValue') {

willChange = 'wayBetter';

}

'unwantedValue'// Do more.

useDataSomewhereElse({ target, property, willChange });

}

32 JavaScript: Best Practice

https://www.sitepoint.com/preparing-ecmascript-6-destructuring-assignment/

Again, this might take a while to get used to. In the end, it’s one of those new
features in JavaScript which helped me write code faster and work with cleaner
function bodies.

But wait, there’s more! Property shorthands can also be applied to method
definitions inside an object:

// Instead of writing the function keyword everytime,

const module = {

foo: 42,

bar: function (value) {

// do something

}

};

// we can just omit it and have shorter declarations

const module = {

foo: 42,

bar (value) {

// do something

}

};

Conclusion
Default parameters and property shorthands are a great way to make your
methods more organized, and in some cases even shorter. Overall, default
function parameters helped me to focus more on the actual purpose of the
method without the distraction of lots of default preparations and if statements.

Property shorthands are indeed more of a cosmetic feature, but I found myself
being more productive and spending less time writing all the variables,
configuration objects, and function keywords.

Clean Code with ES6 Default Parameters & Property Shorthands 33

Ivan Čurić

JavaScript
Performance
Optimization

Tips: An
Overview

Chapter

3

34 JavaScript: Best Practice

In this post, there’s lots of stuff to cover across a wide and wildly changing
landscape. It’s also a topic that covers everyone’s favorite: The JS Framework
of the Month™.

We’ll try to stick to the "Tools, not rules" mantra and keep the JS buzzwords to a
minimum. Since we won’t be able to cover everything related to JS performance
in a 2000 word article, make sure you read the references and do your own
research afterwards.

But before we dive into specifics, let’s get a broader understanding of the issue
by answering the following: what is considered as performant JavaScript, and
how does it fit into the broader scope of web performance metrics?

Setting the Stage
First of all, let’s get the following out of the way: if you’re testing exclusively on
your desktop device, you’re excluding more than 50% of your users.

JavaScript Performance Optimization Tips: An Overview 35

http://gs.statcounter.com/platform-market-share/desktop-mobile-tablet

3-1. The number of mobile users overtook the number of desktop users in November 2016

This trend will only continue to grow, as the emerging market’s preferred
gateway to the web is a sub-$100 Android device. The era of the desktop as the
main device to access the Internet is over, and the next billion internet users will
visit your sites primarily through a mobile device.

Testing in Chrome DevTools’ device mode isn’t a valid substitute to testing on a
real device. Using CPU and network throttling helps, but it’s a fundamentally
different beast. Test on real devices.

Even if you are testing on real mobile devices, you’re probably doing so on your
brand spanking new $600 flagship phone. The thing is, that’s not the device your

36 JavaScript: Best Practice

users have. The median device is something along the lines of a Moto G1 --- a
device with under 1GB of RAM, and a very weak CPU and GPU.

Let’s see how it stacks up when parsing an average JS bundle.

Addy Osmani: Time spent in JS parse & eval for average JS.

Ouch. While this image only covers the parse and compile time of the JS (more
on that later) and not general performance, it’s strongly correlated and can be
treated as an indicator of general JS performance.

To quote Bruce Lawson, “it’s the World-Wide Web, not the Wealthy Western
Web”. So, your target for web performance is a device that’s ~25x slower than
your MacBook or iPhone. Let that sink in for a bit. But it gets worse. Let’s see
what we’re actually aiming for.

JavaScript Performance Optimization Tips: An Overview 37

https://docs.google.com/spreadsheets/d/1wHcNNQea28LhwQ_amFamT33d5woVrJfJy53Z1k6V090/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1wHcNNQea28LhwQ_amFamT33d5woVrJfJy53Z1k6V090/edit?usp=sheets_home&ths=true
https://vimeo.com/194968584
https://vimeo.com/194968584

What Exactly is Performant JS Code?
Now that we know what our target platform is, we can answer the next question:
what is performant JS code?

While there’s no absolute classification of what defines performant code, we do
have a user-centric performance model we can use as a reference: The RAIL
model.

Sam Saccone: Planning for Performance: PRPL

Respond

If your app responds to a user action in under 100ms, the user perceives the
response as immediate. This applies to tappable elements, but not when
scrolling or dragging.

38 JavaScript: Best Practice

https://developers.google.com/web/fundamentals/performance/rail
https://developers.google.com/web/fundamentals/performance/rail
https://www.youtube.com/watch?v=RWLzUnESylc

Animate

On a 60Hz monitor, we want to target a constant 60 frames per second when
animating and scrolling. That results in around 16ms per frame. Out of that 16ms
budget, you realistically have 8–10ms to do all the work, the rest taken up by the
browser internals and other variances.

Idle work

If you have an expensive, continuously running task, make sure to slice it into
smaller chunks to allow the main thread to react to user inputs. You shouldn’t
have a task that delays user input for more than 50ms.

Load

You should target a page load in under 1000ms. Anything over, and your users
start getting twitchy. This is a pretty difficult goal to reach on mobile devices as it
relates to the page being interactive, not just having it painted on screen and
scrollable. In practice, it’s even less:

JavaScript Performance Optimization Tips: An Overview 39

Fast By Default: Modern Loading Best Practices (Chrome Dev Summit 2017)

In practice, aim for the 5s time-to-interactive mark. It’s what Chrome uses in
their Lighthouse audit.

Now that we know the metrics, let’s have a look at some of the statistics:

53% of visits are abandoned if a mobile site takes more than three seconds to
load
1 out of 2 people expect a page to load in less than 2 seconds
77% of mobile sites take longer than 10 seconds to load on 3G networks
19 seconds is the average load time for mobile sites on 3G networks.

And a bit more, courtesy of Addy Osmani:

apps became interactive in 8 seconds on desktop (using cable) and 16
seconds on mobile (Moto G4 over 3G)
at the median, developers shipped 410KB of gzipped JS for their pages.

40 JavaScript: Best Practice

https://www.youtube.com/watch?v=_srJ7eHS3IM
https://developers.google.com/web/tools/lighthouse/audits/time-to-interactive
https://storage.googleapis.com/doubleclick-prod/documents/The_Need_for_Mobile_Speed_-_FINAL.pdf
https://medium.com/reloading/javascript-start-up-performance-69200f43b201

Feeling sufficiently frustrated? Good. Let’s get to work and fix the web. ?

Context is Everything
You might have noticed that the main bottleneck is the time it takes to load up
your website. Specifically, the JavaScript download, parse, compile and
execution time. There’s no way around it but to load less JavaScript and load
smarter.

But what about the actual work that your code does aside from just booting up
the website? There has to be some performance gains there, right?

Before you dive into optimizing your code, consider what you’re building. Are you
building a framework or a VDOM library? Does your code need to do thousands
of operations per second? Are you doing a time-critical library for handling user
input and/or animations? If not, you may want to shift your time and energy
somewhere more impactful.

It’s not that writing performant code doesn’t matter, but it usually makes little to
no impact in the grand scheme of things, especially when talking about
microoptimizations. So, before you get into a Stack Overflow argument about
.map vs .forEach vs for loops by comparing results from JSperf.com, make

sure to see the forest and not just the trees. 50k ops/s might sound 50× better
than 1k ops/s on paper, but it won’t make a difference in most cases.

Parsing, Compiling and Executing
Fundamentally, the problem of most non-performant JS is not running the code
itself, but all the steps that have to be taken before the code even starts
executing.

We’re talking about levels of abstraction here. The CPU in your computer runs
machine code. Most of the code you’re running on your computer is in the
compiled binary format. (I said code rather than programs, considering all the

JavaScript Performance Optimization Tips: An Overview 41

Electron apps these days.) Meaning, all the OS-level abstractions aside, it runs
natively on your hardware, no prep-work needed.

JavaScript is not pre-compiled. It arrives (via a relatively slow network) as
readable code in your browser which is, for all intents and purposes, the "OS" for
your JS program.

That code first needs to be parsed --- that is, read and turned into an computer-
indexable structure that can be used for compiling. It then gets compiled into
bytecode and finally machine code, before it can be executed by your device/
browser.

Another very important thing to mention is that JavaScript is single-threaded,
and runs on the browser’s main thread. This means that only one process can run
at a time. If your DevTools performance timeline is filled with yellow peaks,
running your CPU at 100%, you’ll have long/dropped frames, janky scrolling and
all other kind of nasty stuff.

Paul Lewis: When everything’s important, nothing is!.

