4 i
G o s G S

——t ;’}': T

A
A

"
ADDISON
WESLEY

£l
1

e g e)

g
e

Vo

|

A
E
W
[l
E
[
\ |
I |
[|
I |
[
|
| |
n
o
E
E
|
E
| i
E
| /7

|
|
|

SN L]]

Wwith

An Introduction
to

An Introduction to
Graphical User Interfaces
with Java Swing

We work with leading authors to develop the
strongest educational materials in computing,
bringing cutting-edge thinking and best learning
practice to a global market.

Under a range of well-known imprints, including
Addison-Wesley, we craft high quality print and
electronic publications which help readers to
understand and apply their content, whether
studying or at work.

To find out more about the complete range of our
publishing, please visit us on the World Wide Web at:
www.pearsoned.co.uk

An Introduction to
Graphical User Interfaces
with Java Swing

Paul Fischer

A
V'V ADDISON-WESLEY

An imprint of Pearson Education

Harlow, England « London » New York « Boston « San Francisco « Toronto
Sydney « Tokyo » Singapore s Hong Kong « Seoul « Taipei « New Delhi
Cape Town « Madrid » Mexico City » Amsterdam « Munich « Paris « Milan

Pearson Education Limited
Edinburgh Gate

Harlow

Essex CM20 2JE

England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoned.co.uk

First published 2005
© Pearson Education Limited 2005

The right of Paul Fischer to be identified as author of this work has
been asserted by him in accordance with the Copyright, Designs and
Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored

in a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a licence permitting restricted copying
in the United Kingdom issued by the Copyright Licensing Agency Ltd,

90 Tottenham Court Road, London W1T 4LP.

The programs in this book have been included for their instructional value.
They have been tested with care but are not guaranteed for any particular
purpose. The publisher does not offer any warranties or representations nor
does it accept any liabilities with respect to the programs.

All trademarks used herein are the property of their respective owners.

The use of any trademark in this text does not vest in the author or publisher
any trademark ownership rights in such trademarks, nor does the use of
such trademarks imply any affiliation with or endorsement of this book by
such owners.

ISBN 0321 22070 6

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloguing-in-Publication Data
Fischer, Paul, 1956-

Introduction to graphical user interfaces with Java Swing / Paul Fischer.

p. cm.

Includes bibliographical references and index.

ISBN 0-321-22070-6

1. Java (Computer program language) 2. Graphical user interfaces (Computer systems)
I. Title.

QAT76.73.J38F58 2005

005.13'3 — de22 2004062293

10987654321
08 07 06 05

Typeset in 10/12pt Caslon and Frutiger by 59
Printed in Great Britain by Henry Ling Ltd, at the Dorset Press, Dorchester, Dorset

The publisher’s policy is to use paper manufactured from sustainable forests.

Contents

1 Introduction 1
1.1 General 1
1.2 How graphical interfaces work 3
1.3 A note on code formatting 4
1.4 A note for teachers 4
1.5 Some books on Swing and related topics 5
Acknowledgements 5

| Basics 7

2 Frames, panels and layouts 9
2.1 Frames 9
2.2 Panels and layouts 14
Exercises 22

3 A first GUI 23
3.1 The specification of the application 23
3.2 The counter model 24
3.3 The counter view 27
3.4 The counter control (listeners and events) 31
3.5 Summary 34
Exercises 35

4 A second GUI 37
4.1 The specification of the application 37
4.2 The model part 38

4.3 The view part 39

vi

Contents

4.4 The control part
4.5 The embedding structure
Exercises

5 Displaying a drawing

5.1 Method paintComponent

5.2 The graphics commands

5.3 A simple graphical application
Exercises

6 Adding the mouse

6.1 The mouse listener

6.2 The mouse motion listener
6.3 Mouse events

6.4 A first mouse application
Exercises

7 Interactive graphics

7.1 Specification of the GUI
7.2 The model part

7.3 The view part

7.4 The control part

7.5 Running the application
7.6 Summary and remarks
Exercises

8 Menus
8.1 Specification of the GUI
8.2 The view part
8.3 The control part
Exercise

9 More on listeners

9.1 Basics of listeners
9.2 Implementing listeners

43
44
45

47

47
48
49
52

UL Ut U
(G2 QTS NYEN

63

64

64
65
68
71
73

82

82
83

9.3 Other kinds of listener
Exercises

10 Loading, saving and displaying text

10.1 Reading and writing text files
10.2 Displaying text

11 Scrolling

11.1 Scrolling text components
11.2 Scrolling panels

12 Dialogues

12.1 The basic editor application

12.2 File selection dialogues

12.3 User-defined dialogues

12.4 Radio buttons

12.5 Exchange of information between dialogue and program
12.6 Predefined option dialogues

Exercises

13 More on graphics

13.1 The class Graphics2D

13.2 Finding the screen parameters
13.3 Scaling a drawing

Exercise

14 An example project

14.1 Specification
14.2 The model part
14.3 The view part
14.4 The control part
14.5 Summary
Exercises

Contents

90
92

102

102
104

107

107
110
113
114
115
120
121

122

122
123
124
126

127

127
127
135
141
143
143

vii

viii

Contents

15

15.1
15.2
15.3
15.4

16

16.1
16.2
16.3
16.4
16.5
16.6
16.7

More components and techniques

Pixel graphics

Some graphics file types

Class ImageIcon

Displaying pixel graphics in Swing
Manipulating images

More Swing components

Borders

Lists

Tables

Trees

Combo boxes
Split panes
Tabbed panes

Exercises

17

17.1

Grid-bag layout

The classes GridBagLayout and GridBagConstraints

Exercises

18

18.1
18.2
18.3
18.4
18.5

Advanced topics

Styling text

Positions

Text attributes

Document listeners

Class DefaultStyledDocument
An example of using documents

Exercises

147

149

149
150
151
154

168

168
170
177
186
192
197
201
204

205

208
212

213

215
217
219
220
221
224

Contents ix

19 Printing in Java 226
19.1 Interface Printable 227
19.2 Class PrinterJob 229
19.3 An example application 231
19.4 A generic class for printing 233

20 Swing and threads 236
20.1 Event thread and event queue 236
20.2 Blocking a user interface 237
20.3 Side-effects 244
20.4 Updating a display at runtime 244

21 A generic graphics package 249
21.1 Specification of the package 249
21.2 Structuring the package 250
21.3 Helper classes 253

22 Displaying HTML documents and accessing

the web 258

22.1 Displaying an HTML page 258
22.2 Using HTML links 260
22.3 A simple web browser 261
22.4 Reading a web page 265
22.5 Harvesting information from the web 267
23 Applets 271
23.1 Applets in Swing 271
Appendix A Solutions to selected exercises 279
Appendix B Some general remarks on Java 291
B.1 Objects, non-objects and references 291

B.2 Declarations and definitions 293

X

Contents

B.3 Accessing variables with get and set
B.4 Passing references
B.5 The classpath

Index

297
297
300

303

Introduction

1.1 M General

Modern operating systems such as Microsoft’s Windows, Apple’s MacOS, and the
different Unix-based versions such as Linux or Solaris use a graphical interface
to communicate with the user. The communication consists of information dis-
played by programs and actions and commands issued by the user. This book is an
introduction to graphic programming in Java. It is assumed that the reader knows
the basic concepts of Java such as object-orientation, inheritance, interfaces, ex-
ceptions and use of packages.

There are two libraries for graphics components in Java: the Abstract Win-
dowing Toolkit (AWT) and Swing. The first is the older one. It contains all the
components needed to design graphical user interfaces. However, using AWT is
not easy and the library is not free of bugs. The components of the Swing library
are easier to work with and are much better implemented. Some Swing compo-
nents need classes from the AWT library. To make these classes available we have
to import them by

import java.awt.*;

import javax.swing.*;

Sometimes it is advisable not to include the whole library by using * (because it
is so large) but only the classes needed.

Here we introduce the fundamental graphical components of the Swing library.
The aim is to enable the reader to design an interactive graphical interface. This
includes displaying graphics and text, making buttons react and the use of the
mouse. We present only the most important graphical components and control
concepts in this book. There are many more components that are not consid-
ered. Only the essential features of the components are described. Information on
additional components features can be found in the Java documentation.

Important facts and sources of frequent errors are marked by a ‘!” in the margin.

The example programs are designed independent of a development environ-
ment. They can be compiled and run from the command line. All programs are
contained in the main package its for ‘Introduction to Swing’. This package con-
tains further (sub-)packages, each of which contains the programs for a specific

2

Introduction

topic. Packages correspond to directories/folders. The directory structure looks
like this:

Unix/Linux: its/[subPackageName]/[sourceFileName].java

MS-Windows: its\[subPackageName])\[sourceFileName] .java

where you have to insert the appropriate names for [subPackageName] and
[sourceFileName].

To compile and then run a program go to the super-directory of its and issue
the following commands:

javac its)\[subPackageName]\[sourceFileName].java java

its. [subPackageName] . [sourceFileName]

Note that dots are used instead of the slashes in the java command. The file path
separators are different on different operating systems. Look at Section B.5 in
Appendix B for solutions to some common problems.

The its-package can be downloaded as a ZIP-file from the book’s home page
(http://www.imm.dtu.dk/swingbook/). It is in Windows file format so if you are
on Linux or Unix you might see a CR or an <M> at the end of every line. Use
dos2unix to get rid of it.

The correct directory structure is reconstructed when the ZIP-file is recon-
structed. To test it, go to the super-directory of its and type commands:

javac its\Test\Test.java

java its.Test.Test

You should get the picture in Figure 1.1. If you get error messages, see Section B.5.

The example programs follow the paradigm of object-orientation in that we de-
fine a class for every customized component. Most applications are started from
a separate start class (driver). The names of the start classes end with priver.
All the example programs are very simple because we want to concentrate on the
graphical concepts. This means that we also omit tests that check for safety and
plausibility. For example, if the size of a graphical component is set to certain
values we do not check whether the values are positive, neither do we check

Figure 1.1 Result of the test program

Introduction

whether a file we want to open really exists. If writing an application for seri-
ous purposes, you have to insert these tests. Also, exceptions are not used to
cope with errors; for some errors a message will be displayed on the console.
When writing a larger application, it is advisable to make use of Java’s exception
mechanism.

The author is grateful for any corrections and suggestions. Please do not hesi-
tate to report typographical errors or to point out parts that appear unclear. Also
tell me if you would like to see an example of something specific or if there are
any problems concerning the example programs. If the reader is looking for a spe-
cial component or a feature of a component that is not explained in the book,
you should first consult the Java documentation. Answers to frequently asked
questions and program updates will also be placed on the book’s home page. The
author’s address is

Paul Fischer

IMM, Technical University of Denmark
Building 322

DK-2800 Kgs. Lyngby

Denmark

email paf@imm.dtu.dk

1.2 M How graphical interfaces work

Programs with graphical user interfaces (GUIs) are event driven. This means that
the program reacts to actions of the user; these actions are called events. Examples
of events are pressing a key, moving the mouse, pressing a button and selecting a
menu item.

A program with a GUI has a (short) start-up phase in which the GUI is con-
structed but not yet displayed. Some other preparations (not related to graphics)
are also performed. This phase is not event driven and user interaction is not
possible. After this phase the GUI is displayed on the screen and the program is
now controlled by events.

Of course, we want the program to react only to a few types of event, not all. The
programmer has to specify those events to which the program has to react and, of
course, what the reaction should be. In Java this is done by implementing so-called
listeners which wait for specific kinds of events to occur. Once the programmer
has implemented a listener for a specific type of event, the runtime system will
automatically inform the listener when such an event occurs. The listener then
performs the desired action. Events are processed in the order of their occurrence.

There are many types of event in Java, associated with the different event
sources, such as buttons, menus or the mouse. Events contain information on
what has happened, e.g. what triggered the event (a button, a menu) and where it
occurred (the coordinates of the mouse). This information is then exploited by the
listener.

3

Introduction

1.3 M A note on code formatting

The following notational conventions are used to address frequent questions from
attendants of courses which the author gave on Swing programming. Some fre-
quently occurring problems are addressed in Appendix B.

In the code listings we sometimes use comments to make the block structure
appear more clearly. Comments are added after the closing braces. This is not
always done but is used if many blocks are nested or there is a lengthy code
segment in a block. Here is an example:

for(int i =0; i < N; i++){
for(int j =0; j < N; Jj++){
if(j < i){

// many statements

Y//1if
}Y//for 37
}Y//for 1

When calling a method of a graphic component we sometimes unnecessarily add
the key word this to make clear to which component the method belongs. Here
is an example:

public MyPanel () { // constructor of graphical component
JLabel myLabel = new JLabel ("Test"); // another component
this.add (myLabel) ; // add the label to this panel
this.setSize(200,200) ; // set the size of this panel

// not of the label

1.4 M A note for teachers

This book is based on material that the author has used in various courses on
graphical interfaces. Students are assumed to know the basic concepts of Java,
such as classes, inheritance and range of variables. The courses are usually run
before the first large programming project is to be performed. Using a model-view—
control approach has greatly improved the quality of the resulting programs.

For a three-day intensive course Chapters 2 to 8 are appropriate. If additional
features are needed in a follow-up project, the students can easily find them in
the remaining chapters. In a one-week intensive course one can cover Chap-
ters 10 to 14 in addition or include some chapters on more elaborate topics if
needed.

Introduction 5

1.5 M Some books on Swing and related topics
The following list is a very individual selection on material and books on Swing:

B Java Software Solutions by J. Lewis and W. Loftus, Addison-Wesley, 2003.
Sound introduction to (mainly) non-graphical Java.

B Java 2 SDK, Standard Edition Documentation is essential. You can download
it from the Java site at SUN http://java.sun.com/.

B Core Java, Volume 1 by C. Horstmann and G. Cornell, Sun Microsystems
Press/Prentice Hall, 2002. Is mainly an introduction to non-graphical Java but
also addresses the basics of Swing.

B Graphic Java, Volume 2: Swing by D. Geary, Sun Microsystems Press/Prentice
Hall, 2001; 1680 pages. Explains most Swing components in much detail and
covers a number of advanced techniques.

B UML Distilled, Second Edition by M. Fowler and K. Scott, Addison-Wesley,
2000. A compact hands-on introduction to the Unified Modelling Language.

B Acknowledgements

The author would like to thank Anne Haxthausen, Jens Thyge Kristensen, Hans
Henrik Lovengreen and Jorgen Steensgaard-Madsen for suggesting many impor-
tant improvements. A special thanks to Thyge for his thorough proof-reading of
the lecture notes on which this book is based.

PART I

Basics

Frames, panels
and layouts

The basic element of any graphical operating system is a ‘window’. In this chapter
we shall first learn how to create a window and how to display it on the screen.
Then we shall see how one can embed other graphical objects into the window and
how they can be arranged in different ways.

2.1 B Frames

The main components of graphical applications are the so-called windows. These
are rectangular areas in which text, pictures or other information can be displayed.
Windows may also contain elements for user interaction, such as menus, buttons
or areas for text input. Most other graphical components discussed in this book
cannot be displayed alone but have to be placed inside a window. The actual
appearance of a window depends on the operating system, especially the width
and type of the border around a window. The position and colour of buttons might
vary.

In Java, the term frame is used for what is generally called a ‘window’ and
we shall henceforth stick to that notation'. In Swing, frames are realized by the
class JFrame. A frame is a rectangular area with a title bar on top. The title bar
also contains buttons for closing, maximizing or making an icon of the frame. As
mentioned above, the type and position of these buttons depend on the platform
(Windows, MacOS, Linux, Solaris, etc.). Below the title bar is an area into which
further graphical components can be embedded. This area is divided into two
parts: a space for a menu bar at the upper edge and the content pane below. The
content pane may have further graphical components embedded. If no menu bar is
added then the content pane is extended upwards. Usually there is a small border
around the frame to separate it from the background. The basic functions such as
resizing or moving the frame with the mouse are automatically supplied and do
not have to be implemented by the programmer. Figure 2.1 shows the structure
of a frame.

I There is actually a component called ‘window’ in the Swing library. It is frameless, i.e. it
does not have a title bar, a border or additional buttons.