42 JavaScript: Best Practice

https://aerotwist.com/blog/when-everything-is-important-nothing-is/

1

2

So there’s all this work that needs to be done before your JS starts working.
Parsing and compiling takes up to 50% of the total time of JS execution in
Chrome’s V8 engine.

Addy Osmani: JavaScript Start-up Performance.

There are two things you should take away from this section:

While not necessarily linearly, JS parse time scales with the bundle size.

The less JS you ship, the better.

Every JS framework you use (React, Vue, Angular, Preact…) is another level

of abstraction (unless it’s a precompiled one, like Svelte). Not only will it increase

your bundle size, but also slow down your code since you’re not talking directly

to the browser.

There are ways to mitigate this, such as using service workers to do jobs in the
background and on another thread, using asm.js to write code that’s more easily
compiled to machine instructions, but that’s a whole ’nother topic.

What you can do, however, is avoid using JS animation frameworks for
everything and read up on what triggers paints and layouts. Use the libraries only
when there’s absolutely no way to implement the animation using regular CSS
transitions and animations.

JavaScript Performance Optimization Tips: An Overview 43

https://medium.com/reloading/javascript-start-up-performance-69200f43b201
https://github.com/sveltejs/svelte
https://csstriggers.com/

Even though they may be using CSS transitions, composited properties and
requestAnimationFrame() , they’re still running in JS, on the main thread. They’re

basically just hammering your DOM with inline styles every 16ms, since there’s
not much else they can do. You need to make sure all your JS will be done
executing in under 8ms per frame in order to keep the animations smooth.

CSS animations and transitions, on the other hand, are running off the main
thread --- on the GPU, if implemented performantly, without causing relayouts/
reflows.

Considering that most animations are running either during loading or user
interaction, this can give your web apps the much-needed room to breathe.

The Web Animations API is an upcoming feature set that will allow you to do
performant JS animations off the main thread, but for now, stick to CSS
transitions and techniques like FLIP.

Bundle Sizes are Everything
Today it’s all about bundles. Gone are the times of Bower and dozens of
<script> tags before the closing </body> tag.

Now it’s all about npm install -ing whatever shiny new toy you find on NPM,

bundling them together with Webpack in a huge single 1MB JS file and
hammering your users’ browser to a crawl while capping off their data plans.

Try shipping less JS. You might not need the entire Lodash library for your
project. Do you absolutely need to use a JS framework? If yes, have you
considered using something other than React, such as Preact or HyperHTML,
which are less than 1/20 the size of React? Do you need TweenMax for that
scroll-to-top animation? The convenience of npm and isolated components in
frameworks comes with a downside: the first response of developers to a
problem has become to throw more JS at it. When all you have is a hammer,
everything looks like a nail.

44 JavaScript: Best Practice

https://developer.mozilla.org/en-US/docs/Web/API/Web_Animations_API
https://aerotwist.com/blog/flip-your-animations/
https://surma.github.io/underdash/
https://github.com/developit/preact
https://viperhtml.js.org/
https://greensock.com/tweenmax

When you’re done pruning the weeds and shipping less JS, try shipping it
smarter. Ship what you need, when you need it.

Webpack 3 has amazing features called code splitting and dynamic imports.
Instead of bundling all your JS modules into a monolithic app.js bundle, it can

automatically split the code using the import() syntax and load it

asynchronously.

You don’t need to use frameworks, components and client-side routing to gain
the benefit of it, either. Let’s say you have a complex piece of code that powers
your .mega-widget , which can be on any number of pages. You can simply write

the following in your main JS file:

if (document.querySelector('.mega-widget')) {

import('./mega-widget');

}

If your app finds the widget on the page, it will dynamically load the required
supporting code. Otherwise, all’s good.

Also, Webpack needs its own runtime to work, and it injects it into all the .js files
it generates. If you use the commonChunks plugin, you can use the following to

extract the runtime into its own chunk:

new webpack.optimize.CommonsChunkPlugin({

name: 'runtime',

}),

It will strip out the runtime from all your other chunks into its own file, in this case
named runtime.js . Just make sure to load it before your main JS bundle. For

example:

<script src="runtime.js">

JavaScript Performance Optimization Tips: An Overview 45

https://webpack.js.org/guides/code-splitting/
https://webpack.js.org/guides/code-splitting/#dynamic-imports
https://medium.com/connect-the-dots/caching-assets-long-term-with-webpack-5ad24a4c39bd

<script src="main-bundle.js">

Then there’s the topic of transpiled code and polyfills. If you’re writing modern
(ES6+) JavaScript, you’re probably using Babel to transpile it into ES5 compatible
code. Transpiling not only increases file size due to all the verbosity, but also
complexity, and it often has performance regressions compared to native ES6+
code.

Along with that, you’re probably using the babel-polyfill package and

whatwg-fetch to patch up missing features in older browsers. Then, if you’re

writing code using async/await , you also transpile it using generators needed to

include the regenerator-runtime …

The point is, you add almost 100 kilobytes to your JS bundle, which has not only a
huge file size, but also a huge parsing and executing cost, in order to support
older browsers.

There’s no point in punishing people who are using modern browsers, though. An
approach I use, and which Philip Walton covered in this article, is to create two
separate bundles and load them conditionally. Babel makes this easy with
babel-preset-env . For instance, you have one bundle for supporting IE 11, and

the other without polyfills for the latest versions of modern browsers.

A dirty but efficient way is to place the following in an inline script:

(function() {

try {

new Function('async () => {}')();

} catch (error) {

// create script tag pointing to legacy-bundle.js;

return;

}

// create script tag pointing to modern-bundle.js;;

})();

46 JavaScript: Best Practice

https://github.com/babel/babel/pull/6748
https://philipwalton.com/articles/deploying-es2015-code-in-production-today/

If the browser isn’t able to evaluate an async function, we assume that it’s an old

browser and just ship the polyfilled bundle. Otherwise, the user gets the neat and
modern variant.

Conclusion
What we would like you to gain from this article is that JS is expensive and should
be used sparingly.

Make sure you test your website’s performance on low-end devices, under real
network conditions. Your site should load fast and be interactive as soon as
possible. This means shipping less JS, and shipping faster by any means
necessary. Your code should always be minified, split into smaller, manageable
bundles and loaded asynchronously whenever possible. On the server side, make
sure it has HTTP/2 enabled for faster parallel transfers and gzip/Brotli
compression to drastically reduce the transfer sizes of your JS.

JavaScript Performance Optimization Tips: An Overview 47

Samier Saeed

JavaScript
Design Patterns:

The Singleton

Chapter

4

48 JavaScript: Best Practice

In this chapter, we’ll dig into the best way to implement a singleton in
JavaScript, looking at how this has evolved with the rise of ES6.

Among languages used in widespread production, JavaScript is by far the most
quickly evolving, looking less like its earliest iterations and more like Python, with
every new spec put forth by ECMA International. While the changes have their
fair share of detractors, the new JavaScript does succeed in making code easier
to read and reason about, easier to write in a way that adheres to software
engineering best practices (particularly the concepts of modularity and SOLID
principles), and easier to assemble into canonical software design patterns.

Explaining ES6
ES6 (aka ES2015) was the first major update to the language since ES5 was
standardized in 2009. Almost all modern browsers support ES6. However, if you
need to accommodate older browsers, ES6 code can easily be transpiled into
ES5 using a tool such as Babel. ES6 gives JavaScript a ton of new features,
including a superior syntax for classes, and new keywords for variable
declarations. You can learn more about it by perusing SitePoint articles on the
subject.

What Is a Singleton
In case you’re unfamiliar with the singleton pattern, it is, at its core, a design
pattern that restricts the instantiation of a class to one object. Usually, the goal is
to manage global application state. Some examples I’ve seen or written myself
include using a singleton as the source of config settings for a web app, on the
client side for anything initiated with an API key (you usually don’t want to risk
sending multiple analytics tracking calls, for example), and to store data in
memory in a client-side web application (e.g. stores in Flux).

A singleton should be immutable by the consuming code, and there should be no
danger of instantiating more than one of them.

JavaScript Design Patterns: The Singleton 49

https://kangax.github.io/compat-table/es6/
https://www.sitepoint.com/object-oriented-javascript-deep-dive-es6-classes/
https://www.sitepoint.com/preparing-ecmascript-6-let-const/
https://www.sitepoint.com/preparing-ecmascript-6-let-const/
https://www.sitepoint.com/JavaScript/es6/
https://www.sitepoint.com/JavaScript/es6/
https://en.wikipedia.org/wiki/Singleton_pattern

The Old Way of Creating a Singleton in JavaScript
The old way of writing a singleton in JavaScript involves leveraging closures and
immediately invoked function expressions . Here’s how we might write a (very
simple) store for a hypothetical Flux implementation the old way:

var UserStore = (function(){

var _data = [];

function add(item){

_data.push(item);

}

function get(id){

return _data.find((d) => {

return d.id === id;

});

}

return {

add: add,

get: get

};

}());

When that code is interpreted, UserStore will be set to the result of that

immediately invoked function — an object that exposes two functions, but that
does not grant direct access to the collection of data.

However, this code is more verbose than it needs to be, and also doesn’t give us

Are Singletons Bad?

There are scenarios when singletons might be bad, and arguments
that they are, in fact, always bad. For that discussion, you can check
out this helpful article on the subject.

50 JavaScript: Best Practice

https://www.sitepoint.com/whats-so-bad-about-the-singleton/
https://www.sitepoint.com/demystifying-javascript-closures-callbacks-iifes/
https://www.sitepoint.com/demystifying-javascript-closures-callbacks-iifes/

the immutability we desire when making use of singletons. Code executed later
could modify either one of the exposed functions, or even redefine UserStore

altogether. Moreover, the modifying/offending code could be anywhere! If we got
bugs as a result of unexpected modification of UsersStore , tracking them down

in a larger project could prove very frustrating.

There are more advanced moves you could pull to mitigate some of these
downsides, as specified in this article by Ben Cherry. (His goal is to create
modules, which just happen to be singletons, but the pattern is the same.) But
those add unneeded complexity to the code, while still failing to get us exactly
what we want.

The New Way(s)
By leveraging ES6 features, mainly modules and the new const variable

declaration, we can write singletons in ways that are not only more concise, but
which better meet our requirements.

Let’s start with the most basic implementation. Here’s (a cleaner and more
powerful) modern interpretation of the above example:

const _data = [];

const UserStore = {

add: item => _data.push(item),

get: id => _data.find(d => d.id === id)

}

Object.freeze(UserStore);

export default UserStore;

As you can see, this way offers an improvement in readability. But where it really
shines is in the constraint imposed upon code that consumes our little singleton
module here: the consuming code cannot reassign UserStore because of the

const keyword. And as a result of our use of Object.freeze, its methods cannot

JavaScript Design Patterns: The Singleton 51

http://www.adequatelygood.com/JavaScript-Module-Pattern-In-Depth.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/freeze

be changed, nor can new methods or properties be added to it. Furthermore,
because we’re taking advantage of ES6 modules, we know exactly where
UserStore is used.

Now, here we’ve made UserStore an object literal. Most of the time, going with

an object literal is the most readable and concise option. However, there are
times when you might want to exploit the benefits of going with a traditional
class. For example, stores in Flux will all have a lot of the same base functionality.
Leveraging traditional object-oriented inheritance is one way to get that
repetitive functionality while keeping your code DRY.

Here’s how the implementation would look if we wanted to utilize ES6 classes:

class UserStore {

constructor(){

this._data = [];

}

add(item){

this._data.push(item);

}

get(id){

return this._data.find(d => d.id === id);

}

}

const instance = new UserStore();

Object.freeze(instance);

export default instance;

This way is slightly more verbose than using an object literal, and our example is
so simple that we don’t really see any benefits from using a class (though it will
come in handy in the final example).

One benefit to the class route that might not be obvious is that, if this is your

52 JavaScript: Best Practice

front-end code, and your back end is written in C# or Java, you can employ a lot
of the same design patterns in your client-side application as you do on the back
end, and increase your team’s efficiency (if you’re small and people are working
full-stack). Sounds soft and hard to measure, but I’ve experienced it firsthand
working on a C# application with a React front end, and the benefit is real.

It should be noted that, technically, the immutability and non-overridability of the
singleton using both of these patterns can be subverted by the motivated
provocateur. An object literal can be copied, even if it itself is const , by using

Object.assign. And when we export an instance of a class, though we aren’t
directly exposing the class itself to the consuming code, the constructor of any
instance is available in JavaScript and can be invoked to create new instances.
Obviously, though, that all takes at least a little bit of effort, and hopefully your
fellow devs aren’t so insistent on violating the singleton pattern.

But let’s say you wanted to be extra sure that nobody messed with the
singleness of your singleton, and you also wanted it to match the
implementation of singletons in the object-oriented world even more closely.
Here’s something you could do:

class UserStore {

constructor(){

if(! UserStore.instance){

this._data = [];

UserStore.instance = this;

}

return UserStore.instance;

}

//rest is the same code as preceding example

}

const instance = new UserStore();

Object.freeze(instance);

JavaScript Design Patterns: The Singleton 53

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign

export default instance;

By adding the extra step of holding a reference to the instance, we can check
whether or not we’ve already instantiated a UserStore , and if we have, we won’t

create a new one. As you can see, this also makes good use of the fact that
we’ve made UserStore a class.

Conclusion
There are no doubt plenty of developers who have been using the old singleton/
module pattern in JavaScript for a number of years, and who find it works quite
well for them. Nevertheless, because finding better ways to do things is so
central to the ethos of being a developer, hopefully we see cleaner and easier-to-
reason-about patterns like this one gaining more and more traction. Especially
once it becomes easier and more commonplace to utilize ES6+ features.

54 JavaScript: Best Practice

Jeff Mott

JavaScript
Object Creation:

Patterns and
Best Practices

Chapter

5

JavaScript Object Creation: Patterns and Best Practices 55

In this chapter, I’m going to take you on a tour of the various styles of
JavaScript object creation, and how each builds on the others in incremental
steps.

JavaScript has a multitude of styles for creating objects, and newcomers and
veterans alike can feel overwhelmed by the choices and unsure which they
should use. But despite the variety and how different the syntax for each may
look, they’re more similar than you probably realize.

Object Literals
The first stop on our tour is the absolute simplest method of JavaScript object
creation — the object literal. JavaScript touts that objects can be created “ex
nilo”, out of nothing — no class, no template, no prototype — just poof!, an object
with methods and data:

var o = {

x: 42,

y: 3.14,

f: function() {},

g: function() {}

};

But there’s a drawback. If we need to create the same type of object in other
places, then we’ll end up copy-pasting the object’s methods, data, and
initialization. We need a way to create not just the one object, but a family of
objects.

Factory Functions
The next stop on our JavaScript object creation tour is the factory function. This
is the absolute simplest way to create a family of objects that share the same
structure, interface, and implementation. Rather than creating an object literal
directly, instead we return an object literal from a function. This way, if we need
to create the same type of object multiple times or in multiple places, we only

56 JavaScript: Best Practice

need to invoke a function:

function thing() {

return {

x: 42,

y: 3.14,

f: function() {},

g: function() {}

};

}

var o = thing();

But there’s a drawback. This approach of JavaScript object creation can cause
memory bloat, because each object contains its own unique copy of each
function. Ideally, we want every object to share just one copy of its functions.

Prototype Chains
JavaScript gives us a built-in mechanism to share data across objects, called the
prototype chain. When we access a property on an object, it can fulfill that
request by delegating to some other object. We can use that and change our
factory function so that each object it creates contains only the data unique to
that particular object, and delegate all other property requests to a single, shared
object:

var thingPrototype = {

f: function() {},

g: function() {}

};

function thing() {

var o = Object.create(thingPrototype);

o.x = 42;

o.y = 3.14;

JavaScript Object Creation: Patterns and Best Practices 57

return o;

}

var o = thing();

In fact, this is such a common pattern that the language has built-in support for
it. We don’t need to create our own shared object (the prototype object). Instead,
a prototype object is created for us automatically alongside every function, and
we can put our shared data there:

thing.prototype.f = function() {};

thing.prototype.g = function() {};

function thing() {

var o = Object.create(thing.prototype);

o.x = 42;

o.y = 3.14;

return o;

}

var o = thing();

But there’s a drawback. This is going to result in some repetition. The first and
last lines of the thing function are going to be repeated almost verbatim in

every such delegating-to-prototype factory function.

ES5 Classes
We can isolate the repetitive lines by moving them into their own function. This
function would create an object that delegates to some other arbitrary function’s
prototype, then invoke that function with the newly created object as an
argument, and finally return the object:

58 JavaScript: Best Practice

function create(fn) {

var o = Object.create(fn.prototype);

fn.call(o);

return o;

}

// ...