10

Basics

Title

Space for menu bar

Content pane

Figure 2.1 Structure of a frame. The title text can be set. The position and appearance of the
buttons depend on the operating system. Further graphical components can be embedded
into the content pane

We now present the constructor, list some methods of JFrame and explain their
behaviour:

JFrame ()

setVisible (boolean b)

setTitle(String title)

setSize (int width, int height)
setLocation(int horizontal, int vertical)
pack ()

setDefaultCloseOperation (int operation)

JFrame () is the default constructor. It generates an untitled frame. ‘Generate’
here means that the information for drawing the frame is provided. The frame
is, however, not shown on the screen. This is done by calling the method
setVisible, explained below.

setVisible (boolean b) makes the frame appear on the screen if b = true. If
a frame is visible then setvisible (false) makes it disappear but does not
destroy the information for drawing it. So, calling setvisible (true) on this
frame another time will make it visible again; we do not have to use the con-
structor a second time.

setTitle(String title) sets the title appearing in the title bar to title.

setSize(int width, int height) sets the width of the frame to width and the
height to height. These are outer measures in screen pixels.

setLocation(int horizontal, int vertical) moves the frame, so thatits up-
per left corner is at position (horizontal,vertical). See also Figure 2.2.

Frames, panels and layouts

(0.0 a o

1

. |
(@b) :

|

Wy I
1

\ Screen or Swing component

Figure 2.2 The Java coordinate system is upside down. The origin (0,0) is the upper left
corner of the screen. The positive x-axis points right, the positive y-axis points downwards. If
embedding components into another one, e.g. into the content pane of a frame, then the
origin is the upper left corner of the parent component

pack () resizes the frame so that it tightly fits around components embedded into
its content pane.

setDefaultCloseOperation (int operation) determines what happens if the
‘close’ button of the frame is clicked. See the comments below.

Let us briefly discuss method setDefaultCloseOperation. By default, the frame
becomes invisible when its ‘close’ button is clicked. The application that made
it visible is, however, still running, i.e. the program is not terminated. There are
some predefined constants in the class JFrame which can be used for operation.
We shall use JFrame.EXIT_ON_CLOSE.

setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE)

Then the whole application is automatically terminated when the ‘close’ button
is clicked. Not adding this line would result in the following problem. Suppose
an application is started over and over again — as happens in the test phase of a
new program — and every time displays a new frame. Though the frames are all
made invisible by clicking the ‘close’ buttons, the applications are still running and
consuming resources. If many applications run in parallel and share the processor,
each of them is slowed down. Problems might also arise if all the free memory were
consumed.

Simply terminating an application by clicking the ‘close’ button is not always
a good idea. In general some cleaning up would be performed before exiting the
program. For example, one would save changes made to files, store data computed
or received while the program was running, etc. We shall see later in Section 9.3
how this can be achieved.

Let us apply our knowledge and create a first frame and display it. We shall
derive our own frame class from JFrame and add some new functions. Our class
is called simpleFrame. As it is derived from Swing class JFrame, it inherits its
functionality. The constructor of a SimpleFrame is extended: it sets the size and

11

12 Basics

location of the frame and also ensures proper termination as explained above. We
now list the program and explain it in detail.

File: its/SimpleFrame/SimpleFrame. java

1. package its.SimpleFrame;

2

3. import javax.swing.JFrame;

4

S. public class SimpleFrame extends JFrame
6. {

7. public SimpleFrame ()

8. {

9. this.setSize(200,200);

10. this.setLocation(200,200);

11. this.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE) ;
12. }

13.

14. // Makes the frame visible.

15. public void showIt () {

16. this.setVisible (true) ;

17. }

18.

19. // Makes the frame visible and sets the title text.
20. public void showIt (String title) {

21. this.setTitle(title);
22. this.setVisible (true) ;
23. 1}

24.

25. // Makes the frame visible and sets the title text
26. // and the position of the window.

27.

28. public void showIt(String title,int x, int y){
29. this.setTitle(title);

30. this.setLocation(x,vy);

31. this.setVisible (true) ;

32. 1}

33.

34. // Makes the frame invisible.
35. public void hideIt () {
36. this.setVisible (false) ;

38.}

Let us look at the code: the class simpleFrame is defined in a package of its own
which is also called simpleFrame. It is a sub-package of the its package. We have to

Frames, panels and layouts

specify [package] . [subpackage]l, in our case package its.SimpleFrame. Next,
we import class JFrame from the javax.swing library, so it becomes accessible
in our program (import javax.swing.JFrame;). We then specify the class name
SimpleFrame and that this class is derived from JFrame:

public class SimpleFrame extends JFrame

The constructor and the methods of SimpleFrame are now described in more
detail:

public SimpleFrame ()

public void showIt ()

public void showIt (String title)

public void showIt (String title,int x, int y)
public void hideIt ()

SimpleFrame () augments the constructor of JFrame and sets the size to 200 x 200
pixels by calling setSize (200,200) in Line 9. Otherwise one would see only
the title bar because the content pane does not now contain anything. We also
set the position of the upper left corner of the frame to 200 pixels below the
upper edge of the screen and 200 pixels to the right. This is done by calling
setLocation(200,200) in Line 10. Note that the Java coordinate system is
upside-down: the positive y-axis points down; see also Figure 2.2. Finally the
constructor calls method setbefaultCloseOperation in Line 11 to guarantee
correct termination as described above. Note that keyword thisin Lines9to 11
can be omitted. As mentioned in the introduction, we added it to make clear
that these statements refer to this frame.

showTIt () makes the frame appear on the screen by calling setvisible with ar-
gument true.

showIt (String title) sets the title in the title bar to title and makes the frame
appear on the screen.

showIt (String title,int x,int y) sets the title in the title bar to title,
changes the location to x, y, and makes the frame appear on the screen.

hideTt () makes the frame disappear from the screen by calling setvisible with
argument false. The frame is not destroyed by this command. The graphical
information is preserved and the frame can be made visible again without
calling a constructor.

To test the class SimpleFrame we use a driver program. We might have defined
a main-method in SimpleFrame for this purpose but we did not because we
shall use simpleFrame as the basis for further applications. The driver class is
SimpleFrameDriver. It generates two frames in Lines 7 and 8. The first frame
receives a title and is made visible in Line 9. The second one is in addition moved

13

14

Basics

Figure 2.3 Result of the program SimpleFrameDriver

to position (300, 300) in Line 10. Both frames are empty, i.e. there is nothing in
their content panes.

File: its/SimpleFrame/SimpleFrameDriver.java
package its.SimpleFrame;

public class SimpleFrameDriver

{

public static void main(String[] args)

{

SimpleFrame sFramel = new SimpleFrame () ;
SimpleFrame sFrame2 = new SimpleFrame() ;
sFramel.showIt ("SimpleFrame 1");
sFrame2.showIt ("SimpleFrame 2",300,300);

The result should look like Figure 2.3. This picture is taken under WindowsXP; it
might appear slightly different on other platforms. As mentioned above, the frame
can be resized and moved with the mouse. These basic functions are automatically
supplied.

2.2 MW Panels and layouts

We will now embed other graphical components into a frame. The components
used are called panels. These are rectangular components, which serve two main

Frames, panels and layouts

purposes: they can be used as a canvas that one draws on or they can be used as
containers to embed further graphical components.

In Swing the class gpanel implements panels. We list the constructor and some
methods and then present an example program that demonstrates the use of the
methods:

JPanel ()

setBackground (Color c)

setPreferredSize (Dimension d)

Jpanel () is the constructor. The size of panel is set to default values, 10 by 10
pixel on most systems.

setBackground (Color c) sets the background colour of the panel. The class
Color is from the AWT library. There, some colours are predefined, e.g. red by
Color.red. By default the background colour is grey.

setPreferredSize (Dimension d) sets the size of the panel. The class Dimen-
sion is from the AWT library. The constructor has the syntax Dimension (int
width, int height). Both width and height are in pixels. It is important
to remember that these values are only recommendations for the size of a
component. Depending on the size of other components, the runtime system
might choose different values! The values actually used are determined by a
LayoutManager at runtime. This flexibility is important for Java to be platform-
independent. We describe layout managers later in this chapter.

We now want to embed some panels into a frame. To make them visible and
distinguishable we colour them differently. As mentioned in the introduction, we
shall derive our own class for every non-trivial concept. It might look like some
kind of overkill here, where only the colour of the panel is set. However, we want
to follow the paradigm of object-orientation right from the beginning.

In the following listing we derive our own class ColorPanel from JPanel. Its
two constructors allow a panel to be constructed, each with a given background
colour, and given width and height.

File: its/SimpleFrameWithPanels/ColorPanel . java
package its.SimpleFrameWithPanels;

import java.awt.*;

import javax.swing.JPanel;

public class ColorPanel extends JPanel

{
// Generate a JPanel with background color col.
public ColorPanel (Color col)
{

EE SIS

Y o N

10.

15

16

11.
12.

Basics

this.setBackground(col) ;

13.

14.
15.
16.
17.
18.
19.
20.

// Generate a JPanel with background color col,
// width width, and height height
public ColorPanel (Color col,int width, int height)
{
this.setPreferredSize (new Dimension (width,height));

this.setBackground(col) ;

21.

22.

We embed the ColorPanels into a SimplePanelFrame which is derived from Sim-
pleFrame. Thus a SimplePanelFrame inherits the functions of a SimpleFrame; in
particular an application will be terminated if the frame is closed. We generate five
ColorPanels in white, red, yellow, green and blue. The white one has a width of
50 pixels and a height of 20 pixels. For the others no size is specified, so they will
have the default size. The panels are then embedded into the frame.

Graphical components are embedded into others as follows. Let us call the com-
ponent into which we want to embed the parent component and the component
to be embedded the child component. Those Swing components into which others
can be embedded have a method add. Then, to embed a component childComp
into another component parentComp, the syntax is

parentComp.add (childComp)

The add-method might have more arguments which, for example, specify align-
ments or positions. There is a difference when embedding into a frame. Here we
have to specify that we want to embed into the content pane. Besides the content
pane a JFrame has more panes which we do not discuss here. It can be referred to
by using method getContentPane of JFrame. Then the syntax to embed a com-
ponent childComp into a frame parentFrame is:

parentFrame.getContentPane () .add(childComp)

Let us now specify how the components are to be arranged in the content pane.
In order to have platform-independence the designers of Java have given some
flexibility to the graphic system. The programmer only specifies the structure of
the arrangement of the components, not their absolute positions. For example, one
specifies that ‘component A is to the right of component B’ instead of requiring that
‘component A is at position (x, v)’. At runtime, the positions of the components
are determined. This is done by the so-called layout manager which is associated
with the parent component. There are different predefined layout managers, some
of which we describe here. The programmer can define individual ones.

A JFrame has by default a BorderLayout, more precisely the content pane
has a layout manager of type BorderLayout. It allows the user to place one (big)
central component and up to four components at the borders. The positions are

Frames, panels and layouts

Figure 2.4 A frame generated by SimplePanelFrameDriver with a border layout. Note
that the panel at ‘West' has been constructed with width 50 and height 20. While the width
is obeyed, the height has changed to fill the available space

specified by the constants CENTER, NORTH, SOUTH, EAST and WEST. These constants
are defined in class BorderLayout; see Figure 2.5a). If a border component is not
present, then the central component extends in that direction. The central com-
ponent usually contains the main information. The border components contain
additional information such as a status bar in the ‘South’-component. To insert a
component childComp into the content pane at location pos we use method

this.getContentPane () .add (childComp, pos)

WhereposiSOneCﬁtheOOHSUHHSBorderLayout.CENTER,BorderLayout.NORTH,
BorderLayout.SOUTH, BorderLayout .EAST Or BorderLayout .WEST.

The code for class SimplePanelFrame and the listing for the driver class
SimplePanelFrameDriver follow. The first class is derived from SimpleFrame.
The five panels are created in its constructor and then embedded into the content
pane. The driver class generates a SimplePanelFrame and makes it visible. The
result is shown in Figure 2.4. There one can see that all the border panels are sized
to span the entire width or height of the content pane. The other dimensions are
the default width and height, which are 10 on most platforms. The white panel
cprwest at ‘West’ has width 50 as specified in its constructor. The height specifi-
cation of 20 is ignored in the layout; the height of panel cpwest is extended to fill
the available height inside the frame. The central component is also extended to
fill all the space in the middle.

File: its/SimpleFrameWithPanels/SimplePanelFrame. java
package its.SimpleFrameWithPanels;
import java.awt.*;

import javax.swing.JFrame;

import its.SimpleFrame.SimpleFrame;

17

[OSI \SI

AN

18

7

8

9
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.

L e

10.

U W

o »® N o

Basics

public class SimplePanelFrame extends SimpleFrame
{
public SimplePanelFrame ()
{
ColorPanel CPWest = new ColorPanel (Color.white,50,20);
ColorPanel CPEast = new ColorPanel (Color.red);
ColorPanel CPNorth = new ColorPanel (Color.yellow) ;
ColorPanel CPSouth = new ColorPanel (Color.green) ;
ColorPanel CPCenter = new ColorPanel (Color.blue);
this.getContentPane () .add (CPWest, BorderLayout .WEST) ;
this.getContentPane () .add (CPEast, BorderLayout.EAST) ;
this.getContentPane () .add (CPNorth, BorderLayout .NORTH) ;
) - (
). (

this.getContentPane () .add (CPSouth, BorderLayout.SOUTH) ;

this.getContentPane () .add (CPCenter, BorderLayout .CENTER) ;

File: its/SimpleFrameWithPanels/SimplePanelFrameDriver.java
package its.SimpleFrameWithPanels;

public class SimplePanelFrameDriver
{
public static void main(String[] args)
{
SimplePanelFrame spFrame = new SimplePanelFrame () ;

spFrame.showIt ("Simple Panel Frame") ;

We now introduce two more layout managers: flow layout manager (FlowLayout)
and grid layout manager (GridLayout). Both classes as well as BorderLayout
implement the interface LayoutManager. Layouts are not restricted to frames.
Every Swing component into which other components can be embedded (a so-
called container) has a layout. The default layout is a border layout. In order to
change the layout of a parent component parentComp to another layout newlLayout
one uses the command

parentComp.setLayout (newLayout)

If a component has a flow layout then the embedded components are placed
row-wise from left to right. If a row is full, the next one is started. Row layout
(mostly) respects the dimensions of the embedded components. The order
of the calls parentComp.add(child) determines the order of the embedded
components in the parent component. The height of a row is determined at

Frames, panels and layouts

CcNorth | V----------- -
2 Q Cc1 c2 c3
21 cc 2 I
C4 C5 | Empty
CSouth
@) (b) (©)

Figure 2.5 Three layout managers. (a) The arrangement of the components in a border lay-
out. (b) The row-wise arrangement of the embedded components. The dashed lines indicate
the upper and lower boundaries of the rows. The height of each row is individually deter-
mined by the height of the tallest component in it. The spacing between the components
and between the rows can be modified. (c) A 2 x 3 grid layout into which five components
are embedded. All columns and rows are equally wide and high.

runtime by checking all components in the row. See Figure 2.5b. Here are some
constructors of FlowLayout:

FlowLayout ()
Flowlayout (int align)
Flowlayout (int align, int hdist, int vdist)

The first constructor generates a layout which by default has five pixels between
the components in a row and five pixels between the rows. In addition, the second
constructor specifies the alignment of the components, where align is one of

FlowLayout.RIGHT, FlowLayout.LEFT, FlowLayout.CENTER

This determines whether the components in every row are ‘packed’ to the right, the
left or whether they are centred. The third constructor also specifies the horizontal
distance hdist between the components in a row and the vertical distance vdist
between rows. Program LayoutDriver shows some examples. The size of the
components for which we did not define dimensions are set to default minimum
values; these are 10 x 10 on most systems.

The layout manager for a component comp recomputes the layout every time
the component comp is redrawn, especially after a resizing of comp. If after resizing
more or fewer components fit into a row then they are newly arranged. Try it in
LayoutDriver. See also Figure 2.5.