Thing.prototype.f = function() {};

Thing.prototype.g = function() {};

function Thing() {

this.x = 42;

this.y = 3.14;

}

var o = create(Thing);

In fact, this too is such a common pattern that the language has some built-in
support for it. The create function we defined is actually a rudimentary version

of the new keyword, and we can drop-in replace create with new :

Thing.prototype.f = function() {};

Thing.prototype.g = function() {};

function Thing() {

this.x = 42;

this.y = 3.14;

}

var o = new Thing();

We’ve now arrived at what we commonly call “ES5 classes”. They’re object
creation functions that delegate shared data to a prototype object and rely on
the new keyword to handle repetitive logic.

JavaScript Object Creation: Patterns and Best Practices 59

But there’s a drawback. It’s verbose and ugly, and implementing inheritance is
even more verbose and ugly.

ES6 Classes
A relatively recent addition to JavaScript is ES6 classes, which offer a
significantly cleaner syntax for doing the same thing:

class Thing {

constructor() {

this.x = 42;

this.y = 3.14;

}

f() {}

g() {}

}

const o = new Thing();

Comparison
Over the years, we JavaScripters have had an on-and-off relationship with the
prototype chain, and today the two most common styles you’re likely to
encounter are the class syntax, which relies heavily on the prototype chain, and
the factory function syntax, which typically doesn’t rely on the prototype chain at
all. The two styles differ — but only slightly — in performance and features.

Performance

JavaScript engines are so heavily optimized today that it’s nearly impossible to
look at our code and reason about what will be faster. Measurement is crucial.
Yet sometimes even measurement can fail us. Typically, an updated JavaScript
engine is released every six weeks, sometimes with significant changes in
performance, and any measurements we had previously taken, and any

60 JavaScript: Best Practice

decisions we made based on those measurements, go right out the window. So,
my rule of thumb has been to favor the most official and most widely used
syntax, under the presumption that it will receive the most scrutiny and be the
most performant most of the time. Right now, that’s the class syntax, and as I
write this, the class syntax is roughly 3x faster than a factory function returning a
literal.

Features

What few feature differences there were between classes and factory functions
evaporated with ES6. Today, both factory functions and classes can enforce truly
private data—factory functions with closures and classes with weak maps. Both
can achieve multiple-inheritance factory functions by mixing other properties
into their own object, and classes also by mixing other properties into their
prototype, or with class factories, or with proxies. Both factory functions and
classes can return any arbitrary object if need be. And both offer a simple syntax.

Conclusion
All things considered, my preference for JavaScript object creation is to use the
class syntax. It’s standard, it’s simple and clean, it’s fast, and it provides every
feature that once upon a time only factories could deliver.

JavaScript Object Creation: Patterns and Best Practices 61

M. David Green

Best Practices
for Using

Modern
JavaScript

Syntax

Chapter

6

62 JavaScript: Best Practice

Modern JavaScript is evolving quickly to meet the changing needs of new
frameworks and environments. Understanding how to take advantage of
those changes can save you time, improve your skill set, and mark the
difference between good code and great code.

Knowing what modern JavaScript is trying to do can help you decide when to use
the new syntax to your best advantage, and when it still makes sense to use
traditional techniques.

Something Solid to Cling To
I don’t know anybody who isn’t confused at the state of JavaScript these days,
whether you’re new to JavaScript, or you’ve been coding with it for a while. So
many new frameworks, so many changes to the language, and so many contexts
to consider. It’s a wonder that anybody gets any work done, with all of the new
things that we have to learn every month.

I believe that the secret to success with any programming language, no matter
how complex the application, is getting back to the basics. If you want to
understand Rails, start by working on your Ruby skills, and if you want to use
immutables and unidirectional data flow in isomorphic React with webpack (or
whatever the cool nerds are doing these days) start by knowing your core
JavaScript.

Understanding how the language itself works is much more practical than
familiarizing yourself with the latest frameworks and environments. Those
change faster than the weather. And with JavaScript, we have a long history of
thoughtful information online about how JavaScript was created and how to use
it effectively.

The problem is that some of the new techniques that have come around with the
latest versions of JavaScript make some of the old rules obsolete. But not all of
them! Sometimes a new syntax may replace a clunkier one to accomplish the
same task. Other times the new approach may seem like a simpler drop-in

Best Practices for Using Modern JavaScript Syntax 63

https://www.sitepoint.com/immutable-data-functional-javascript-mori/
https://www.sitepoint.com/video-introducing-one-way-data-flow/
https://www.sitepoint.com/url-parsing-isomorphic-javascript/
https://www.sitepoint.com/universal-react-rendering-sitepoint/
https://www.sitepoint.com/bundle-static-site-webpack/

replacement for the way we used to do things, but there are subtle differences,
and it’s important to be aware of what those are.

A Spoonful of Syntactic Sugar
A lot of the changes in JavaScript in recent years have been described as
syntactic sugar for existing syntax. In many cases, the syntactic sugar can help
the medicine go down for Java programmers learning how to work with
JavaScript, or for the rest of us we just want a cleaner, simpler way to accomplish
something we already knew how to do. Other changes seem to introduce
magical new capabilities.

But if you try to use modern syntax to recreate a familiar old technique, or stick it
in without understanding how it actually behaves, you run the risk of:

having to debug code that worked perfectly before
introducing subtle mistakes that may catch you at runtime
creating code that fails silently when you least expect it.

In fact, several of the changes that appear to be drop-in replacements for
existing techniques actually behave differently from the code that they
supposedly replace. In many cases, it can make more sense to use the original,
older style to accomplish what you’re trying to do. Recognizing when that’s
happening, and knowing how to make the choice, is critical to writing effective
modern JavaScript.

When Your const Isn’t Consistent
Modern JavaScript introduced two new keywords, let and const , which

effectively replace the need for var when declaring variables in most cases. But

they don’t behave exactly the same way that var does.

In traditional JavaScript, it was always a clean coding practice to declare your

64 JavaScript: Best Practice

variables with the var keyword before using them. Failure to do that meant that

the variables you declared could be accessed in the global scope by any scripts
that happened to run in the same context. And because traditional JavaScript
was frequently run on webpages where multiple scripts might be loaded
simultaneously, that meant that it was possible for variables declared in one
script to leak into another.

The cleanest drop-in replacement for var in modern JavaScript is let . But let

has a few idiosyncrasies that distinguish it from var . Variable declarations with

var were always hoisted to the top of their containing scope by default,

regardless of where they were placed inside of that scope. That meant that even
a deeply nested variable could be considered declared and available right from
the beginning of its containing scope. The same is not true of let or const .

console.log(usingVar); // undefined

var usingVar = "defined";

console.log(usingVar); // "defined"

console.log(usingLet); // error

let usingLet = "defined"; // never gets executed

console.log(usingLet); // never gets executed

When you declare a variable using let or const , the scope for that variable is

limited to the local block where it’s declared. A block in JavaScript is
distinguished by a set of curly braces {} , such as the body of a function or the

executable code within a loop.

This is a great convenience for block-scoped uses of variables such as iterators
and loops. Previously, variables declared within loops would be available to the
containing scope, leading to potential confusion when multiple counters might
use the same variable name. However let can catch you by surprise if you

expect your variable declared somewhere inside of one block of your script to be
available elsewhere.

Best Practices for Using Modern JavaScript Syntax 65

https://toddmotto.com/everything-you-wanted-to-know-about-javascript-scope/

for (var count = 0; count < 5; count++) {

console.log(count);

} // outputs the numbers 0 - 4 to the console

console.log(count); // 5

for (let otherCount = 0; otherCount < 5; otherCount++) {

console.log(otherCount);

} // outputs the numbers 0 - 4 to the console

console.log(otherCount); // error, otherCount is undefined

The other alternative declaration is const , which is supposed to represent a

constant. But it’s not completely constant.

A const can’t be declared without a value, unlike a var or let variable.

var x; // valid

let y; //valid

const z; // error

A const will also throw an error if you try to set it to a new value after it’s been

declared:

const z = 3; // valid

z = 4; // error

But if you expect your const to be immutable in all cases, you may be in for a

surprise when an object or an array declared as a const lets you alter its

content.

const z = []; // valid

z.push(1); // valid, and z is now [1]

z = [2] // error

For this reason, I remain skeptical when people recommend using const

constantly in place of var for all variable declarations, even when you have

66 JavaScript: Best Practice

every intention of never altering them after they’ve been declared.

While it’s a good practice to treat your variables as immutable, JavaScript won’t
enforce that for the contents of a reference variables like arrays and objects
declared with const without some help from external scripts. So the const

keyword may make casual readers and newcomers to JavaScript expect more
protection than it actually provides.

I’m inclined to use const for simple number or string variables I want to initialize

and never alter, or for named functions and classes that I expect to define once
and then leave closed for modification. Otherwise, I use let for most variable

declarations — especially those I want to be bounded by the scope in which they
were defined. I haven’t found the need to use var lately, but if I wanted a

declaration to break scope and get hoisted to the top of my script, that’s how I
would do it.

Limiting the Scope of the Function
Traditional functions, defined using the function keyword, can be called to

execute a series of statements defined within a block on any parameters passed
in, and optionally return a value:

function doSomething(param) {

return(`Did it: ${param}`);

}

console.log(doSomething("Hello")); // "Did it: Hello"

They can also be used with the new keyword to construct objects with

prototypal inheritance, and that definition can be placed anywhere in the scope
where they might be called:

function Animal(name) {

this.name = name;

Best Practices for Using Modern JavaScript Syntax 67

}

let cat = new Animal("Fluffy");

console.log(`My cat's name is ${cat.name}.`); // "My cat's name is Fluffy."

Functions used in either of these ways can be defined before or after they’re
called. It doesn’t matter to JavaScript.

console.log(doSomething("Hello")); // "Did it: Hello"

let cat = new Animal("Fluffy");

console.log(`My cat's name is ${cat.name}.`); `My cat's name is ${cat.name}.`// "My cat's name is Fluffy."

function doSomething(param) {

return(`Did it: ${param}`);

}

function Animal(name) {

this.name = name;

}

A traditional function also creates its own context, defining a value for this that

exists only within the scope of the statement body. Any statements or sub-
functions defined within it are executing, and optionally allowing us to bind a
value for this when calling the function.

That’s a lot for the keyword to do, and it’s usually more than a programmer needs
in any one place. So modern JavaScript split out the behavior of the traditional
function into arrow functions and classes.

Getting to Class on Time

One part of the traditional function has been taken over by the class keyword.

This allows programmers to choose whether they would prefer to follow a more
functional programming paradigm with callable arrow functions, or use a more
object-oriented approach with classes to substitute for the prototypal
inheritance of traditional functions.

68 JavaScript: Best Practice

Classes in JavaScript look and act a lot like simple classes in other object-
oriented languages, and may be an easy stepping stone for Java and C++
developers looking to expand into JavaScript as JavaScript expands out to the
server.

One difference between functions and classes when doing object-oriented
programming in JavaScript is that classes in JavaScript require forward
declaration, the way they do in C++ (although not in Java). That is, a class needs

to be declared in the script before it is instantiated with a new keyword.

Prototypal inheritance using the function keyword works in JavaScript even if

it’s defined later in the script, since a function declaration is automatically

hoisted to the top, unlike a class .

// Using a function to declare and instantiate an object (hoisted)

let aProto = new Proto("Myra");

aProto.greet(); // "Hi Myra"

function Proto(name) {

this.name = name;

this.greet = function() {

console.log(`Hi ${this.name}`);

};

};

// Using a class to declare and instantiate an object (not hoisted)

class Classy {

constructor(name) {

this.name = name;

}

greet() {

console.log(`Hi ${this.name}`);

}

};

let aClassy = new Classy("Sonja");

aClassy.greet(); // "Hi Sonja"

Best Practices for Using Modern JavaScript Syntax 69

Pointed Differences with Arrow Functions

The other aspect of traditional functions can now be accessed using arrow
functions, a new syntax that allows you to write a callable function more
concisely, to fit more neatly inside a callback. In fact, the simplest syntax for an
arrow function is a single line that leaves off the curly braces entirely, and
automatically returns the result of the statement executed:

const traditional = function(data) {

return (`${data} from a traditional function`);

}

const arrow = data => `${data} from an arrow function`;

console.log(traditional("Hi")); // "Hi from a traditional function"

console.log(arrow("Hi")); // "Hi from an arrow function"

Arrow functions encapsulate several qualities that can make calling them more
convenient, and leave out other behavior that isn’t as useful when calling a
function. They are not drop-in replacements for the more versatile traditional
function keyword.

For example, an arrow function inherits both this and arguments from the

contexts in which it’s called. That’s great for situations like event handling or
setTimeout when a programmer frequently wants the behavior being called to

apply to the context in which is it was requested. Traditional functions have
forced programmers to write convoluted code that binds a function to an
existing this by using .bind(this) . None of that is necessary with arrow

functions.

class GreeterTraditional {

constructor() {

this.name = "Joe";

}

greet() {

setTimeout(function () {

70 JavaScript: Best Practice

console.log(`Hello ${this.name}`);

}, 1000); // inner function has its own this with no name

}

}

let greeterTraditional = new GreeterTraditional();

greeterTraditional.greet(); // "Hello "

class GreeterBound {

constructor() {

this.name = "Steven";

}

greet() {

setTimeout(function () {

console.log(`Hello ${this.name}`);

}.bind(this), 1000); // passing this from the outside context

}

}

let greeterBound = new GreeterBound(); // "Hello Steven"

greeterBound.greet();

class GreeterArrow {

constructor() {

this.name = "Ravi";

}

greet() {

setTimeout(() => {

console.log(`Hello ${this.name}`);

}, 1000); // arrow function inherits this by default

}

}

let greeterArrow = new GreeterArrow();

greeterArrow.greet(); // "Hello Ravi"

Understand What You’re Getting
It’s not all just syntactic sugar. A lot of the new changes in JavaScript have been
introduced because new functionality was needed. But that doesn’t mean that
the old reasons for JavaScript’s traditional syntax have gone away. Often it
makes sense to continue using the traditional JavaScript syntax, and sometimes

Best Practices for Using Modern JavaScript Syntax 71

using the new syntax can make your code much faster to write and easier to
understand.

Check out those online tutorials you’re following. If the writer is using var to

initialize all of the variables, ignoring classes in favor of prototypal inheritance, or
relying on function statements in callbacks, you can expect the rest of the

syntax to be based on older, traditional JavaScript. And that’s fine. There’s still a
lot that we can learn and apply today from the traditional ways the JavaScript
has always been taught and used. But if you see let and const in the

intializations, arrow functions in callbacks, and classes as the basis for object-
oriented patterns, you’ll probably also see other modern JavaScript code in the
examples.

The best practice in modern JavaScript is paying attention to what the language
is actually doing. Depending on what you’re used to, it may not always be
obvious. But think about what the code you’re writing is trying to accomplish,
where you’re going to need to deploy it, and who will be modifying it next. Then
decide for yourself what the best approach would be.

72 JavaScript: Best Practice

Craig Buckler

Flow Control in
Modern JS:

Callbacks to
Promises to

Async/Await

Chapter

7

Flow Control in Modern JS: Callbacks to Promises to Async/Await 73

JavaScript is regularly claimed to be asynchronous. What does that mean?
How does it affect development? How has the approach changed in recent
years?

Consider the following code:

result1 = doSomething1();

result2 = doSomething2(result1);

Most languages process each line synchronously. The first line runs and returns
a result. The second line runs once the first has finished regardless of how long it
takes.

Single-thread Processing
JavaScript runs on a single processing thread. When executing in a browser tab,
everything else stops. This is necessary because changes to the page DOM can’t
occur on parallel threads; it would be dangerous to have one thread redirecting
to a different URL while another attempts to append child nodes.

This is rarely evident to the user, because processing occurs quickly in small
chunks. For example, JavaScript detects a button click, runs a calculation, and
updates the DOM. Once complete, the browser is free to process the next item
on the queue.

Other Languages

Other languages such as PHP also use a single thread but may be
managed by by a multi-threaded server such as Apache. Two requests
to the same PHP page at the same time can initiate two threads
running isolated instances of the PHP runtime.

74 JavaScript: Best Practice

Going Asynchronous with Callbacks
Single threads raise a problem. What happens when JavaScript calls a “slow”
process such as an Ajax request in the browser or a database operation on the
server? That operation could take several seconds — even minutes. A browser
would become locked while it waited for a response. On the server, a Node.js
application would not be able to process further user requests.