The third layout manager described here is the GridLayout which orders the
components in a grid. The parent component (the content pane in our example) is
divided into r x ¢ rectangular cells, where c is the number of cells per row and r is
the number of rows. All cells have the same size. The components are embedded
into the cells row-wise from left to right. If there are more cells than embedded
components the layout manager tries to fill all rows as far as possible and might
generate fewer than ¢ columns! If there are fewer cells than components then
columns are added. Basically the grid layout manager ignores the column number.
In order to have a fixed number ¢ > 0 of columns, the row number must be set to
r = 0 and the column number to c. Then there will always be ¢ columns and the

19

20

e S

N o

Basics

Figure 2.6 Output of LayoutDriver. Standard flow layout; flow layout with bigger spac-
ing; grid layout

row number is adjusted depending on the number of embedded components. In
program LayoutFrame we generate a 2 x 4 grid for five components. The layout
manager then generates a 2 x 3 grid, where only one cell is empty. Sometimes
one embeds dummy components into a grid layout. These are Swing components,
usually labels, with no function other than to fill certain cells. They can be used to
produce an ‘empty’ cell between two other cells. Chapter 6 contains an example.
The dimensions of the embedded components are basically ignored by the grid
layout; the components completely fill the cells. See also Figure 2.5c.

Below we list the constructor and some methods for grid layouts. The number
of rows r and columns c and also the width of the gaps can be passed between the
columns (hdist) and rows (vdist):

GridLayout (int r, int c);
setHgap (int hdist) ;
setVgap (int vdist) ;

The following listings LayoutFrame and LayoutDriver show examples for the
layouts. The first defines a frame for which the layout can be selected by passing
a LayoutManager in the constructor.

Program LayoutDriver generates three LayoutFrames and makes them visible.
The first one is given a standard flow layout. The second one receives a flow
layout with specified distances between rows/columns and left alignment. The
third frame is given a 2 x 4 grid layout. The locations in the showIt instructions
are set in such a way that the three frames appear side by side. Figure 2.6 shows
the result.

File: its/Layouts/LayoutFrame.java

. package its.Layouts;

. import java.awt.LayoutManager;

import its.SimpleFrameWithPanels.ColorPanel;
import java.awt.Color;

import its.SimpleFrame.*;

Frames, panels and layouts

public class LayoutFrame extends SimpleFrame

{

public LayoutFrame (LayoutManager layout)

{

this.getContentPane () .setLayout (layout) ;

ColorPanel
ColorPanel
ColorPanel
ColorPanel
ColorPanel
this.
this.

CP1
CP2
CP3
CP4
CP5

new

new

new

new

new

getContentPane

getContentPane

ColorPanel (Color.
ColorPanel (Color.
ColorPanel (Color.
ColorPanel (Color.
ColorPanel (Color.
.add (CP1

add (Cp2

7

7

red, 30,30);
yvellow, 40,20) ;
green) ;

blue) ;

white, 80,20);

this.
this.
this.

7

getContentPane

7

)
.)
.add (CP3) ;
.add (Cp4)
.)

()
)
getContentPane ()
0)
() .add (CP5

getContentPane

File: its/Layouts/LayoutDriver.java
package its.Layouts;

import java.awt.FlowLayout;

import java.awt.GridLayout;

public class LayoutDriver

{

public static void main(Stringl]

{
FlowLayout

args)

flowLayoutl = new FlowLayout () ;

LayoutFrame flowlFrame

flowlFrame.showIt ("Flow

FlowLayout flowLayout2
LayoutFrame flow2Frame

flow2Frame.showIt ("Flow

GridLayout gridLayout

LayoutFrame gridFrame

= new LayoutFrame (flowLayoutl) ;
Layout 1",60,60);

= new FlowLayout (FlowLayout.LEFT,40,30);
= new LayoutFrame (flowLayout?2) ;
Layout 2",300,60);

= new GridLayout(2,4);

new LayoutFrame (gridLayout) ;

gridFrame.showIt ("Grid Layout",540,60) ;

21

M

~

10.
11.
12.

13.

15.
16.
17.
18.
19.
20.
21.
22.

22

Basics

2.1

2.2

2.3

Exercises

What happens if you click on the ‘close’ button of one of the windows? Explain
the observed behaviour. Then remove the line.

setDefaultCloseOperation (JFrame.EXIT_ ON_CLOSE) ;

from the constructor of SimpleFrame. Add the following code at the begin-
ning of the main-method in class SimpleFrameDriver:

int k = 0;

while (true) {

System.out.println("SimpleFrameDriver: Still running! "+k);
k++;

}

This will print lines to the console as long as the application is running. Then
compile and start the application and click on the ‘close’ buttons of the win-
dows. Observe what has changed and explain it.

Check what happens if the central component in a border layout of a frame
is not present. Add different combinations of border components, e.g. ‘East’
and ‘South’.

Play around with layouts to get a feeling of what the layout managers do. Re-
size the frames, change the parameters in the layouts (distances, row/column
numbers), etc.

A first GUI

The purpose of graphical interfaces is to display data and to allow a communication
between the user and a program at runtime. In this chapter we shall learn how to
design such graphical interfaces. In this example the user can communicate with the
program by pressing buttons. The program updates the display in reaction to that.

In this chapter we shall see the first example of a real GUI (graphical user in-
terface). ‘Real’ here means that we have a user-program interaction. The inter-
action is realized using buttons in the graphical display. Although the program
is very simple we would like to introduce the concept of a model-view—control
approach at this point. The (non-graphical) model part of the program deals with
storing, maintaining or manipulating the data. The graphical view part displays
the data and provides the components for user interaction, e.g. buttons. The (again
non-graphical) control part ensures that the user actions result in the desired re-
sponses by the program. The control part is the bridge between the model and view
parts.

The separation of the model, view and control structures is often the crucial
concept to a successful save and fast implementation. It also helps beginners to
better recognize the essential concepts and their interplay. In Java such a sep-
aration is easily possible by using object-orientation, i.e. different classes or at
least different methods for the different parts. In complex applications separate
packages might be used for the different parts.

In the following we start by specifying the GUI we want to implement. Then we
construct the non-graphical model and test that it works correctly. This is followed
by the design of the graphical display. Finally we implement the control structure,
i.e. the user—program interaction.

3.1 M The specification of the application

We want to implement a counter. It is specified as an abstract data structure.
The counter has a variable value which is an integer. Initially the value is 0. The
counter allows four operations (of course, more operations might be useful in
some applications):

24

L.

Basics

A/ Frame

Title < Titlebar

Up 14 Down

t t

Button Label Button

Figure 3.1 The specification of the layout for the counter GUI

B increment — increments the value of the counter by 1.
B decrement — decrements the value of the counter by 1.
B reset - sets the value of the counter to 0.
l

getValue — returns the current value of the counter.

Next, we specify what the graphics should look like and how it is to work. The GUI
we have in mind should display the current value of the counter and allow the user
to increment or decrement it. To this end the GUI has two buttons. Pressing the
first one (labelled ‘Up’), e.g. clicking it with the mouse, will increment the counter.
Pressing the other one (labelled ‘Down’) will decrement the counter. Figure 3.1
shows how we want this GUI to look. This concludes the specification of the GUI’s
functionality and layout.

3.2 M The counter model

We now implement a counter in the non-graphical class CounterModel. A counter
has only one integer variable value which is initialized to O in the constructor as
required by the specification. The variable value is private so that other classes
can only manipulate it through the methods of CounterModel. We implemented
the four operations requested by the specification in four methods with obvious
names: increment (), decrement (), reset () and getvValue (). Here is the listing
of the class:

File: its/CounterGUI/CounterModel . java
package its.CounterGUI;

public class CounterModel {

private int value;

A first GUI

// The constructor initializes the counter to 0
public CounterModel () {

value = 0;

public void increment () {

value++;

public void decrement () {

value--;

public void reset () {

value = 0;

public int getValue() {

return (value) ;

A counter is such a simple object that we can immediately ‘see’ that our imple-
mentation is correct, i.e. meets the specifications. For slightly more complicated
entities, however, one can easily overlook a mistake. The problem of checking
whether a program meets its specifications is hard to solve, in fact it is in gen-
eral unsolvable. Therefore one has to rely on empirical tests. This means that
one sets up a test plan. This contains a (large) number of possible inputs to the
program and the correct responses of the program. The plan should activate all
parts of the program, e.g. all methods of all classes. Then one checks whether the
observed and expected responses coincide. Of course, such a plan is no guarantee
that the program is indeed correct because it might not contain an existing input
that causes an error. However, a good test plan often does discover mistakes in the
program.

To give an idea of what a test plan can look like we add the listing of class coun-
terModelTest which implements a test plan for the counter model. It addresses
all methods at least once and compares the expected and observed results. The
comparison is done by method checkvalue (a,b), which compares a and b and
prints the result of the comparison to the screen.

File: its/CounterGUI/CounterModelTest . java

package its.CounterGUI;

public class CounterModelTest {

25

© @ N w;

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

e =

26 Basics

w

6. private static boolean passed = true;

7

8. public static void main(String[] args) {

9. CounterModel cm = new CounterModel () ;

10.

11. checkValue (0,cm.getValue()) ;

12. cm. increment () ;

13. checkValue (1l,cm.getValue()) ;

14. cm.decrement () ;

15. checkValue (0,cm.getValue()) ;

16. for (int i = 0; 1 < 37; i++) {

17. cm. increment () ;

18. }

19. checkValue (37, cm.getValue()) ;

20. for (int 1 = 0; 1 < 21; i++) {

21. cm.decrement () ;

22. }

23. checkvValue (16, cm.getValue()) ;

24. cm.reset () ;

25. checkvValue (0, cm.getValue()) ;

26.

27. if (passed) {

28. System.out.println("Test passed.");

29. }

30. else{

31. System.out.println("Test NOT passed.");

32. }

33. 1}

34.

35. private static void checkValue (int expectedvValue, int observedvalue) {
36. if (expectedValue == observedvValue) {

37. System.out.println("Values are both equal to "+expectedvValue) ;
38. }

39. else{

40. System.out.println ("ERROR expected value "+expectedValue+
41. " and observed value "+observedValue+" differ!");
42. passed = false;

43. }

44. 3}

45. 1}

The following is the result of a run of CounterModelTest:

Values are both equal to 0
Values are both equal to 1

A first GUI

Values are both equal to 0
Values are both equal to 37
Values are both equal to 16
Values are both equal to 0

Test passed.

3.3 B The counter view

To implement the graphical part of the counter application we use two new graph-
ical components from the Swing library, labels and buttons.

3.3.1 [Labels

A label is a rectangular component which displays text that cannot be edited by
the user (but might be changed by the program). Class JLabel realizes labels in
Swing. Here we present a constructor and a few methods.

public JLabel (String text)
public JLabel (Imagelcon picture)

public String getText ()
public void setText (String text)

public void setText (String text, int alignment)

public void setForeground(Color c)
public void setBackground(Color c)
public void setOpaque (boolean b)

JLabel (String text) constructs a label which displays the text.

JLabel (ImageIcon picture) constructs a label which displays the image pic-
ture. For details on using images see Chapter 15.

getText () returns the text currently displayed in the label as a String.

setText (String text) replaces the text currently displayed in the label by text.
The new text is instantly displayed in the label.

setText (String text, int alignment) replaces the text currently displayed
in the label by text. It also sets the alignment of the text, left, right or centre.
The possible values of alignment can be found in the class SwingConstants,
e.g. use SwingConstants.CENTER to centre the text in the label.

setForeground (Color c) sets the text colour to c.

setBackground (Color c) sets the background colour to c. Note that labels are
transparent by default and their background colour is not visible. One sees
the background colour of the parent component shining through. To change the

27

28

Basics

background colour of a label one has to first make it opaque (non-transparent)
using the method setopaque.

setOpaque (boolean b) makes the label transparent if b is false and non-
transparent if b is true.

3.3.2 [l Buttons

Buttons are rectangular areas (usually with a line around) which - like labels —
can display text. They differ from labels in the fact that they can trigger events.
An event occurs whenever a button is pressed. The Java runtime system monitors
buttons and recognizes when such an event occurs. Note that a button is not
necessarily pressed by clicking the mouse, it might also be a finger on a touch
screen monitor. Therefore, buttons are treated separately from the mouse.

In Section 3.4 we shall learn in detail how the runtime system informs our
program that an event has occurred. For now, the following explanation should
suffice: in order to notice when a button is pressed, something has to keep an eye
on the button. This is done by a listener, a (non-graphical) component from the
AWT library. The listener has to be assigned to the button in order to monitor
it. If an event occurs at that button the runtime system informs the listener. The
listener can then analyse the event and initiate a certain action.

Class gButton implements buttons in Swing. We only present the constructor
and the method to assign a listener to the button.

public JButton(String text);

public void addActionListener (ActionListener listener) ;

3.3.3 [J Constructing the graphics

We use two buttons to change the value of the counter and a label to display
its value. There are many ways to arrange these components. One would be to
‘slue’ the buttons and the label directly into the content pane of the frame. We
use a different approach here: an intermediate panel into which the buttons and
the label are embedded. The corresponding class is called Counterpanel. Then
a CounterPanel is glued into the frame; see Figure 3.2. The advantage of this
approach is that one can reuse the CounterPanel as a ready-made module in
other applications.

We first have to decide which layout manager supports the intended GUI. In
our case, a border layout is appropriate for both the panel and the frame. We glue
the buttons into the west and east positions of the panel and glue the label into
the central one. Actually, panels have a border layout by default. We nevertheless
set the layout to make clear that this is one step of a GUI implementation.

Every counterpPanel holds its own instance of CounterModel in the variable
counter. This variable is private so that the counter cannot be manipulated di-
rectly from outside the class CounterPanel. Instead CounterPanel offers two
methods, increment () and decrement (), which simply call the respective meth-
ods of counter model counter.

A first GUI

JButton

JLabel

JFrame

Figure 3.2 The construction of the counter GUI. The intermediate JPanel is introduced to
guarantee modularity. The panel can be reused in other applications

The frame of our counter application is implemented in the class Counter-
Frame. This class is derived from SimpleFrame so that the application is termi-
nated when the frame is closed. A CounterFrame has a CounterPanel embedded
into the central position of its content pane. We list the code of the classes coun-
terPanel, CounterFrame and the driver class Counterdriver below.

When the application is started, the frame appears. We can press the buttons
and see that their colour changes for a short period in response. This function
is automatically supplied. The application does not, however, change the value of
the counter in the label. It cannot do this at this point because we have not yet
‘told’ the application to do this. The control part introduced in Section 3.4 will
be responsible for that. In the listing of CounterpPanel; Lines 29 to 31 will later
be used to enable the listener. Currently they are comments, so do not have any
effect.

File: its/CounterGUI/CounterPanel .java
package its.CounterGUI;

import javax.swing.JPanel;
import javax.swing.JButton;
import javax.swing.JLabel;
import java.awt.BorderLayout;

import javax.swing.SwingConstants;

29

W =

v

)

30 Basics

9. public class CounterPanel extends JPanel {
10.

11. private CounterModel counter;

12. private JLabel valuelLabel;

13.

14. public CounterPanel () {

15. counter = new CounterModel () ;

16.

17. BorderLayout bordLay = new BorderLayout () ;

18. this.setLayout (bordLay) ;

19.

20. JButton upButton = new JButton("Up");

21. JButton downButton = new JButton("Down") ;

22. valueLabel = new JLabel (""+counter.getValue (), SwingConstants.CENTER) ;
23.

24. this.add (upButton, BorderLayout .WEST) ;

25. this.add (downButton, BorderLayout .EAST) ;

26. this.add (valueLabel, BorderLayout .CENTER) ;

27.

28. // The next three lines will later be used to incorporate

//the listener.

29. // CounterListener countList = new CounterListener (this);
30. // upButton.addActionListener (countList);
31. // downButton.addActionListener (countList) ;
32. 1}

33.

34. public void increment () {

35. counter.increment () ;

36. valueLabel.setText (""+counter.getValue()) ;
37. 1}

38.