The solution is asynchronous processing. Rather than wait for completion, a
process is told to call another function when the result is ready. This is known as
a callback, and it’s passed as an argument to any asynchronous function. For
example:

doSomethingAsync(callback1);

console.log('finished');

// call when doSomethingAsync completes

function callback1(error) {

if (!error) console.log('doSomethingAsync complete');

}

doSomethingAsync() accepts a callback function as a parameter (only a

reference to that function is passed so there’s little overhead). It doesn’t matter
how long doSomethingAsync() takes; all we know is that callback1() will be

executed at some point in the future. The console will show:

finished

doSomethingAsync complete

Callback Hell

Often, a callback is only ever called by one asynchronous function. It’s therefore
possible to use concise, anonymous inline functions:

Flow Control in Modern JS: Callbacks to Promises to Async/Await 75

doSomethingAsync(error => {

if (!error) console.log('doSomethingAsync complete');

});

A series of two or more asynchronous calls can be completed in series by
nesting callback functions. For example:

async1((err, res) => {

if (!err) async2(res, (err, res) => {

if (!err) async3(res, (err, res) => {

console.log('async1, async2, async3 complete.');

});

});

});

Unfortunately, this introduces callback hell — a notorious concept that even has
its own web page! The code is difficult to read, and will become worse when
error-handling logic is added.

Callback hell is relatively rare in client-side coding. It can go two or three levels
deep if you’re making an Ajax call, updating the DOM and waiting for an
animation to complete, but it normally remains manageable.

The situation is different on OS or server processes. A Node.js API call could
receive file uploads, update multiple database tables, write to logs, and make
further API calls before a response can be sent.

Promises
ES2015 (ES6) introduced Promises. Callbacks are still used below the surface,
but Promises provide a clearer syntax that chains asynchronous commands so
they run in series (more about that in the next section).

To enable Promise-based execution, asynchronous callback-based functions
must be changed so they immediately return a Promise object. That object

76 JavaScript: Best Practice

http://callbackhell.com/
http://callbackhell.com/
https://www.sitepoint.com/overview-javascript-promises/

1

2

promises to run one of two functions (passed as arguments) at some point in the
future:

resolve : a callback function run when processing successfully completes,

and
reject : an optional callback function run when a failure occurs.

In the example below, a database API provides a connect() method which

accepts a callback function. The outer asyncDBconnect() function immediately

returns a new Promise and runs either resolve() or reject() once a

connection is established or fails:

const db = require('database');

// connect to database

function asyncDBconnect(param) {

return new Promise((resolve, reject) => {

db.connect(param, (err, connection) => {

if (err) reject(err);

else resolve(connection);

});

});

}

Node.js 8.0+ provides a util.promisify() utility to convert a callback-based
function into a Promise-based alternative. There are a couple of conditions:

the callback must be passed as the last parameter to an asynchronous

function, and

the callback function must expect an error followed by a value parameter.

Flow Control in Modern JS: Callbacks to Promises to Async/Await 77

https://nodejs.org/api/util.html#util_util_promisify_original

Example:

// Node.js: promisify fs.readFile

const

util = require('util'),

fs = require('fs'),

readFileAsync = util.promisify(fs.readFile);

readFileAsync('file.txt');

Various client-side libraries also provide promisify options, but you can create
one yourself in a few lines:

// promisify a callback function passed as the last parameter

// the callback function must accept (err, data) parameters

function promisify(fn) {

return function() {

return new Promise(

(resolve, reject) => fn(

...Array.from(arguments),

(err, data) => err ? reject(err) : resolve(data)

)

);

}

}

// example

function wait(time, callback) {

setTimeout(() => { callback(null, 'done'); }, time);

}

const asyncWait = promisify(wait);

ayscWait(1000);

Asynchronous Chaining

Anything that returns a Promise can start a series of asynchronous function calls

78 JavaScript: Best Practice

defined in .then() methods. Each is passed the result from the previous

resolve :

asyncDBconnect('http://localhost:1234')

.then(asyncGetSession) // passed result of asyncDBconnect

.then(asyncGetUser) // passed result of asyncGetSession

.then(asyncLogAccess) // passed result of asyncGetUser

.then(result => { // non-asynchronous function

console.log('complete'); // (passed result of asyncLogAccess)

return result; // (result passed to next .then())

})

.catch(err => { // called on any reject

console.log('error', err);

});

Synchronous functions can also be executed in .then() blocks. The returned

value is passed to the next .then() (if any).

The .catch() method defines a function that’s called when any previous

reject is fired. At that point, no further .then() methods will be run. You can

have multiple .catch() methods throughout the chain to capture different

errors.

ES2018 introduces a .finally() method, which runs any final logic regardless

of the outcome — for example, to clean up, close a database connection etc. It’s
currently supported in Chrome and Firefox only, but Technical Committee 39 has
released a .finally() polyfill.

function doSomething() {

doSomething1()

.then(doSomething2)

.then(doSomething3)

.catch(err => {

console.log(err);

})

.finally(() => {

Flow Control in Modern JS: Callbacks to Promises to Async/Await 79

https://github.com/tc39/proposal-promise-finally/blob/fd934c0b42d59bf8d9446e737ba14d50a9067216/polyfill.js

// tidy-up here!

});

}

Multiple Asynchronous Calls with Promise.all()

Promise .then() methods run asynchronous functions one after the other. If

the order doesn’t matter — for example, initialising unrelated components — it’s
faster to launch all asynchronous functions at the same time and finish when the
last (slowest) function runs resolve .

This can be achieved with Promise.all() . It accepts an array of functions and

returns another Promise. For example:

Promise.all([async1, async2, async3])

.then(values => { // array of resolved values

console.log(values); // (in same order as function array)

return values;

})

.catch(err => { // called on any reject

console.log('error', err);

});

Promise.all() terminates immediately if any one of the asynchronous functions

calls reject .

Multiple Asynchronous Calls with Promise.race()

Promise.race() is similar to Promise.all() , except that it will resolve or reject

as soon as the first Promise resolves or rejects. Only the fastest Promise-based
asynchronous function will ever complete:

Promise.race([async1, async2, async3])

.then(value => { // single value

80 JavaScript: Best Practice

console.log(value);

return value;

})

.catch(err => { // called on any reject

console.log('error', err);

});

A Promising Future?

Promises reduce callback hell but introduce their own problems.

Tutorials often fail to mention that the whole Promise chain is asynchronous. Any
function using a series of promises should either return its own Promise or run
callback functions in the final .then() , .catch() or .finally() methods.

I also have a confession: Promises confused me for a long time. The syntax often
seems more complicated than callbacks, there’s a lot to get wrong, and
debugging can be problematic. However, it’s essential to learn the basics.

Further Promise resources:

MDN Promise documentation
JavaScript Promises: an Introduction
JavaScript Promises … In Wicked Detail
Promises for asynchronous programming

Async/Await
Promises can be daunting, so ES2017 introduced async and await . While it

may only be syntactical sugar, it makes Promises far sweeter, and you can avoid
.then() chains altogether. Consider the Promise-based example below:

function connect() {

Flow Control in Modern JS: Callbacks to Promises to Async/Await 81

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developers.google.com/web/fundamentals/primers/promises
http://www.mattgreer.org/articles/promises-in-wicked-detail/
http://exploringjs.com/es6/ch_promises.html
https://www.sitepoint.com/LINK-to-ES2017-article

1

2

return new Promise((resolve, reject) => {

asyncDBconnect('http://localhost:1234')

.then(asyncGetSession)

.then(asyncGetUser)

.then(asyncLogAccess)

.then(result => resolve(result))

.catch(err => reject(err))

});

}

// run connect (self-executing function)

(() => {

connect();

.then(result => console.log(result))

.catch(err => console.log(err))

})();

To rewrite this using async / await :

the outer function must be preceded by an async statement, and

calls to asynchronous Promise-based functions must be preceded by

await to ensure processing completes before the next command executes.

async function connect() {

try {

const

connection = await asyncDBconnect('http://localhost:1234'),

session = await asyncGetSession(connection),

user = await asyncGetUser(session),

log = await asyncLogAccess(user);

return log;

}

82 JavaScript: Best Practice

1

2

3

4

catch (e) {

console.log('error', err);

return null;

}

}

// run connect (self-executing async function)

(async () => { await connect(); })();

await effectively makes each call appear as though it’s synchronous, while not

holding up JavaScript’s single processing thread. In addition, async functions

always return a Promise so they, in turn, can be called by other async functions.

async / await code may not be shorter, but there are considerable benefits:

The syntax is cleaner. There are fewer brackets and less to get wrong.

Debugging is easier. Breakpoints can be set on any await statement.

Error handling is better. try / catch blocks can be used in the same way as

synchronous code.