39. public void decrement () {

40. counter.decrement () ;

41. valueLabel.setText (""+counter.getValue()) ;
42, 1}

43. }

File: its/CounterGUI/CounterFrame. java

. package its.CounterGUI;

w oo

. import javax.swing.JFrame;

'S

. import java.awt.BorderLayout;

w

. import its.SimpleFrame.SimpleFrame;

o

A first GUI

public class CounterFrame extends SimpleFrame {

public CounterFrame () {
CounterPanel counterPane = new CounterPanel () ;

this.getContentPane () .add (counterPane, BorderLayout .CENTER) ;

File: its/CounterGUI/CounterDriver.java
package its.CounterGUI;

public class CounterDriver {
public static void main(String[] args) {
CounterFrame cfr = new CounterFrame() ;

cfr.showIt ("Counter") ;

3.4 B The counter control (listeners and events)

The link between the user actions like pressing a button and the application is es-
tablished by listeners. These are non-graphical components supplied by the AWT
library java.awt.events.*. There are different listeners for different types of
events (pressing a button, moving the mouse, etc.). Listeners are, in general, in-
terfaces not classes. We will, however, first treat listeners in much the same way
as classes. Experience has shown that this is much easier for inexperienced pro-
grammers to understand. Later we will describe how to make use of the interface
mechanism.

We proceed by describing how the concept of a listener works in general. Some
components of Swing can trigger events. For example a button can be pressed or
a menu item can be selected. Such events are automatically noticed by the Java
runtime system. Now, the programmer can implement a listener and assign it to
the graphical component, say a button. The listener then ‘waits’ until the button
is pressed and takes action if this happens. The runtime system automatically
notifies the listener if the button is pressed. The notification is done by calling
a specific method of the listener. The name of this method is predefined in the
listener’s interface. The programmer must implement this method by inserting
the code that should be executed in response to the button being pressed.

In our counter application the counter has to be incremented or decremented
in response to pressing the respective button. The listener is thus assigned to both
buttons, i.e. it monitors both. If a button is pressed the listener is informed. In
order to take the appropriate action it has to know which button has been pressed.
This information is provided by the runtime system in the form of an object of type

31

o » N

10.
11.
12.

Nk LN

®

32

Ll

N

o @

— = =
M=o

Basics

ActionEvent. This class is also found in the AWT library (in java.awt.events).
An object of type ActionEvent contains information about the event noticed by
the runtime system:.

For our counter application we implement a listener in the class CounterLis-
tener. A CounterListener implements the Java interface ActionListener. The
implementation requires the definition of only one method actionPerformed:

public void actionPerformed(ActionEvent evt)

This is the method called by the runtime system whenever the button is pressed.
You do not have to call this method yourself, and you should not do this. The
runtime system also generates an action event evt and passes it to the method
actionPerformed. The programmer puts the code into the body of method ac-
tionperformed!. This code is then executed in response to pressing the button.
The information contained in the action event can be used to gather further in-
formation on what triggered the event.

The code for the class CounterListener is listed below. We shall explain it
after the listing.

File: its/CounterGUI/CounterListener.java
package its.CounterGUI;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;
public class CounterListener implements ActionListener({
private CounterPanel countPane;

public CounterListener (CounterPanel counp) {

countPane = counp;

13.

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

// This method is called by the runtime system.
// The programmer has to add the code to be executed
// as a response to the event.
public void actionPerformed (ActionEvent evt) {
// Beginning of own code
String actionCommand = evt.getActionCommand () ;
if (actionCommand.equals ("Up")) {
countPane. increment () ;
}
else if (actionCommand.equals ("Down")) {

countPane.decrement () ;

1 This formulation has to be taken with a grain of salt. Some of the code might actually be in
other methods which are then called from inside actionPerformed.

A first GUI

}
else(

System.out.println ("ERROR: Unexpected ActionCommand") ;
}
// End of own code

}

In the code for the class CounterListener we find the word implements instead
of extends. This is due to the fact that ActionListener is an interface and not
a class. The constructor receives a CounterPanel as an argument. The listener
then ‘knows’ which counter panel it has to update. Check Section B.4 for more
details on this.

The heart of class CounterListener is the implementation of the method ac-
tionPerformed. We first determine which of the two buttons had been pressed.
This is done by inspecting the action event object evt that the method action-
Performed received from the runtime system. The line

String actionCommand = evt.getActionCommand() ;

extracts the action command out of the event object evt. The action command
is usually the text of the button which has been pressed. In our case it can only
be ‘Up’ or ‘Down’. We use an if-then—else structure to check which one it was?.
Depending on the outcome of the test we call the method increment or decrement
of the counter panel. At this point we see why the listener is given a reference to a
CounterPanel in the constructor. The listener thereby knows which panel it has
to update in response to the event.

In the listing of CounterpPanel the comment signs at Lines 29 to 31 are removed.
These lines are

CounterListener countList = new CounterListener (this) ;
upButton.addActionListener (countList) ;
downButton.addActionListener (countList) ;

The first one creates an instance of CounterListener. The listener receives a
reference (this) to the panel in the constructor. The next two lines associate
the listener to both buttons of the GUI. This completes the implementation of
our GUI. Figure 3.3 shows what the application looks like. The structure of the
its.CounterGUI package can be found in Figure 3.4 as an UML-like diagram®.

The last case can only be reached if the action command is neither ‘Up’ nor ‘Down’. We added
this case to make sure that we become aware of an error that could be due, for example, to
changing the text of the buttons in the counter panel.

3 UML stands for ‘Unified Modelling Language’. UML is used to specify the structure of object-
oriented programs also by using graphical representations by the class structure. For more
details see the book by Fowler and Scott in Section 1.5.

33

30.
31.

34 Basics

Figure 3.3 The counter application

JFrame | | JPanel | |JLabel | JButton| | ActionListener
[y a R
! ’
1 7
. 1 e
SimpleFrame | ,
CounterPanel CounterListener

showIt ()

M increment () actionPerformed (evt)

, decrement () N
K , N
~N
// N N
4 ~
CounterFramel RN
4 Counter

]

1 increment ()

! decrement ()
CounterDriver reset ()
main () getValue ()
Legend:

A is derived from B
- [B]| A uses B

Figure 3.4 The class diagram for the its.CounterGUI package. The test class Coun-
terTest has been omitted

3.5 B Summary

In order to develop an interactive GUI the following steps are necessary:
1. Implement and test the model.
2. Implement the view, especially:

(a) Decide which graphical components to use.
(b) Decide how to arrange them.
(c¢) Decide which layout manager(s) to use.

Exercises

3. Create an action listener, especially:

(a) Define in method actionPerformed what has to happen in response to an
event.

(b) Use the ActionEvent object to get information about the type of event that
occurred.

4. Assign the action listener to the relevant graphical components of the view.
The user—program interaction then works as follows:

The user presses a button.

The runtime system detects the user action and creates an event object which
contains information about the action.

B The runtime system calls method actionPerformed of the listener which is
assigned to the button. The event object is passed to actionPerformed as an
argument.

B The code in method actionPerformed is executed.

Exercises

3.1 Add a third button to the CounterPanel. It should be located at the bottom
and labelled ‘Reset’. When pressing this button, the counter should be reset
to 0. Then write an application that displays the new panel as in Figure 3.5.

3.2 Write an application that displays two counters as shown in Figure 3.6. Try to
‘recycle’ components already defined, e.g. CounterPanel.

3.3 Write an application that displays four buttons labelled ‘1’, '2’, ‘3" and ‘4’ and
a label. Arrange the components as shown in Figure 3.7. The label initially
displays the text ‘No button pushed’. When one of the four buttons is pushed
the text in the label changes to ‘Last button pushed was no. X’, where X is the
number of the button.

[Title

Up 14 Down

| Reset

Figure 3.5 Layout for the GUI in Exercise 3.1

35

36

Basics

Title
Up 14 Down
Up 22 Down

Figure 3.6 Layout for the GUI in Exercise 3.2

[Titie

Last button pushed was no. 2

Figure 3.7 Layout for the GUI in Exercise 3.3

A second GUI

In this chapter we construct another graphical interface. The purpose of this one is
to pass text to a running application.

4.1 M The specification of the application

The application is to perform an extremely simple text analysis. The appearance
and functionality of the GUI should look like Figure 4.1. To the right of the text
‘Enter text:’ is an editable area where the user can enter or change text. If one
clicks on the button ‘Analyse’ then a small analysis of the text is performed and
the result is displayed in the following way. The text is converted to capital letters
and copied into the area to the right of ‘Current text:’. The number of occurrences
of the letter ‘E’ in upper or lower case is displayed to the right of ‘No. of Es in
current text:’. At the same time the content of the user editable area is erased.

/ Frame

Title
Enter text: Dannebrog |<4— Editable
A text area

Currert text: DANNEBROG gH— Repetition of
text 1 upper
case

No of | Es /fin current text: 1 <4 Number of

A E in text
I / / Analyse 4—'—— Button
| VA4

Fixed texts

Figure 4.1 The specification of the GUI for text analysis

38

20.
21.
22.
23.
24.
25.
26.

Basics

4.2 B The model part

The model is implemented in class TextAnalysisModel which is listed below.
The class uses the string variable currentText to store the text to be analysed in
upper-case letters. The integer variable currentNumberOfEs is used to store the
number of ‘E’s in the current text. The two other variables totalNumberofEs and
totalNumberOfTexts will only be used in the exercises to this chapter.

The actual analysis is performed by method analyse (String str). This con-
verts the string str to upper case and stores the result in currentText. Then the
number of occurrences of the letter ‘E’ in currentText is computed by looking at
every character in the string. The last two lines of analyse update the variables
to be used in the exercises. The four get-methods return the respective values of
the variables.

File: its/TextAnalysisGUI/TextAnalysisModel.java

package its.TextAnalysisGUI;
public class TextAnalysisModel {

private int totalNumberOfEs;
private int currentNumberOfEs;
private int totalNumberOfTexts;

private String currentText;

public TextAnalysisModel () {
totalNumberOfEs = 0;
totalNumberOfTexts = 0;

currentText = "";

public void analyse(String str) {
currentText = str.toUpperCase() ;
currentNumberOfEs = 0;
for (int i = 0; 1 < currentText.length(); i++) {
if (currentText.charAt (i) == 'E'){
currentNumberOfEs++;
Y//if
Y//for i
totalNumberOfEs += currentNumberOfEs;
totalNumberOfTexts++;
}// analyse

27.

28.

public int getCurrentNumberOfEs () {

A second GUI 39

return (currentNumberOfEs) ; 29.

} 30.
31.

public String getCurrentText () { 32
return (currentText) ; 33.

} 34.
35

public int getTotalNumberOfEs () { 36
return (totalNumberOfEs) ; 37.

} 38.
39.

public int getTotalNumberOfTexts () { 40
return (totalNumberOfTexts) ; 41.

} 42.
} 43.

We do not list the test class here but it should be obvious which functions it has
to check.

4.3 M The view part

We use one new Swing component to construct this GUI, described below.

4.3.1 [Text fields

Text fields display a single line of text. The text can be edited by the user. The
class JTextField realizes text fields in Java. To edit a text, click inside the text
field and a cursor will appear. The text field automatically scrolls horizontally if
the text gets long. This functionality is built in. Text fields are non-transparent
and have a white background and black text by default.

public JTextField(String text);

public String getText () ;
public void setText (String text);

public void setForeground(Color c);

public void setBackground(Color c);

JTextField(String text) constructs a text field which displays the text.

setText (String text) replaces the text currently displayed in the text field by
text.

getText () returns the text currently displayed in the text field as a String.
setForeground (Color c) sets the text colour to c.

setBackground (Color c) sets the background colour to c.

40

Basics

4.3.2 [] Constructing the view

We now describe how to construct the GUI. Figure 4.2 shows the structure. We
take a frame with border layout. The class is called TextAnalysisFrame and is
derived from SimpleFrame. At the bottom (South) we ‘glue’ a JButton into the
frame. In the middle (centre) we glue a panel of type TextaAnalysisPanel. This
panel is defined to take the text components. It has a 3 x 2 grid layout. The grid
contains — in this order — a label, a text field and four more labels. The components
are coloured to make them easier to distinguish and the gap between rows and
columns is increased. Through these gaps we can see the yellow background of
the panel.

Other ways of constructing the GUI are possible. One could use another panel
that contains the ‘Analyse’ button and the text analysis panel. In this case the
listener should be instantiated in the new panel.

To achieve the desired functionality, we define the method startanalysisand-
DisplayResult in TextAnalysisPanel. This method reads the text from text field
inputField and passes it to the text analysis model by calling method analyse of
TextAnalysisModel. The panel itself does not know how the text is analysed. The

JTextField

JFrame \’

JPanel

JButton

Figure 4.2 The blueprint for our GUI

A second GUI a1

result of the analysis (the text in upper case and the number of ‘E’s in it) is then
acquired from the text analysis model by calling the appropriate get-methods of
the TextAnalysisModel. The results are displayed and the text in the text field is
erased, i.e. replaced by the empty string.

We now list the two classes defining the view.

File: its/TextAnalysisGUI/TextAnalysisFrame.java

package its.TextAnalysisGUI; 1.

2.

import its.SimpleFrame.SimpleFrame; 3.

import java.awt.*; 4.

import javax.swing.JButton; 5.

6.

public class TextAnalysisFrame extends SimpleFrame 7.

{ 8.

public TextAnalysisFrame () 9.

{ 10.

this.setSize(300,150); 11.

TextAnalysisPanel taPanel = new TextAnalysisPanel () ; 12

this.getContentPane () .add(taPanel, BorderLayout .CENTER) ; 13

JButton analyseButton = new JButton("Analyse"); 14

analyseButton.setBackground (Color.blue) ; 15.

analyseButton.setForeground (Color.yellow) ; 16

this.getContentPane () .add(analyseButton, BorderLayout.SOUTH) ; 17.

18.

TextAnalysisListener taList = new TextAnalysisListener (taPanel) ; 19

20.

analyseButton.addActionListener (taList) ; 21.

} 22.

23.

} 24.
File: its/TextAnalysisGUI/TextAnalysisPanel.java

package its.TextAnalysisGUI; 1.

2.

import java.awt.Color; 3.

import java.awt.GridLayout; 4.

import javax.swing.JLabel; 5.

import javax.swing.JPanel; 6.

import javax.swing.JTextField; 7.

42

8
9
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

[B B Y|
—

@«

e

Nk

Basics

public class TextAnalysisPanel extends JPanel

{

private
private
private
private

private

JLabel lastTextLabel;

JLabel numberOfEsLabel;

JLabel numberOfTextsLabel;
JTextField inputField;

TextAnalysisModel analysisModel;

public TextAnalysisPanel ()

{

analy

sisModel = new TextAnalysisModel () ;

this.setBackground (Color.yellow) ;
this.setLayout (new GridLayout(3,2,10,10));

JLabe
JLabe
JLabe
lastT
numbe

input

1 questionLabel

1 replyLabel

1 numberTextLabel
extLabel
rOfEsLabel

Field

new

new

new

new

new

new

JLabel ("Enter text:");

JLabel ("Current text:");

JLabel ("No. of Es in current text:
JLabel ("");

JLabel ("--");

JTextField("");

questionLabel.setOpaque (true) ;

questionLabel.setBackground (Color.black) ;

questionLabel.setForeground (Color.white) ;

replyLabel.setOpaque (true) ;

replyLabel.setBackground (Color.black) ;

replyLabel.setForeground(Color.white) ;

numbe
numbe
numbe

numbe
numbe
numbe

rTextLabel .setOpaque (true) ;

rTextLabel.setBackground(Color.black) ;

rTextLabel .setForeground (Color.white) ;

rOfEsLabel.setOpaque (true) ;

rOfEsLabel . setBackground (Color.red) ;

rOfEsLabel .setForeground (Color.white) ;

lastTextLabel.setOpaque (true) ;

lastTextLabel.setBackground (Color.red) ;

lastTextLabel.setForeground (Color.white) ;

this.
this
this.
this.

add (questionLabel)

.add (inputField) ;

(

(
add (replyLabel) ;
add (lastTextLabel)

7

7

")

A second GUI 43
this.add (numberTextLabel) ; 54
this.add (numberOfEsLabel) ; 55.
} 56.
57.
public void startAnalysisAndDisplayResult () 58
{ 59.
String text = inputField.getText () ; 60
analysisModel .analyse (text) ; 61.
lastTextLabel.setText (analysisModel.getCurrentText ()) ; 62
int noOfEs = analysisModel.getCurrentNumberOfEs () ; 63
numberOfEsLabel . setText (Integer.toString (noOfEs)) ; 64
inputField.setText (""); 65.
} 66
67.
} 68.

4.4 M The control part

Class TextAnalysisListener implements the interface ActionListener. It
is required to implement method actionPerformed. Here actionPerformed
calls the method startAnalysisAndDisplayResult of TextAnalysisPanel. To
this end the TextAnalysisListener has to know the TextAnalysisPanel. This
is achieved by passing (a reference) to TextAnalysisPanel in the constructor of
TextAnalysisListener.

public TextAnalysisListener (TextAnalysisPanel taPanel)

Class TextAnalysisFrame generates an instance of TextAnalysisListener and
assigns it to the button labelled ‘Analyse’.

TextAnalysisListener taList = new TextAnalysisListener (taPanel) ;

analyseButton.addActionListener (taList) ;

Below are the listings of the class TextaAnalysisListener.java and the driver
class testanalysisTest.java. Figure 4.3 shows the result.

Figure 4.3 The appearance of the text analysis GUI

44

15.
16.
17.
18.
19.

10.

Vo e e

o »® N o

Basics

File: its/TextAnalysisGUI/TextAnalysisListener.java

package its.TextAnalysisGUI;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

public class TextAnalysisListener implements ActionListener

{

private TextAnalysisPanel taPanel;

public TextAnalysisListener (TextAnalysisPanel t)
{

taPanel = t;

}

public void actionPerformed (ActionEvent evt)
{
taPanel.startAnalysisAndDisplayResult () ;

File: its/TextAnalysisGUI/TextAnalysisDriver.java

package its.TextAnalysisGUI;

public class TextAnalysisDriver
{
public static void main(String[] args)
{
TextAnalysisFrame taFrame = new TextAnalysisFrame() ;

taFrame.showIt ("Text analysis");

4.5 M The embedding structure

Both the GUI in this chapter and the counter GUI of Chapter 3 were constructed
by a hierarchical embedding. This means that some components are first em-
bedded into a parent component and then the parent component is embedded
into a grandparent component. Hierarchical embeddings can span even more
generations.

A second GUI 45

A

mifliea

E
(@) (b)

Figure 4.4 (a) A legal and (b) an illegal embedding structure. The illegal structure contains
a cycle consisting of components B, C and D. The arrow from component B to component
A means that B is embedded in A

EN
EpE

id

The important rule to obey with hierarchical embeddings is that they have to
be cycle-free. This means that there is no cyclic embedding such as component A
into component B, and component B into component C and then component C
into component A. Formally, the embedding structure has to form a rooted tree;
see also Figure 4.4. A cyclic embedding will result in a runtime error.

Exercises

4.1 Augment the text analysis application in two steps:

(1) Add two more rows to the TextAnalysisPanel which display the num-
ber of all texts analysed so far and total number of ‘E’s seen in these texts.
The model supplies this information.

(2) Add another button labelled ‘Reset’. When this button is pushed the
total number of texts and the total number of ‘E’s seen are set to 0. This
also requires a change of the model part.

4.3 Construct a traffic light GUI. At the bottom there is a button. Clicking the
button makes the traffic light go to the next phase, i.e. ‘red’, ‘red-yellow’,
‘green’, 'yellow’, and back to ‘red’. Above, the current lights should be shown
as colours or text; see Figure 4.5.

[Title |
RED
YELLOW

| Button |

Figure 4.5 Sketch for the traffic light in Exercise 4.2

4.4 Design a GUI, with three buttons and one panel. The buttons are labelled
‘red’, ‘blue’ and ‘yellow’. When clicking on a button the panel should show
the corresponding colour; see Figure 4.6.

46 Basics

[Title || |[Title |
red
red blue
blue

r————————————w yellow|

Figure 4.6 Sketch for Exercise 4.3

4.5 Construct an application where you can enter texts one after the other. After
entering a new text the application tells you whether this text has been
entered before or not.

Displaying a
drawing

In this chapter we shall learn how a program can display a drawing in a panel. For
now, the drawing is predefined and cannot be altered by the user.

To display graphics we use panels as canvases. The whole rectangular area of a
panel can be used to draw on, no matter whether it is currently visible or not.
The central means for drawing is method paintComponent of class Jpanel. This
method redraws the panel. It is automatically called by the runtime system when
necessary; for example, when the GUI is resized. All the commands to draw some-
thing into the panel should therefore be put into that method. More precisely we
override paintComponent to add our own commands.

It is important never to call paintComponent directly in order to initiate a
redrawing. To do that, one calls the repaint () -method of the panel. This is done
to avoid conflicts between redrawing and other operations of the runtime system.
A call to repaint does not immediately repaint a component. Instead it tells the
runtime system that one would like the component to be redrawn. The system
calls paintComponent after other pending actions have been completed; see also
Chapter 20.

5.1 M Method paintComponent

Method paintComponent of class Jpanel has the following syntax:
public void paintComponent (Graphics g)

It receives a parameter g of type Graphics. This is an abstract class from the AWT
library. A Graphics object connects the Java drawing commands to the actual
drawing mechanism of the current computer. The class Graphics also provides
methods to draw into a panel. As we will never call paintComponent directly,
we do not have to construct a Graphics object; this is done by the operating
system.

To add our own drawings to a panel we extend paintComponent by adding
graphics commands. To this end we override paintComponent. Of course we do

48

Basics

not want to lose the original function of paintComponent, namely to draw the
panel itself, especially its background. Hence we call the original method using
the super command. This has to be the first command in our implementation
of paintComponent. Then our own graphic commands follow. Hence we have the
following generic structure:

public void paintComponent (Graphics g) {
super.paintComponent (g) ;
// Own graphics command

// which draws on the panel.

We are then sure that first the empty panel is drawn, and then our drawing is
displayed. In particular, any existing old drawing is erased before our drawing is
begun.

5.2 M The graphics commands

The class Graphics supplies a number of commands for drawing. We present only
a few — further commands can be found in the Java documentation.

drawLine (int xstart, int ystart, int xend, int yend)
drawRect (int xleft, int ytop, int width, int height)
drawOval (int xleft, int ytop, int width, int height)
drawString (String text, int xleft, int ybottom)

fillRect (int xleft, int ytop, int width, int height)
fillOval (int xleft, int ytop, int width, int height)

setColor (Color col)

We explain the commands below; see also Figure 5.1. The coordinates are in pixels
in the Java coordinate system. The shapes are drawn in the order in which the
graphic commands are executed. If shapes overlap, the one drawn later covers
those drawn previously.

drawLine (xstart,ystart,xend, yend) draws a line segment between the points
with coordinates (xstart, ystart) and (xend, yend).

drawRect (xleft,ytop,width,height) draws the contour of an axes-aligned
rectangle. The upper left corner of the rectangle is at (xleft, ytop). It is width
pixels wide and height pixels tall.

drawOval (xleft,ytop,width,height) draws the contour of an ellipse. The axes
of the ellipse are parallel to the coordinate axes. The upper left corner of the
bounding rectangle of the ellipse is at (xleft, ytop) and is called the reference
point. The horizontal axis of the ellipse has length width, the vertical one
height.

Displaying a drawing

0 10 20 30 40 50 60 70 80 90 100
0 I I [I [S

10 — /
20 — 20

30 — IIO

40 —

50 —

60 —

70

Figure 5.1 The effect of the commands drawLine (10,20,30,10), drawRect (40,25,
20,10) and drawOval (80,40,10,20). The dotted lines and the dimensions do not ap-
pear in the graphic. The bounding rectangle for the oval is shown as a dotted line

drawString (text,xleft,ybottom) draws the string text. The lower left corner
of the bounding rectangle of the text is at (xleft, ybottom). This is the reference
point.

fillRect draws a filled rectangle using the current colour, otherwise like
drawRect.

filloval draws a filled ellipse using the current colour, otherwise like drawoval.

setColor (col) sets the colour of the drawing to col. This colour is used until the
setColor command is used again.

5.3 M A simple graphical application

Our application is only to demonstrate the use of the graphic commands inside
paintComponent. As there is no user interaction that changes the drawing,
we do not need a model or control part. In the example we derive a class
SimpleGraphicsPanel from Jranel. In the constructor we set the background
to white (it is normally grey) and set the size to 300 x 300 pixels. Then method
paintComponent is overridden. As explained above, we first make a call to the
original paintComponent method. Then follow a number of graphics commands
which set the drawing colour and draw various shapes and a string. The com-
mands are provided by the Graphics class of AWT and thus have the syntax
g.drawSomething where g is an instance of Graphics. Now whenever the panel
is redrawn these commands are executed and the graphical objects are displayed.
Note that drawing a filled object with the background colour makes parts of other
objects ‘disappear’. In the example a white oval partly covers a cyan coloured
one.

49

50 Basics

File: its/SimpleGraphics/SimpleGraphicsPanel . java

1. package its.SimpleGraphics;

2

3. import java.awt.*;

4. import javax.swing.JPanel;

5

6. public class SimpleGraphicsPanel extends JPanel
7. {

8. public SimpleGraphicsPanel ()

9. {

10. this.setBackground (Color.white) ;

11. this.setPreferredSize (new Dimension(300,300));
12. 3}

13.

14. public void paintComponent (Graphics g)
15. |

16. super.paintComponent (g) ;

17. g.setColor (Color.black) ;

18. g.drawLine (10,10,100,100);

19. g.setColor (Color.red) ;

20. g.drawLine(10,100,100,10);

21. g.setColor (Color.green) ;

22. g.drawOval (120,60,70,40) ;

23. g.setColor (Color.yellow) ;

24. g.fill0val(230,150,30,30);

25. g.setColor (Color.red) ;

26. g.filloval(245,150,30,30);

27. g.setColor (Color.black) ;

28. g.filloval(238,160,30,30);

29. g.setColor (Color.cyan) ;
30. g.fillOval(10,120,100,60);
31. g.setColor (this.getBackground()) ;
32. g.filloOval (50,140,100,60);
33. g.setColor (Color.blue) ;
34. g.drawString ("Swing is nice.",100,200) ;
35. 1}
36. }

The next two listings define class SimpleGraphicsFrame and SimpleGraphics-
Driver. In the constructor of SimpleGraphicsFrame a SimpleGraphicsPanel is
created and glued into the frames content pane. The pack () command ensures
that the frame is packed around the embedded panel and the latter is visible in
its full size. Class SimpleGraphicsDriver is the driver class. Figure 5.2 shows the
result.

Displaying a drawing 51

Figure 5.2 Result of SimpleGraphicsFrame. The covering of shapes occurs in the order
in which the graphic commands are processed

File: its/SimpleGraphics/SimpleGraphicsFrame. java

package its.SimpleGraphics; 1.

2.

import its.SimpleFrame.SimpleFrame; 3.

import java.awt.BorderLayout; 4.

5.

public class SimpleGraphicsFrame extends SimpleFrame 6.

{ 7.

8.

public SimpleGraphicsFrame () 9.

{ 10.

this.setTitle("Simple Graphics") ; 11.

12.

SimpleGraphicsPanel SGP = new SimpleGraphicsPanel () ; 13.

this.getContentPane () .add (SGP, BorderLayout .CENTER) ; 14

15.

pack() ; 16

} 17.

} 18.
File: its/SimpleGraphics/SimpleGraphicsDriver.java

package its.SimpleGraphics; 1.

2.

public class SimpleGraphicsDriver 3.

{

A

52

10.
11.
12.
13.
14.

Y ® N

Basics

public SimpleGraphicsDriver ()

{

SimpleGraphicsFrame SGF = new SimpleGraphicsFrame () ;
SGF . showIt () ;

}

public static void main(String[] args)

{

SimpleGraphicsDriver sgt = new SimpleGraphicsDriver () ;

5.1

5.2

53

Exercises

Check and explain what happens if one omits the super-command in paint-
Component or if it is put at the end of paintComponent.

Add further graphic commands to paintComponent. Test what happens if
you draw outside the currently visible area. Resize the window.

A repaint of the GUI is initiated by the runtime system quite frequently. We
would like to see how often this occurs. To this end, define an integer variable
noOfRepaints in SimpleGraphicsPanel and set it to zero in the construc-
tor. Increment this variable in method paintComponent. Then its current
value is the number of calls to paintComponent. Add a command to paint-
Component which draws the value of noOfRepaints into the panel with
some explanation, for example, ‘The number of redraws is’. Move and resize
the panel to see how many repaints are actually performed.

Adding the mouse

In this chapter we learn how the mouse is integrated into an application. We shall
see how the mouse motion and the use of buttons can be monitored and used by
an application.

In this chapter we describe how to use the mouse! in a Swing component. In

previous chapters we used the mouse indirectly as a means of pressing buttons.
As buttons can be pressed in other ways (by a finger on a touch screen), these
applications reacted to buttons but they did not react to the mouse itself.

In order to directly integrate the mouse into an application we have to add a
mouse listener to some component. The listener then keeps an eye on the mouse
and starts user-defined actions if certain events occur. Such events can be clicking
a mouse button, the mouse leaving or entering the component, a change of the
mouse position while inside the component, etc. Note that the listener is assigned
to a component not to the mouse itself. It tracks the mouse only while it is inside
the component.

Often one is interested in the mouse buttons or in the mouse motion but not
both. Therefore there are two listeners defined by the interfaces MouseListener
and MouseMotionListener in the AWT library java.awt.event. The first is for
handling the mouse buttons while the latter monitors the motion. To add a mouse
listener to a Swing component comp use

comp .addMouseListener (MouseListener mouselListener) ;

comp .addMouseMotionListener (MouseMotionListener motionListener) ;

In Chapters 3 and 4 we introduced the ActionListener and the corresponding
ActionEvent. The implementation of an ActionListener requires the imple-
mentation of only a single method, actionPerformed. Mouse listeners have more
methods which correspond to different mouse actions. There is also a special
event, the MouseEvent. This is discussed in the following sections.

1 We use the term ‘mouse’ also to denote the reference point (hot spot) of the mouse pointer
icon.

54

Basics

6.1 M The mouse listener

Interface MouseListener allows us to react to the use of the mouse buttons and to
entering or leaving the component to which the mouse listener is assigned. When-
ever the mouse enters or leaves the component or a mouse button is used inside
that component then the runtime system generates a MouseEvent and informs the
listener. Depending on the event, different methods of the listener are called. The
event object is passed as an argument to the method. The event object contains
information on the event; see Section 6.3 below. Interface MouseListener has five
such methods, all of which have to be implemented:

void mouseClicked (MouseEvent mevt)
void mouseEntered (MouseEvent mevt)
void mouseExited (MouseEvent mevt)
void mousePressed (MouseEvent mevt)

void mouseReleased (MouseEvent mevt)

mouseClicked (MouseEvent mevt) is automatically called by the runtime system
when a mouse button is clicked?. To find out which button was clicked one has
to look at the MouseEvent object mevt, see Section 6.3.

mouseEntered (MouseEvent mevt) is automatically called by the runtime system
if the mouse enters the component to which the listener is associated.

mouseExited (MouseEvent mevt) is automatically called by the runtime system
if the mouse leaves the component to which the listener is associated.

mousePressed (MouseEvent mevt) is automatically called by the runtime system
if a mouse button is pressed. To find out which button was pressed one has to
look at the MouseEvent object mevt, see Section 6.3.

mouseReleased (MouseEvent mevt) is automatically called by the runtime sys-
tem if a mouse button is released. To find out which button was released one
has to look at the MouseEvent object mevt, see Section 6.3.

A click results in calling three methods, mousePressed, mouseReleased and
mouseClicked.

6.2 B The mouse motion listener

Interface MouseMotionListener supplies methods to track the mouse. If a Mouse-
MotionListener is assigned to a Swing component and the mouse is moved while
inside this component then the runtime system generates a MouseEvent and

2 In most operating systems ‘clicking’ is equivalent to ‘press and release’.

Adding the mouse

informs the listener. Depending on whether the mouse was moved or dragged?,
different methods of the listener are called. The event object is passed as an
argument to the method. A MouseMotionListener has two methods; both of which
have to be implemented:

void mouseMoved (MouseEvent mevt)

void mouseDragged (MouseEvent mevt)

mouseMoved (MouseEvent mevt) is automatically called if the mouse is moved
while it is in a component that the listener is associated to. The new mouse
position can be found by analysing the event object mevt. The mouse is ‘moved’
if the runtime system receives a signal from the mouse. Usually this results in
a change of the position of the mouse pointer on the screen by at least one
pixel.

mouseDragged (MouseEvent mevt) is automatically called if the mouse is moved
while a mouse button is pressed.