Support is good. It’s implemented in all browsers (except IE and Opera

Mini) and Node 7.6+.

That said, not all is perfect …

Promises, Promises

async / await still relies on Promises, which ultimately rely on callbacks. You’ll

need to understand how Promises work, and there’s no direct equivalent of
Promise.all() and Promise.race() . It’s easy to forget about Promise.all() ,

which is more efficient than using a series of unrelated await commands.

Flow Control in Modern JS: Callbacks to Promises to Async/Await 83

Asynchronous Awaits in Synchronous Loops

At some point you’ll try calling an asynchronous function inside a synchronous
loop. For example:

async function process(array) {

for (let i of array) {

await doSomething(i);

}

}

It won’t work. Neither will this:

async function process(array) {

array.forEach(async i => {

await doSomething(i);

});

}

The loops themselves remain synchronous and will always complete before their
inner asynchronous operations.

ES2018 introduces asynchronous iterators, which are just like regular iterators
except the next() method returns a Promise. Therefore, the await keyword

can be used with for … of loops to run asynchronous operations in series. for

example:

async function process(array) {

for await (let i of array) {

doSomething(i);

}

}

However, until asynchronous iterators are implemented, it’s possibly best to map

array items to an async function and run them with Promise.all() . For

84 JavaScript: Best Practice

example:

const

todo = ['a', 'b', 'c'],

alltodo = todo.map(async (v, i) => {

console.log('iteration', i);

await processSomething(v);

});

await Promise.all(alltodo);

This has the benefit of running tasks in parallel, but it’s not possible to pass the
result of one iteration to another, and mapping large arrays could be
computationally expensive.

try/catch Ugliness

async functions will silently exit if you omit a try / catch around any await

which fails. If you have a long set of asynchronous await commands, you may

need multiple try / catch blocks.

One alternative is a higher-order function, which catches errors so try / catch

blocks become unnecessary (thanks to @wesbos for the suggestion):

async function connect() {

const

connection = await asyncDBconnect('http://localhost:1234'),

session = await asyncGetSession(connection),

user = await asyncGetUser(session),

log = await asyncLogAccess(user);

return true;

}

// higher-order function to catch errors

Flow Control in Modern JS: Callbacks to Promises to Async/Await 85

https://twitter.com/wesbos/status/911309291545559041

function catchErrors(fn) {

return function (...args) {

return fn(...args).catch(err => {

console.log('ERROR', err);

});

}

}

(async () => {

await catchErrors(connect)();

})();

However, this option may not be practical in situations where an application must
react to some errors in a different way from others.

Despite some pitfalls, async / await is an elegant addition to JavaScript. Further

resources:

MDN async and await
Async functions - making promises friendly
TC39 Async Functions specification
Simplifying Asynchronous Coding with Async Functions

JavaScript Journey
Asynchronous programming is a challenge that’s impossible to avoid in
JavaScript. Callbacks are essential in most applications, but it’s easy to become
entangled in deeply nested functions.

Promises abstract callbacks, but there are many syntactical traps. Converting
existing functions can be a chore and .then() chains still look messy.

Fortunately, async / await delivers clarity. Code looks synchronous, but it can’t

monopolize the single processing thread. It will change the way you write
JavaScript and could even make you appreciate Promises — if you didn’t before!

86 JavaScript: Best Practice

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/async_function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/await
https://developers.google.com/web/fundamentals/primers/async-functions
https://tc39.github.io/ecmascript-asyncawait/
https://www.sitepoint.com/simplifying-asynchronous-coding-async-functions/

Craig Buckler

JavaScript’s
New Private

Class Fields, and
How to Use

Them

Chapter

8

JavaScript’s New Private Class Fields, and How to Use Them 87

ES6 introduced classes to JavaScript, but they’re too simplistic for complex
applications. Class fields (also referred to as class properties) aim to deliver
simpler constructors with private and static members. The proposal is
currently at TC39 stage 3: candidate and could appear in ES2019 (ES10).

A quick recap of ES6 classes is useful before we examine class fields in more
detail.

ES6 Class Basics
JavaScript’s prototypal inheritance model can appear confusing to developers
with an understanding of the classical inheritance used in languages such as
C++, C#, Java and PHP. JavaScript classes are primarily syntactical sugar, but
they offer more familiar object-oriented programming concepts.

A class is a template which defines how objects of that type behave. The
following Animal class defines generic animals (classes are normally denoted

with an initial capital to distinguish them from objects and other types):

class Animal {

constructor(name = 'anonymous', legs = 4, noise = 'nothing') {

this.type = 'animal';

this.name = name;

this.legs = legs;

this.noise = noise;

}

speak() {

console.log(`${this.name} says "${this.noise}"`);

}

walk() {

console.log(`${this.name} walks on ${this.legs} legs`);

88 JavaScript: Best Practice

https://github.com/tc39/proposal-class-fields

}

}

Class declarations execute in strict mode; there’s no need to add 'use strict' .

A constructor method is run when an object of this type is created, and it

typically defines initial properties. speak() and walk() are methods which add

further functionality.

An object can now be created from this class with the new keyword:

const rex = new Animal('Rex', 4, 'woof');

rex.speak(); // Rex says "woof"

rex.noise = 'growl';

rex.speak(); // Rex says "growl"

Getters and Setters
Setters are special methods used to define values only. Similarly, Getters are
special methods used to return a value only. For example:

class Animal {

constructor(name = 'anonymous', legs = 4, noise = 'nothing') {

this.type = 'animal';

this.name = name;

this.legs = legs;

this.noise = noise;

}

speak() {

console.log(`${this.name} says "${this.noise}"`);

JavaScript’s New Private Class Fields, and How to Use Them 89

}

walk() {

console.log(`${this.name} walks on ${this.legs} legs`);

}

// setter

set eats(food) {

this.food = food;

}

// getter

get dinner() {

return `${this.name} eats ${this.food || 'nothing'} for dinner.`;

}

}

const rex = new Animal('Rex', 4, 'woof');

rex.eats = 'anything';

console.log(rex.dinner); // Rex eats anything for dinner.

Child or Sub-Classes
It’s often practical to use one class as the base for another. If we’re mostly
creating dog objects, Animal is too generic, and we must specify the same 4-leg

and “woof” noise defaults every time.

A Dog class can inherit all the properties and methods from the Animal class

using extends . Dog-specific properties and methods can be added or removed

as necessary:

class Dog extends Animal {

constructor(name) {

90 JavaScript: Best Practice

// call the Animal constructor

super(name, 4, 'woof');

this.type = 'dog';

}

'woof'// override Animal.speak

speak(to) {

super.speak();

if (to) console.log(`to ${to}`);

}

}

`to ${to}`

super refers to the parent class and is usually called in the constructor . In this

example, the Dog speak() method overrides the one defined in Animal .

Object instances of Dog can now be created:

const rex = new Dog('Rex');

rex.speak('everyone'); // Rex says "woof" to everyone

rex.eats = 'anything';

console.log(rex.dinner); // Rex eats anything for dinner.

Static Methods and Properties
Defining a method with the static keyword allows it to be called on a class

without creating an object instance. JavaScript doesn’t support static properties
in the same way as other languages, but it is possible to add properties to the
class definition (a class is a JavaScript object in itself!).

The Dog class can be adapted to retain a count of how many dog objects have

JavaScript’s New Private Class Fields, and How to Use Them 91

been created:

class Dog extends Animal {

constructor(name) {

// call the Animal constructor

super(name, 4, 'woof');

this.type = 'dog';

// update count of Dog objects

Dog.count++;

}

// override Animal.speak

speak(to) {

super.speak();

if (to) console.log(`to ${to}`);

}

// return number of dog objects

static get COUNT() {

return Dog.count;

}

}

// static property (added after class is defined)

Dog.count = 0;

The class’s static COUNT getter returns the number of dogs created:

console.log(`Dogs defined: ${Dog.COUNT}`); // Dogs defined: 0

const don = new Dog('Don');

92 JavaScript: Best Practice

console.log(`Dogs defined: ${Dog.COUNT}`); // Dogs defined: 1

const kim = new Dog('Kim');

console.log(`Dogs defined: ${Dog.COUNT}`); // Dogs defined: 2

For more information, refer to Object-oriented JavaScript: A Deep Dive into ES6
Classes.