6.3 M Mouse events

The methods described above all receive a (MouseEvent) as a parameter. This
object contains information on what triggered the listener. The following meth-
ods from the class MouseEvent show where the event occurred. The x- and y-
coordinates are in pixels in the coordinate system of the component to which the
listener is assigned:

int getX()
int getY()

To find out which button was used we can use the following methods from class
SwingUtilities. They return true if the button appearing in the method name
is used, and false otherwise:

boolean SwingUtilities.isLeftMouseButton (MouseEvent me)
boolean SwingUtilities.isMiddleMouseButton (MouseEvent me)

boolean SwingUtilities.isRightMouseButton (MouseEvent me)
Java does not (yet) support double clicks. One can use method
int getClickCount ()
to determine the number of clicks in a short period. The length of this period de-

pends on the platform and can usually be set using utilities of the operating system.
Then a double click can be checked by using if (mevt.getClickCount () == 2).

3 Dragging means moving the mouse with a button pressed.

55

56

Basics

6.4 M A first mouse application

6.4.1 [Specification of the application

Let us specify the application that demonstrates the mouse listeners. The compo-
nent to which the mouse listeners are associated will be a 300 x 300 panel that is
centrally placed in a frame. Below that is another panel which displays information
about the mouse. We would like to display the current mouse position, the number
of clicks of the mouse button and whether the mouse is inside or outside the 300 x
300 panel. The information is continuously updated. The intended layout can be
seen in Figure 6.1. We describe the implementation of the view and control parts;
a model part is not implemented because there is hardly any data to be handled.

6.4.2 [] The view part

For the implementation we define the class MouseEventPanel. The panel (now)
has no methods of its own; it serves only as a playground for the mouse. It will be
the central component in a frame of type MouseEventFrame which we also define.
The mouse listeners will be assigned to this panel. They will then track the mouse
while it is in the panel.

Below the mouse event panel (South) we add another panel to the frame. This
is of type statusPanel and will be used to display information on the mouse.

I Title [I <+—Frame with titlebar

Panel (300 x 300 pix)
as playground for

R the mouse

[T Mouse pointer

A

Status panel displaying
information about

/ current mouse position,
N etc.

position: x = 137 v = i}/
number of clicks: 27
mouse is in component: yes

Figure 6.1 The layout of the first mouse application

Adding the mouse

A statusPanel has a 3 x 3 grid layout, containing nine labels. The first one in
every row contains a fixed text, e.g. ‘Position’, the second and third are used to
display varying information, e.g. the current x- and y-coordinates of the mouse.
Two labels are ‘dummies’ placed at unused positions in the grid. A StatusPanel
has methods to set the coordinate values, the click count and the information
whether the mouse is in or out. Figure 6.2 shows how the components are arranged.
The listings of the classes are given below. In MouseEventFrame instances of My -
MouseListener and MyMousePositionsListener are created and are both as-
signed to the MouseEventPanel. This demonstrates that more than one can be
assigned to a single component.

JFrame

JPanel with
3 x 3 grid layout

Figure 6.2 A blueprint for the view part of the mouse application

57

58 Basics

F“e:its/MouseEvents/MouseEventFrame.java

1. package its.MouseEvents;
2
3. import its.SimpleFrame.SimpleFrame;
4. import java.awt.BorderLayout;
5
6. public class MouseEventFrame extends SimpleFrame
7.1
8. MouseEventPanel mePanel = new MouseEventPanel () ;
9. StatusPanel stPanel = new StatusPanel () ;
10.
11. public MouseEventFrame ()
12. {
13. this.setTitle("Mouse application");
14. this.getContentPane () .add (mePanel, BorderLayout .CENTER) ;
15. this.getContentPane () .add(stPanel, BorderLayout.SOUTH) ;
16. pack () ;
17.
18. MyMousePositionsListener mPosAdpt =
new MyMousePositionsListener (stPanel) ;

19. mePanel .addMouseMotionListener (mPosAdpt) ;
20.
21. MyMouseListener MAdpt = new MyMouseListener (stPanel) ;
22. mePanel .addMouselListener (MAdpt) ;
23.
24. }
25.)

File: its/MouseEvents/MouseEventPanel . java
1. package its.MouseEvents;
2
3. import java.awt.Color;
4. import java.awt.Dimension;
5. import javax.swing.JPanel;
6
7. public class MouseEventPanel extends JPanel
8. {
9. public MouseEventPanel ()
10. {
11. this.setBackground (Color.white) ;
12. this.setPreferredSize (new Dimension(300,300)) ;
13. }

14. }

Adding the mouse 59

F“e:its/MouseEvents/StatusPanel.java

package its.MouseEvents; 1.
2.

import java.awt.GridLayout; 3.
import javax.swing.JLabel; 4.
import javax.swing.JPanel; 5.
6.

public class StatusPanel extends JPanel 7.
{ 8.
private JLabel posText = new JLabel ("position:"); 9.
private JLabel XCoord = new JLabel ("0", JLabel.RIGHT) ; 10
private JLabel YCoord = new JLabel ("0", JLabel.RIGHT) ; 11.
private JLabel countText = new JLabel ("no. of clicks"); 12
private JLabel counts = new JLabel ("0", JLabel.RIGHT) ; 13
private JLabel dummyl = new JLabel () ; 14
private JLabel inOutText = new JLabel ("mouse is in comp."); 15.
private JLabel inOut = new JLabel ("no", JLabel.RIGHT) ; 16
private JLabel dummy2 = new JLabel () ; 17
private int clickCount = 0; 18
19.

public StatusPanel () 20

{ 21.
this.setlLayout (new GridLayout (3,3)); 22.
this.add (posText) ; 23
this.add (XCoord) ; 24.
this.add (YCoord) ; 25.
this.add (countText) ; 26.
this.add (counts) ; 27.
this.add (dummyl) ; 28.
this.add (inOutText) ; 29.
this.add (inOut) ; 30.
this.add (dummy?2) ; 31.

} 32.

// Updates the displayed coordinates of the mouse position. 33
public void setCoordinates (int x, int y) 34

{ 35.
XCoord.setText (Integer.toString(x)) ; 36
YCoord.setText (Integer.toString(y)) ; 37.

} 38.

// Sets the information whether the mouse is in or out. 39
public void setInOut (String str) 40.

{ 41.
inOut.setText (str) ; 42.

} 43.

// Increments the click count and displays it. 44

60

46.
47.
48.
49.

Basics

public void incrementClickCount () {
clickCount++;

counts.setText (Integer.toString (clickCount)) ;

6.4.3 [The control part

The control part has to implement the following functionality:

B If the mouse is in the MouseEventPanel the StatusPanel displays the current
mouse coordinates and a ‘yes’.

B If the mouse is not in the MouseEventPanel, the StatusPanel displays the
coordinates (—1, —1) and a ‘no’.

When a mouse button is clicked the click count is increased by one.

Whenever the mouse is moved or a button is clicked, the information in the
status panel is updated.

B The initial values to the coordinates and click count are all zero, and ‘no’ is
displayed.

To implement the first function we derive class MyMousePositionsListener
from MouseMotionListener. The listener is assigned to the MouseEventPanel.
We override method mouseMoved in such a way that it sets the current coordi-
nates in the status panel. In order for the MyMousePositionsListener to have
access to the status panel it receives a reference to the panel in the construc-
tor. As the method mouseMoved is executed every time the mouse is moved (in
the panel) we always display the current coordinates. Method mouseDragged is
implemented with empty body because we have not specified any reaction to
dragging.

The second, third and fourth functions are realized by a mouse listener, namely
the class MyMouseListener derived from MouseListener. There we imple-
ment the methods mouseEntered and mouseExited such that they set the text
of the inout label in the status panel and also the coordinates to (—1,—1)
when exiting MouseEventPanel. For the fourth function, method mouseClicked
in MyMouseListener is implemented to call incrementClickCount() of
MouseEventPanel. In order for MyMouseListener to have access to the status
panel it receives a reference to the panel in the constructor. Methods Mouse-
Pressed and MouseReleased are not needed and therefore implemented with no
functions, i.e. with empty bodies.

This completes the application (see Figure 6.3); the listings of the two listener
classes and the driver class MouseEventDriver are given below.

Adding the mouse

Figure 6.3 The first mouse application

File: its/MouseEvents/MyMousePositionsListener.java
package its.MouseEvents;

import java.awt.event.MouseEvent;

import java.awt.event.MouseMotionListener;

public class MyMousePositionsListener implements MouseMotionListener

{

private StatusPanel statusPane;

public MyMousePositionsListener (StatusPanel s)

{

statusPane = s;

public void mouseMoved (MouseEvent evt)

{

statusPane.setCoordinates (evt.getX () ,evt.getY());

}

public void mouseDragged (MouseEvent evt)

{
// implemented with empty body

61

0PN

O T S S G G S S S
N N O N =

20.
21.
22.
23.
24.

62 Basics

File: its/MouseEvents/MyMouseListener. java

1. package its.MouseEvents;

2

3. import java.awt.event.MouseEvent;

4. import java.awt.event.MouseListener;

5

6. public class MyMouselistener implements Mouselistener
7.1

8. private StatusPanel statusPane;

9

10. public MyMouseListener (StatusPanel s)

11. {

12. statusPane = s;

13. }

14.

15. public void mouseEntered (MouseEvent e)
16. {

17. statusPane.setInOut ("yes") ;

18. }

19.

20. public void mouseExited (MouseEvent e)
21. {

22. statusPane.setInOut ("no") ;

23. statusPane.setCoordinates(-1,-1);
24. }

25.

26. public void mouseClicked (MouseEvent e)
27. {

28. statusPane.incrementClickCount () ;
29. }

30.

31. public void mousePressed(MouseEvent e)
32. {

33. //implemented with empty body

34. }

35.

36. public void mouseReleased (MouseEvent e)
37. {

38. //implemented with empty body

39. }

40.

Adding the mouse 63

File: its/MouseEvents/MouseEventDriver.java

package its.MouseEvents; 1.
2.

public class MouseEventDriver 3.
{ 4.
public static void main(String[] args) 5.

{ 6.
MouseEventFrame MEF = new MouseEventFrame() ; 7.
MEF.showIt () ; 8.

} 9.

} 10.

Exercises

6.1 Change the status panel such that instead of the number of all clicks, the
number of clicks of the right and left buttons are displayed separately. Aug-
ment the mouse listener such that these functions work. Recall that the class
SwingUtilites provides methods to check which button was used.

6.2 Add the following function to the application described in Section 6.4. If the
mouse is in the ‘upper left corner’ of the MouseEventPanel then the colour
of this panel changes to yellow. By the upper left corner we mean the x- and
y-coordinates of the click position are both less than 50. If the mouse is inside
of the MouseEventPanel but outside the upper left corner then the colour
is white.

Hint: Find out which listeners have to be modified. If necessary, pass more
references to the listeners in their constructors. To change the colour of a
panel use the following two commands:

this.setBackground (Color.yellow) ;
this.repaint () ;
6.3 Remove the status panel from the application and display the information in
the MouseEventPanel. Do not embed any components into that panel, use
paintComponent.

Interactive graphics

In Chapter 5 we saw how an application can display predefined graphics. In Chap-
ter 6 the mouse was embedded into an application. We shall now see how to
combine these two things so that one can interactively generate and manipulate
graphics.

We extend the application from Chapter 6 by an interactive part. This will enable
you to generate and alter a drawing using the mouse. The drawing consists of
circles that are added to or removed by mouse clicks. The resulting application
has a model, a view and a control part. The model part consists of a class defining
a circle and a class defining a data structure which stores the circles currently in
the graphic and which also supplies methods to add a circle or remove one. The
view part is mostly like the application in Chapter 6. The class MouseEventPanel
of Chapter 6 is augmented by overriding its paintComponent method as described
in Chapter 5. The control part is implemented by extending the listeners from
Chapter 6.

7.1 M Specification of the GUI

The layout is very much like that in Figure 6.1. We therefore specify only the
additional functions:

B If clicking the left mouse button inside the 300 x 300 panel, a small filled black
circle appears at the current mouse position.

B If clicking the right mouse button the circle closest to the current mouse po-
sition is removed, but only if the distance is less than 30 pixels. Distances are
in the Euclidean metric of R?. If more than one circle has the same distance
to the click position, choose an arbitrary one.

B The status panel now also displays the current number of circles.

Interactive graphics

7.2 M The model part

In this section we describe two classes that form the model part of our application:
Circle and CircleAdministration. The first is an abstract representation of a
circle and the second is used to administer the circles currently in the drawing.
Here ‘abstract’ means that a cCircle is independent of its graphical representation.
A circle is specified by defining two quantities: the location of the centre and its
radius. As we do not want to restrict ourselves to pixel coordinates, we use double
variables. The class has methods to compute the distance of the centre to a given
point. The class CircleAdministration stores the circles that are currently in
the graphic. It also supplies methods to add a circle or to remove one.

7.2.1 [Circles

Class circle has three double fields, x, v and radius, which contain the co-
ordinates of the centre of the circle and its radius, respectively. Following the
object-oriented paradigm of Java, only the class circle knows how to draw a cir-
cle. Therefore, circle provides a method draw which contains the graphics com-
mands to draw the circle. These commands need a graphics reference (Graphics)
which is given as an argument to draw. Note that the draw-method of class circle
actually is a view part method. Thus, the distinction of view and model part in
this case is not only between classes but also inside a single class: some methods
handle ‘view’ aspects and others ‘model” aspects.

The data on the centre and radius of the circle are stored as double; the draw
method, however, needs integers. We convert double to integers by simply round-
ing to the nearest integer. We shall learn about a better and more flexible way of
converting to pixel coordinates in Section 13.3. The filloval-method expects
the upper right corner of the bounding box and the width and height of the box
as parameters. The coordinates are found by subtracting the radius from the co-
ordinates of the centre of the circle. By multiplying the radius by two we find the
width and height. To keep the code short we do not check whether the values are
plausible, e.g. that the radius or the pixel coordinates are non-negative.

Class circle also supplies the method distance (double x1, double y1)
which computes the Euclidean distance between the circle’s centre and the point
(2¢1, ¥1). This method is used to determine which circle is closest to the location
of a mouse click and has to be deleted.

File: its/InteractiveGraphic/Circle.java
package its.InteractiveGraphic;
import java.awt.Graphics;

public class Circle

{

65

Nk L=

66

8

10.
11.
12.
13.
14.
15.

Basics

private double x,y,radius;

public Circle(double xx, double yy, double rad)
{

x = xXX;
Yy = YV
radius = rad;

}

16.

17.
18.
19.
20.
21.
22.

// Draws the circle
public void draw (Graphics g)
{
g.filloval ((int)Math.round (x-radius), (int)Math.round (y-radius),
(int)Math.round(2.0*radius), (int)Math.round(2.0*radius)) ;

23.

24.
25.
26.
27.
28.
29.
30.

// Computes the distance between the circle’s
// centre and the point (x1,yl).
public double distanceTo (double x1, double yl)
{
return (Math.sqgrt (Math.pow(x-x1,2)+Math.pow(y-y1,2)));

7.2.2 [A data structure to administer circles

Class circleAdministration does most of the work. The heart of it is an object
of type vector. This is a class predefined in Java; one can think of it as an array
with flexible length. Vectors can store arbitrary objects. If a vector contains n
objects then they are indexed from 0 ton — 1. The vector circles used in Circle-
Administration stores the Circle objects currently in our graphic. To access the
ith object one uses the method get (i). The method returns an Object and thus
one has to cast it to the correct data type, a Circle in our case'. The syntax for
this is:

(Circle) (circles.get (1))

Besides the constructor, the class CircleAadministration has the following meth-
ods:

void addCircle(Circle circ)

void removeNearestCircle(int x1, int yl)
void drawAll (Graphics g)

int getNoOfCircles()

I Version 1.5 of the Java SDK (software development kit) allows typed wvectors to be defined.
These can only store objects from a single class, e.g. only Circles. This avoids casting.

Interactive graphics 67

addCircle (circ) adds circle circ to vector circles.

removeNearestCircle (x1,yl) determines a circle stored in vector circles
whose centre has minimum distance to the point (x,). If the distance is at
most 30 (pixel), then the circle is removed from circles.

drawall (g) draws all circles currently stored in circles. This is done by calling
the draw-method of each of them. The Graphics object g is passed on.

getNoOfCircles () returns the number of circles currently stored in vector cir-
cles.

In method removeNearestCircle(x1,yl) the circle to be removed is found by
computing the distances of the point (x1,y1) to the centre of all circles. This
is not the most effective way of doing this but we choose it to keep the code
short.

File: its/InteractiveGraphic/CircleAdministration.java

package its.InteractiveGraphic; 1.
2.

import java.awt.Graphics; 3.
import java.util.Vector; 4.
5.

public class CircleAdministration 6.
{ 7.
private Vector circles; 8.
9.

public CircleAdministration() 10

{ 11.
circles = new Vector(); 12

} 13.
14.

public void addCircle(Circle circ) 15.

{ 16.
circles.add(circ) ; 17.

} 18.

19.

public void removeNearestCircle(int x1, int y1) 20

{ 21.
Circle circ; 22.
double minDist = Double.MAX_ VALUE; 23

int minDistIndex = -1; 24.

for (int i=0 ; i < circles.size() ; i++) 25.

{ 26.
circ = (Circle) (circles.get (1)) ; 27

if (circ.distanceTo(x1l,yl) < minDist) 28

68

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

Basics

{
minDist = circ.distanceTo(x1,vyl);
minDistIndex = 1i;
Y// if
}Y//for i
if ((minDistIndex >= 0) && (minDist < 30))
{
circles.removeElementAt (minDistIndex) ;
Y//if
}//method

39.

40.
41.
42.
43.
44.
45.
46.
47.
48.

public void drawAll (Graphics g)
{
Circle currentCircle;
for (int i=0 ; i < circles.size() ; 1i++)
{
currentCircle = (Circle) (circles.get (1)) ;
currentCircle.draw(g) ;
}Y//for 1
}/ /method

(910N BNV IS} BN
L hH o0

public int getNoOfCircles () {
return(circles.size());
}//method

7.3 M The view part

The view is much like that in Chapter 6. The frame class InteractiveFrame is
just a renamed copy of class MouseEventFrame from Chapter 6.

The panel InteractivePanel is extended with respect to class MouseEvent -
panel from Chapter 6. It now contains a field of type CircleAdministration
and methods addcircle and removeNearestCircle for adding and deleting a
circle to the circle administration. These methods just pass the mouse posi-
tions to those methods of circleAdministration with the same name and
then call repaint. It is important to call the repaint method of the panel af-
ter every deletion and insertion of a circle! Otherwise a circle would only be
added to or deleted from the circle administration — the display would not be
updated.

The paintComponent method of Jpanel has to be overridden to draw the cir-
cles. The panel itself knows neither which circles are currently present nor how
to draw them. This is known only by the circleAdministration. Thus the only
drawing command in paintComponent is a call of the method drawall of cir-
cleAdministration.

Interactive graphics

File: its/InteractiveGraphic/InteractivePanel . java
package its.InteractiveGraphic;

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;

import javax.swing.JPanel;

public class InteractivePanel extends JPanel

{

private CircleAdministration circleAdm;

private double radius = 6.0;

public InteractivePanel ()
{
circleAdm = new CircleAdministration();
this.setBackground(Color.white) ;

this.setPreferredSize (new Dimension (300,300)) ;

public void paintComponent (Graphics g)
{
super.paintComponent (g) ;
circleAdm.drawAll (g) ;

public void addCircle(int x, int vy)
{
circleAdm.addCircle (new Circle(x,y,radius)) ;

repaint () ;

public void removeNearestCircle(int x, int y)
{
circleAdm.removeNearestCircle(x,Vy) ;

repaint () ;

public int getNoOfCircles()

{
return (circleAdm.getNoOfCircles()) ;

69

EE SIS

Y o N

40.
41.
42.
43.

70 Basics

The status panel has to display the number circles. We change class StatusPanel
from Chapter 6 as follows. We now use a 4 x 3 grid layout and three more labels.
The additional labels contain the text ‘No. of circles’, the number of circles, and
a dummy to fill the grid. We add a method setNoofCircles (int n) to set the
number of circles.

File: its/InteractiveGraphic/StatusPanel.java

1. package its.InteractiveGraphic;

2

3. import java.awt.GridLayout;

4. import javax.swing.JLabel;

5. import javax.swing.JPanel;

6

7. public class StatusPanel extends JPanel

8. {

9. private JLabel posText = new JLabel ("position:");

10. private JLabel XCoord = new JLabel ("0", JLabel.RIGHT) ;
11. private JLabel YCoord = new JLabel ("0", JLabel.RIGHT) ;
12. private JLabel countText = new JLabel ("no. of clicks");
13. private JLabel counts = new JLabel ("0", JLabel.RIGHT) ;
14. private JLabel dummyl = new JLabel () ;

15. private JLabel circleText = new JLabel ("no. of circles");
16. private JLabel noOfCirc = new JLabel ("0", JLabel.RIGHT) ;
17. private JLabel dummy?2 = new JLabel () ;

18. private JLabel inOutText = new JLabel ("mouse is in comp.");
19. private JLabel inOut = new JLabel ("no", JLabel.RIGHT) ;
20. private JLabel dummy3 = new JLabel () ;

21.

22. private int clickCount = 0;

23.

24. public StatusPanel () {

25. this.setLayout (new GridLayout (4,3));

26. this.add (posText) ;

27. this.add (XCoord) ;

28. this.add(YCoord) ;

29. this.add (countText) ;
30. this.add(counts) ;
31. this.add (dummyl) ;
32. this.add(circleText) ;
33. this.add (noOfCirc) ;
34. this.add (dummy?2) ;
35. this.add (inOutText) ;
36. this.add (inOut) ;
37. this.add (dummy3) ;
38. }

39.

Interactive graphics

public void setCoordinates (int x, int vy){
XCoord.setText (""+x) ;
YCoord.setText (""+y) ;

}

public void setInOut (String str) {
inOut.setText (str) ;

}

public void incrementClickCount () {
clickCount++;

counts.setText (Integer.toString (clickCount)) ;

public void setNoOfCircles (int n) {

noOfCirc.setText (Integer.toString(n)) ;

7.4 M The control part

Of the two listeners only MyMouselListener is changed by adding more commands
to method mouseClicked. Depending on whether the left or right button was
pressed a circle is added using the methods addCircle (e.getX(),e.getY()) or
deleted using removeNearestCircle (e.getX(),e.getY()) of class Interactive
panel. The information about which mouse button was clicked is extracted from
the MouseEvent object e using methods from the class swingUtilities. If amouse
has three or more buttons, any button that is not the left one is considered as a
right button. In any case the number of circles is updated using

[StatusPanel] .setNoOfCircles([InteractivePanel] .getNoOfCircles())

The texts in brackets have to be replaced by the appropriate variable names with-
out brackets. In order for the listener to have access to that panel the constructor
of MyMouselListener now receives a reference to the interactive panel.

File: its/InteractiveGraphic/MyMouseListener.java
package its.InteractiveGraphic;
import java.awt.event.MouseEvent;

import java.awt.event.MouseListener;

import javax.swing.SwingUtilities;

71

o Ut N
I

o
@

UL
N o

U
7

b

[OSI \SI

AN

72 Basics

7. public class MyMouseListener implements MouseListener
8. {
9. private StatusPanel statusPane;

10. private InteractivePanel interactivePane;

11.

12. public MyMouseListener (StatusPanel s, InteractivePanel i)
13. {

14. statusPane = s;

15. interactivePane = i;

16. }

17.

18. public void mouseEntered(MouseEvent e)

19. {

20. statusPane.setInOut ("yes") ;

21. }

22.

23. public void mouseExited (MouseEvent e)

24. {

25. statusPane.setInOut ("no") ;

26. statusPane.setCoordinates(-1,-1);

27. }

28.

29. public void mouseClicked(MouseEvent e)

30. {

31. statusPane.incrementClickCount () ;

32. if (SwingUtilities.isLeftMouseButton(e)) //left mouse button
33. {

34. interactivePane.addCircle(e.getX(),e.get¥Y());
35. }

36. else // any other mouse button

37. {

38. interactivePane.removeNearestCircle(e.getX () ,e.get¥Y());
39. }

40. statusPane.setNoOfCircles (interactivePane.getNoOfCircles()) ;
41. }

42.

43. public void mousePressed(MouseEvent e)

44. {

45. //implemented with empty body

46. }

47.

48. public void mouseReleased (MouseEvent e)

49. {

50. //implemented with empty body

51. }

52. 1}

Interactive graphics

Figure 7.1 The interactive application. Only 14 circles are shown, rather than the 15 given
on the status panel, as 2 occupy the same location

7.5 M Running the application

Our interactive application is now complete. The result is shown in Figure 7.1.
Note that more than one circle can be at the same coordinates in which case one
‘sees’ fewer circles than there actually are. The number of circles displayed in the
status panel is always correct. Some circles might also be invisible because the
frame was resized and they are now outside the visible area.

7.6 M Summary and remarks

7.6.1 [] Mouse listeners

We have seen how the two mouse listeners work. A MouseListener becomes active

when the mouse buttons are used or the mouse leaves or enters the component to

which the listener is assigned. A MouseMotionListener becomes active whenever

the mouse is moved. The mouse event object generated by the runtime system

contains information on the type of event and the location where it occurred.
The following steps are necessary to implement mouse listeners:

1. Determine inside which component the mouse should be tracked.

2. Create a mouse (motion) listener. That is, define in method mouseClicked,
etc. what has to happen in response to an event.

3. Assign the action listener to the relevant component.

73

74

Basics

Since version 1.4 of the Java SDK (software development kit) there is a third
listener for the mouse: a MouseWheelListener keeps tracks of the mouse wheel
and is activated every time the mouse wheel is moved.

7.6.2 [The design of the application

Let us again summarize the implementation of the model-view—control concept
of this application. In this example the class CircleAdministration does all the
work to keep the abstract data up to date. The circles are stored in Circle-
Administration and this class deletes or adds circles. Only this class knows how
many circles there are. The class InteractivePanel, on the other hand, does
the work to display the graphics. It does not know about the circles. In order to
draw the graphic it has to consult CircleAdministration. It does so by calling
the drawall method of Circleadministration. Also, if the listener associated
with InteractivePanel detects a click, Interactivepanel only knows whether
to add or delete a circle and the position. It then passes the work to CircleAdmin-
istration by calling the addcircle (or removeNearestCircle) method. After an
update (add or delete) has been completed by CircleAdministration, Inter-
activePanel updates the display. To this end it calls its method repaint, which
causes the runtime system to call paintComponent at an appropriate time.

Exercises

7.1 Change the application as follows. Add a field color to class Circle as an
instance of java.awt .Color. Define a second constructor for Circle which
allows it to pass a colour in addition. Then modify CircleAdministration
in such a way that the circles in turn receive the colours red, blue, green,
red, etc.

7.2 Modify the application in the following way. Add a line to the status panel
which displays the coordinates of the centre of that circle that is currently
closest to the mouse pointer. Note that this might change with every move
of the mouse. Make sure that the application can handle the situation where
no circle is present.

7.3 Change the application to display line segments instead of circles. A line is
added by two consecutive clicks of the left mouse button. The location of the
first click is one end point of the line, the location of the second click is the
other end point. A click of the right button removes a line nearest to the click
location. There are various ways to define ‘nearest’, for example one can take
the distance to the first end point, to the middle of the line or the geometrical
distance.

Menus

In this chapter we learn how to add menus to a frame and how to integrate them
into our application.

Menus are most often used as subcomponents of frames. They are hierarchically
organized. The topmost component is the menu bar. This is a rectangular area lo-
cated below the title bar of a frame and above the content pane. The intermediate
components are the menus. A menu appears as text in the menu bar. When one
clicks on such a text the actual menu will roll out. It contains the menu items,
which are lowest in the hierarchy. Figure 8.1 illustrates the structure. The menu
items are the components that trigger actions. They can be considered as a special
kind of button. In fact, like buttons, one uses an action listener to monitor them. It
sometimes is necessary to disable certain menu items for some of the time. A dis-
abled menu item does not trigger any action when clicked on. On most platforms
the text of a disabled menu item is shown lighter than that of enabled ones. One
situation where disabling a menu item makes sense is the following: assume data
are loaded from a file, and a menu item is then clicked on to start extensive calcu-
lations on the data. It would make no sense to repeat these extensive calculations
on the same data if the result is always the same. Thus one disables the menu item
that starts the calculations. It is enabled again only when new data are present.
We shall now implement a small GUI that demonstrates the use of menus in
Swing. As it does not handle any other data we do not implement a model part.

8.1 M Specification of the GUI

The GUI consists of a frame with a label embedded into the content pane. It has
a menu bar with two menus entitled ‘Menu 1’ and ‘Menu 2’. The first has three
items entitled ‘Ttem 1’, ‘Test’ and ‘Exit’. The second menu has two items entitled
‘Enable Test” and ‘Disable Test’. Initially all items are enabled.

When a menu item is selected, the label displays a text ‘Ttem XXXX selected’.
The two items in the second menu do something in addition. Whenever ‘Disable
Test’ is clicked on, the item “Test’ in the first menu is disabled,; if it was disabled
before, nothing changes. Whenever ‘Enable Test’ is clicked on, the item “Test’ in
the first menu is enabled,; if it was enabled before, nothing changes.

76

Basics

Menu
\
| Tiﬂe \ buttons | |
Menu bar —’l Menul Metqu2 |
l»item 1
bitem 2

=

Menu items

contentPane

Figure 8.1 The structure of an application with menus. The second menu is rolled out and
its entries can be selected

8.2 M The view part

We need the following three Swing components to implement menus. First, a menu
bar realized by class JMenuBar. This is added to a frame between the title bar and
the content pane. Second, we need a menu realized by JMenu, which adds a menu
to the menu bar by displaying its title. Finally, we need menu items realized in
class JMenuItem, which defines the menu items on which the user can click. The
basic functions are automatically supplied: a menu rolls out if one clicks on the
title and it closes if one clicks somewhere else.

8.2.1 [I Menu bars
From gMenuBar we only need the constructor and the method to add a menu:

JMenuBar ()

add (JMenu menu)

Menus are added to the menu bar from left to right in the order of the add com-
mands. To add a menu bar to a frame we use the following method from class
JFrame:

setJMenuBar (JMenuBar menuBar)

Note that there are distinct methods setdMenuBar and setMenuBar for adding a
JMenuBar (Swing) and a MenuBar (AWT).

8.2.2 [] Menus

From class JMenu we need the constructor which receives the menu title in a string
and methods to add menu items or separators (horizontal lines) to the menu:

JMenu (String menuTitle)
add (JMenuItem menultem)
addSeparator ()

Menus

In a menu, the items or separators are added from top to bottom in the order of
the add commands.

8.2.3 [] Menu items

From JMenuItem we need the constructor which receives the item title in a string
and a method to assign an action listener to the menu item. Menu items behave
much like buttons. In particular, the action listener is automatically informed
when the item is clicked on. The listener then starts the desired actions. Finally
we need a method to enable or disable a menu item:

JMenultem (String itemText)
addActionListener (ActionListener listener)
setEnabled (boolean b)

The call setEnabled (false) disables a menuitem. The item appears with a lighter
text and any listener assigned to it is no longer informed when the item is clicked
on. Hence, a disabled item does not trigger any reaction in the application. Call-
ing setEnabled (true) will enable the item again. Its text becomes darker and
listeners assigned to the item are again informed of events.

8.2.4 [] Constructing the GUI

We are now able to implement the GUI. The listings below show the code for the
frame class MenuFrame and the driver class MenubDriver. A MenuFrame has a label
centrally placed in its content pane. A menu bar is created and added. Then the
two menus are created and added. Finally we generate the menu items and add
them to the respective menus. Finally an action listener is created and assigned
to all menu items. This listener is an instance of the class MenuListener which
we define later in Section 8.3. The frame class also has three public methods for
setting the text in the label, and enabling or disabling the menu item ‘“Test’ in the
first menu:

setText (String text)

enableTest ()

disableTest ()
File: its/Menus/MenuFrame.java
package its.Menus;
import its.SimpleFrame.SimpleFrame;
import javax.swing.*;

import java.awt.BorderLayout;

public class MenuFrame extends SimpleFrame {

77

|3, W SCR R

)

78 Basics

9. private JLabel display;
10. private JMenultem testItem;

11.