ESnext Class Fields
The class fields proposal allows properties to be initialized at the top of a class:

class MyClass {

a = 1;

b = 2;

c = 3;

}

This is equivalent to:

class MyClass {

constructor() {

this.a = 1;

this.b = 2;

this.c = 3;

}

}

Initializers are executed before any constructor runs (presuming a constructor is
still necessary).

JavaScript’s New Private Class Fields, and How to Use Them 93

https://www.sitepoint.com/object-oriented-javascript-deep-dive-es6-classes/
https://www.sitepoint.com/object-oriented-javascript-deep-dive-es6-classes/

Static Class Fields

Class fields permit static properties to be declared within the class . For

example:

class MyClass {

x = 1;

y = 2;

static z = 3;

}

console.log(MyClass.z); // 3

The inelegant ES6 equivalent:

class MyClass {

constructor() {

this.x = 1;

this.y = 2;

}

}

MyClass.z = 3;

console.log(MyClass.z); // 3

Private Class Fields

All properties in ES6 classes are public by default and can be examined or
modified outside the class. In the Animal example above, there’s nothing to

prevent the food property being changed without calling the eats setter:

94 JavaScript: Best Practice

class Animal {

constructor(name = 'anonymous', legs = 4, noise = 'nothing') {

this.type = 'animal';

this.name = name;

this.legs = legs;

this.noise = noise;

}

set eats(food) {

this.food = food;

}

get dinner() {

return `${this.name} eats ${this.food || 'nothing'} for dinner.`;

}

}

const rex = new Animal('Rex', 4, 'woof');

rex.eats = 'anything'; // standard setter

rex.food = 'tofu'; // bypass the eats setter altogether

console.log(rex.dinner); // Rex eats tofu for dinner.

Other languages permit private properties to be declared. That’s not possible

in ES6, although developers can work around it using an underscore convention
(_propertyName), closures, symbols, or WeakMaps.

In ESnext, private class fields are defined using a hash # prefix:

class MyClass {

a = 1; // .a is public

#b = 2; // .#b is private

static #c = 3; // .#c is private and static

incB() {

JavaScript’s New Private Class Fields, and How to Use Them 95

https://curiosity-driven.org/private-properties-in-javascript

this.#b++;

}

}

const m = new MyClass();

m.incB(); // runs OK

m.#b = 0; // error - private property cannot be modified outside class

Note that there’s no way to define private methods, getters and setters,
although a TC39 stage 2: draft proposal suggests using a hash # prefix on

names. For example:

class MyClass {

// private property

#x = 0;

// private method (can only be called within the class)

#incX() {

this.#x++;

}

// private setter (can only be called within the class)

set #setX(x) {

this.#x = x;

}

// private getter (can only be called within the class)

get #getX() {

return this.$x;

}

}

96 JavaScript: Best Practice

https://github.com/tc39/proposal-private-methods

Immediate Benefit: Cleaner React Code!
React components often have methods tied to DOM events. To ensure this

resolves to the component, it’s necessary to bind every method accordingly. For

example:

class App extends Component {

constructor() {

super();

state = { count: 0 };

// bind all methods

this.incCount = this.incCount.bind(this);

}

incCount() {

this.setState(ps => ({ count: ps.count + 1 }));

}

render() {

return (

<div>

<p>{ this.state.count }</p>

<button onClick={this.incCount}>add one</button>

</div>

);

}

}

If incCount is defined as a class field, it can be set to a function using an ES6 =>

fat arrow, which automatically binds it to the defining object. The state can also

be declared as a class field so no constructor is required:

JavaScript’s New Private Class Fields, and How to Use Them 97

class App extends Component {

state = { count: 0 };

incCount = () => {

this.setState(ps => ({ count: ps.count + 1 }));

};

render() {

return (

<div>

<p>{ this.state.count }</p>

<button onClick={this.incCount}>add one</button>

</div>

);

}

}

Using Class Fields Today
Class fields are not currently supported in browsers or Node.js. However, it’s
possible to transpile the syntax using Babel, which is enabled by default when
using Create React App. Alternatively, Babel can be installed and configured
using the following terminal commands:

mkdir class-properties

cd class-properties

npm init -y

npm install --save-dev babel-cli babel-plugin-transform-class-properties

echo '{ "plugins": ["transform-class-properties"] }' > .babelrc

Add a build command to the scripts section of package.json :

"scripts": {

98 JavaScript: Best Practice

https://babeljs.io/docs/plugins/transform-class-properties/
https://github.com/facebook/create-react-app

"build": "babel in.js -o out.js"

},

Then run with npm run build to transpile the ESnext file in.js to a cross-

browser-compatible out.js .

Babel support for private methods, getters and setters has been proposed.

Class Fields: an Improvement?
ES6 class definitions were simplistic. Class fields should aid readability and
enable some interesting options. I don’t particularly like using a hash # to

denote private members, but unexpected behaviors and performance issues
would be incurred without it (refer to JavaScript’s new #private class fields for a
detailed explanation).

Perhaps it goes without saying, but I’m going to say it anyway: the concepts
discussed in this article are subject to change and may never be implemented!
That said, JavaScript class fields have practical benefits and interest is rising. It’s
a safe bet.

JavaScript’s New Private Class Fields, and How to Use Them 99

https://github.com/babel/proposals/issues/22
https://jamie.build/javascripts-new-private-class-fields.html

	JavaScript: Best Practice
	Clean, Maintainable, Performant Code
	JavaScript: Best Practice
	Notice of Rights
	Notice of Liability
	Trademark Notice
	About SitePoint

	Table of Contents
	Preface
	Who Should Read This Book?
	Conventions Used
	Code Samples
	Tips, Notes, and Warnings
	Hey, You!
	Ahem, Excuse Me ...
	Make Sure You Always ...
	Watch Out!
	Live Code
	Github

	The Anatomy of a Modern JavaScript Application
	James Kolce
	A Note About Node.js
	JavaScript ES2015+
	Declaring variables
	Arrow functions
	Improved Class syntax
	Promises / Async functions
	Modules
	Code linting

	Modular Code
	CommonJS modules
	ES2015 modules
	Native Browser Support

	Package Management
	Build Tools
	Module bundling
	Further Reading on Module Bundling

	Transpilation
	Build systems & task runners
	Further Reading on Gulp.js

	Application Architecture
	Single Page Applications (SPAs)
	Universal / Isomorphic Applications

	Deployment
	Files That Don't Need Processing
	Team development

	Conclusion

	Clean Code with ES6 Default Parameters & Property Shorthands
	Moritz Kröger
	ES6 Default Parameters
	A real-world example

	ES6 Property Shorthands
	Shorten Your API

	Conclusion

	JavaScript Performance Optimization Tips: An Overview
	Ivan Čurić
	Setting the Stage
	What Exactly is Performant JS Code?
	Respond
	Animate
	Idle work
	Load

	Context is Everything
	Parsing, Compiling and Executing
	Bundle Sizes are Everything
	Conclusion

	JavaScript Design Patterns: The Singleton
	Samier Saeed
	Explaining ES6
	What Is a Singleton
	Are Singletons Bad?

	The Old Way of Creating a Singleton in JavaScript
	The New Way(s)
	Conclusion

	JavaScript Object Creation: Patterns and Best Practices
	Jeff Mott
	Object Literals
	Factory Functions
	Prototype Chains
	ES5 Classes
	ES6 Classes
	Comparison
	Performance
	Features

	Conclusion

	Best Practices for Using Modern JavaScript Syntax
	M. David Green
	Something Solid to Cling To
	A Spoonful of Syntactic Sugar
	When Your const Isn’t Consistent
	Limiting the Scope of the Function
	Getting to Class on Time
	Pointed Differences with Arrow Functions

	Understand What You’re Getting

	Flow Control in Modern JS: Callbacks to Promises to Async/Await
	Craig Buckler
	Single-thread Processing
	Other Languages

	Going Asynchronous with Callbacks
	Callback Hell

	Promises
	Asynchronous Chaining
	Multiple Asynchronous Calls with Promise.all()
	Multiple Asynchronous Calls with Promise.race()
	A Promising Future?

	Async/Await
	Promises, Promises
	Asynchronous Awaits in Synchronous Loops
	try/catch Ugliness

	JavaScript Journey

	JavaScript’s New Private Class Fields, and How to Use Them
	Craig Buckler
	ES6 Class Basics
	Getters and Setters
	Child or Sub-Classes
	Static Methods and Properties
	ESnext Class Fields
	Static Class Fields
	Private Class Fields

	Immediate Benefit: Cleaner React Code!
	Using Class Fields Today
	Class Fields: an Improvement?