12. public MenuFrame () {

13. display = new JLabel ("No menu selected.",JLabel.CENTER) ;
14.

15. // Create a menu bar and add it to the frame

16.

17. JMenuBar menubar = new JMenuBar () ;

18. this.setJMenuBar (menubar) ;

19.

20. // Create and add the menus

21. JMenu firstMenu = new JMenu("Menu 1");

22. JMenu secondMenu = new JMenu ("Menu 2");

23. menubar.add (firstMenu) ;

24. menubar .add (secondMenu) ;

25.

26. // Create the menu items and add them to the menus
27. JMenulItem firstItem = new JMenultem("Item 1");
28. testItem = new JMenultem("Test");

29. JMenulItem exitItem = new JMenultem("Exit") ;

30. JMenulItem enableItem = new JMenultem("Enable Test");
31. JMenultem disableItem = new JMenultem("Disable Test");
32.

33. firstMenu.add (firstItem) ;

34. firstMenu.add (testItem) ;

35. firstMenu.addSeparator () ;

36. firstMenu.add (exitItem) ;

37.

38. secondMenu.add (enablelItem) ;

39. secondMenu.add (disablelItem) ;

40.

41. // Create a listener and add it to the menu items
42. MenuListener menulist = new MenulListener (this) ;

43. firstItem.addActionListener (menulList) ;

44. testItem.addActionListener (menulist) ;

45. exitItem.addActionListener (menulList) ;

46. enableltem.addActionListener (menulList) ;

47. disableItem.addActionListener (menulist) ;

48.

49. // Add the label to the frame

50. this.getContentPane () .add (display, BorderLayout .CENTER) ;
51. }

52.

53. // Method to set the text in the label

54. public void setText (String text) {

Menus 79

display.setText (text) ; 55.

} 56.
57.

// Method to enable the label 58.
public void enableTest () { 59
testItem.setEnabled (true) ; 60.

} 61.
62.

// Method to disable the label 63.
public void disableTest () { 64
testItem.setEnabled(false) ; 65.

} 66.
} 67.

File: its/Menus/MenuDriver.java
package its.Menus;

public class MenuDriver {
public static void main(String[] args) {
MenuFrame mf = new MenuFrame () ;
mf . showIt();

@ NN LN

8.3 M The control part

The control part is realized by an action listener. We implement an Action-
Listener in class MenuListener. As a reaction to events coming from the menu
items the MenuListener has to update the information displayed in the MenuFrame
and to enable or disable the ‘Test’ item. In order to have access to the frame the
MenuListener receives a reference to a MenuFrame in the constructor.

As mentioned above, menu items behave much like buttons. If a menu item
has a listener assigned to it and is clicked, the runtime system generates an object
of type ActionEvent. This contains information on the type of event, e.g. which
menu item was clicked. The runtime system calls method actionPerformed of
the listener.

In our example, method actionPerformed exploits the action command to find
out which button was clicked using nested i f-then-else statements. Depending
on the action command, a specific action is performed, namely the name of the
selected menu item is displayed in the label. Below is the code listing for this class.
Figure 8.2 shows the result of running the application.

80

L N N S

o »®» N o

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

Basics

Figure 8.2 The menu application. The first menu is rolled out and its second item, ‘test’, has
been disabled

File: its/Menus/MenuListener.java

. package its.Menus;

. import java.awt.event.ActionEvent;

. import java.awt.event.ActionListener;

public class MenulListener implements ActionListener {

private MenuFrame menuFrame;

public MenuListener (MenuFrame mf) {

menuFrame = mf;

public void actionPerformed (ActionEvent evt) {

String actionCommand = evt.getActionCommand () ;

if (actionCommand.equals ("Item 1")) {
menuFrame.setText ("Item 1 selected");

}

else if (actionCommand.equals ("Test")) {
menuFrame.setText ("Item Test selected");

}

else if (actionCommand.equals ("Exit")) {
System.exit (0) ;

}

else if (actionCommand.equals ("Enable Test")) {
menuFrame.enableTest () ;
menuFrame.setText ("Item \"Test\" in Menu 1 enabled.");

}

else if (actionCommand.equals ("Disable Test")) {

}

Menus

menuFrame.disableTest () ;

menuFrame.setText ("Item \"Test\" in Menu 1 disabled.");

else{

System.out.println ("ERROR: unknown action command.") ;

81

30.
31.

8.1

Exercise

Construct a GUI consisting of a frame with a menu and an embedded panel.
The menu has three items ‘Red’, ‘Blue’ and ‘Yellow’. When a menu item is
selected, the background colour of the panel is changed accordingly.

More on listeners

In this chapter we discuss how to use listeners in general. We also introduce some
more listeners that react to events not considered so far. This chapter can be skipped
in a first reading.

9.1 M Basics of listeners

Listeners are those components that link user actions to a running program. There
are different listeners for different types of user actions. We have seen examples in
Chapters 3, 4 and 6. These react to pressing a button or to using the mouse. There
are many more listeners, some of which we shall briefly introduce here. Look in
the java.awt.event library to see more.

A listener has to be assigned to a graphical component. The components have
methods

addxXXXXXXListener (XXXXXXListener listener)

for doing this, where xxxxxx is the type of the listener, e.g. MouseMotion. All
listeners are interfaces. They require certain methods to be implemented by the
programmer, e.g. mouseMoved. These methods are then automatically called by
the operating system if the related event occurs, e.g. the mouse is moved. The
code for the application’s reaction to an event therefore has to be inside these
methods.

Some listeners have only one method, such as actionPerformed in Action-
Listeners, while others have more, like the five methods of a MouseListener.
Every one of them reacts to a different event. If one only wants a reaction to some
events, then the other methods are implemented with an empty body.

The methods of listener receive an event object as an argument. This event
object contains more information about the event. Different listeners have differ-
ent kinds of event objects (ActionEvent for ActionListeners, MouseEvent for
MouseListeners). The event object is automatically generated by the runtime
system when an event occurs and the appropriate method of the listener is called.

The information in the various types of events varies. A MouseEvent contains
the coordinates at which the mouse pointer was when the event occurred. For an

More on listeners

ActionEvent this does not make sense. It is not of importance where a button
was pressed. An ActionEvent on the other hand contains information on which
button had been pressed. The different event types supply methods to access the
information contained in the event, e.g. getx () and getY () allow one to get the co-
ordinates of a MouseEvent, and getActionCommand () allows one to find the source
of an action event.

9.2 M Implementing listeners

We have so far implemented listeners in classes of their own. We now see
three more ways of implementing them. We return to our first GUI, the counter
from Chapter 3. There, a class CounterListener is defined that implements an
ActionListener. We illustrate the other methods for implementing listeners on
this example.

9.2.1 [Listeners as internal classes

In the counter example we defined the listener in a separate class CounterLis-
tener. The listener is assigned to two buttons and has to take actions when one
of them is pressed. The reaction was to update the counterpPanel. The counter
listener has to know which panel to update. Therefore we pass a reference to a
CounterPanel in the constructor of the listener. Alternatively we can define the
listener as an internal class inside CounterpPanel. Then the methods of Counter-
Panel are known to the listener and can be called directly, i.e. the listener can use
decrement () instead of countPane.decrement (). Therefore, no reference to a
panel is passed to the listener. The constructor of the listener has an empty body. In
fact, it can be omitted altogether; then the default constructor of ActionListener
takes over. This is implemented in the package its.CounterInternalGUl, where
the class CounterInternalPanel with an internally defined listener replaces both
CounterPanel and CounterListener. We only print the listing of this class.

File: its/CounterInternalGUI/CounterInternalPanel.java
package its.CounterInternalGUI H

import javax.swing.JPanel;

import javax.swing.JButton;

import javax.swing.JLabel;

import java.awt.BorderLayout;

import javax.swing.SwingConstants;
import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;
public class CounterInternalPanel extends JPanel {

private CounterModel counter;

83

W o=

ook

o N

10.
11.
12.
13.

84 Basics

14. private JLabel valuelLabel;

15.

16. public CounterInternalPanel () {

17. counter = new CounterModel () ;

18.

19. BorderLayout bordLay = new BorderLayout () ;
20. this.setLayout (bordLay) ;

21.

22. JButton upButton = new JButton ("Up") ;
23. JButton downButton = new JButton ("Down") ;
24. valueLabel = new JLabel (""+counter.getValue (), SwingConstants.CENTER) ;
25.

26. this.add (upButton, BorderLayout .WEST) ;

27. this.add(downButton, BorderLayout .EAST) ;
28. this.add(valueLabel, BorderLayout .CENTER) ;
29.

30. // Definition of the listener, no reference
31. // to ”"this” is passed on.

32. InternalCounterListener countList =

33. new InternalCounterListener();

34. upButton.addActionListener (countList) ;
35. downButton.addActionListener (countList) ;
36. }

37.

38. public void increment () {

39. counter.increment () ;

40. valueLabel.setText (" "+counter.getValue()) ;
41. }

42.

43. public void decrement () {

44. counter.decrement () ;

45. valueLabel.setText (""+counter.getValue()) ;
46. }

47.

48. // Internal Listener Class

49. class InternalCounterListener implements ActionListener({
50.

51. //The constructor is empty

52. public InternalCounterListener () {

53. }

54.

55. public void actionPerformed(ActionEvent evt) {
56. String actionCommand = evt.getActionCommand () ;
57. if (actionCommand.equals ("Up")) {

58. increment () ;

59. }

60. else if (actionCommand.equals ("Down")) {

More on listeners

decrement () ;
}
else(
System.out.println ("ERROR: Unexpected ActionCommand") ;

}// actionPerformed
}//internal class

}

9.2.2 [Listeners as part of the application class

In this section we will learn how to implement a listener as an interface inside
another class. For users with no or very limited experience in using interfaces we
give a very short survey about the interface mechanism in Java. In Java a class can
extend only one other class and inherit its properties. For example, in the its-
package class CounterFrame extends SimpleFrame and thus inherits the property
of terminating the application when the frame is closed. Sometimes one would
like a class to inherit the properties of more than one other class. The concept
of interfaces allows this to a certain extent. A class can extend only one other
class but it can implement more than one interface. An interface requires certain
methods to be implemented. If a class NewClass is derived from 0l1dclass and
implements the interfaces TF1 and IF2 then the syntax for this is:

class NewClass extends 0OldClass implements IF1, IF2

Inside the class NewClass we then have to implement the methods required by
interfaces IF1 and IF2.

In our example we define class CounterInterfacePanel which we would like
to inherit the properties of a JPanel and of an ActionListener. To this end we
let CounterInterfacePanel extend JPanel and implement ActionListener

class CounterInterfacePanel extends JPanel implements ActionListener

The interface ActionListener requires method actionPerformed (ActionEvent
evt) to be implemented inside CounterPanel (we get an error message from the
compiler if we do not do this). After implementing actionPerformed in Line 50,
the class CounterInterfacePanel also has the properties of an action listener, it
‘has become’ an action listener itself. Therefore, an instance of CounterInter-
facePanel is assigned as an action listener to the buttons. Recall that the keyword
this references the current instance.

upButton.addActionListener (this) ;

downButton.addActionListener (this) ;

We list the modified code for the counter panel. The class name is Counter-
InterfacePanel and it is located in the sub-package CounterInterfaceGUT.

85

61.
62.
63.
64.
65.
66.
67.
68.
69.

86 Basics

File: its/CounterInterfaceGUI/CounterInterfacePanel.Java

. package its.CounterInterfaceGUI;

import javax.swing.JPanel;

e

import javax.swing.JButton;

w

import javax.swing.JLabel;

o

import java.awt.BorderLayout;

-~

import javax.swing.SwingConstants;

import java.awt.event.ActionListener;

©

. import java.awt.event.ActionEvent;

10.

11. public class CounterInterfacePanel extends JPanel

12. implements ActionListener{
13.

14. private CounterModel counter;

15. private JLabel valueLabel;

16.

17. public CounterInterfacePanel () {

18. counter = new CounterModel () ;

19.

20. BorderLayout bordLay = new BorderLayout () ;
21. this.setlLayout (bordLay) ;

22.

23. JButton upButton = new JButton ("Up");
24. JButton downButton = new JButton("Down") ;
25. valueLabel = new JLabel (""+counter.getValue(), SwingConstants.CENTER) ;
26.

27. this.add (upButton, BorderLayout .WEST) ;

28. this.add (downButton, BorderLayout .EAST) ;
29. this.add (valueLabel, BorderLayout .CENTER) ;
30.

31. // A CounterInterfacePanel is now

32. // also an ActionListener. Therefore, it
33. // 1is assigned to the buttons using ”“this”.
34. upButton.addActionListener (this) ;

35. downButton.addActionListener (this) ;

36. }

37.

38. public void increment () {

39. counter.increment () ;

40. valueLabel .setText (" "+counter.getValue()) ;
41. }

42.

43. public void decrement () {

44. counter.decrement () ;

More on listeners

valueLabel.setText (""+counter.getValue()) ;

// Method actionPerformed is implemented
// inside the class CounterPanel.
public void actionPerformed (ActionEvent evt) {
String actionCommand = evt.getActionCommand () ;
if (actionCommand.equals ("Up")) {
increment () ;
}
else if (actionCommand.equals ("Down")) {
decrement () ;
}
else(
System.out.println ("ERROR: Unexpected ActionCommand") ;
}

}// actionPerformed

9.2.3 [] Anonymous listeners

Listeners can also be defined anonymous and on-the-fly. The syntax for assigning
an anonymous listener to a component comp looks like this:

comp . addXXXXXXListener ([Whole definition of XXXXXXListener goes here.]);

In our example, we have to implement one listener for each button. The anony-
mous implementation of the listener for the Up button then looks like this:

upButton.addActionListener (
// Implementation of the listener begins

new ActionListener () {
// Implementation of reguired method begins
public void actionPerformed (ActionEvent evt) {

increment () ;

} // End of implementation of actionPerformed

}Y// End of implementation of ActionListener

)i //End of method addActionListener

The listener is anonymous because it does not receive a name. It is on-the-fly
because it is placed where the listener is assigned to the button, namely inside
the parentheses of method addactionListener. As the listener has no name, it
cannot be referenced from anywhere. In particular, it cannot be reused for the
Down button. Therefore we must define another listener for that button, which we
again do as an anonymous listener.

|90 O B]
—

@

D

87

=

b

|9, B B BV B |
o

®

O

~

o
b

o
<

o)
=

o
N

o
)

88

L=

Now

o ®

Basics

As an anonymous listener is responsible for only a single button, it gets in-
formed only when this specific button is pressed. There is no need to check which
button it was. Therefore, we can immediately call methods increment and decre-
ment for the Up respectively Down button. For other listeners, however, there still
can be different events being triggered by the same component, e.g. for a mouse
listener, one might have to check which mouse button has been used. The use of
anonymous listeners is demonstrated in class CounteraAnonymousPanel.

F“e:its/CounterAnonymousGUI/CounterAnonymousPanel.java

. package its.CounterAnonymousGUI;

import java.awt.BorderLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;

import javax.swing.*;

public class CounterAnonymousPanel extends JPanel{

private CounterModel counter;

private JLabel valueLabel;

public CounterAnonymousPanel () {

counter = mnew CounterModel () ;

BorderLayout bordLay = new BorderLayout () ;
this.setLayout (bordLay) ;

JButton upButton = new JButton("Up") ;
JButton downButton = new JButton ("Down") ;

valueLabel = new JLabel (""+counter.getValue (), SwingConstants.CENTER) ;

this.add (upButton, BorderLayout.WEST) ;
this.add (downButton, BorderLayout .EAST) ;
this.add(valueLabel, BorderLayout .CENTER) ;

// The listener for the up-button is defined
// anonymous and on the fly.
upButton.addActionListener (new ActionListener () {
public void actionPerformed (ActionEvent evt) {
increment () ;
}// actionPerformed
}//ActionListener

);//addActionListener

// The listener for the down-button is defined

More on listeners

// anonymous and on the fly.
downButton.addActionListener (new ActionListener () {
public void actionPerformed(ActionEvent evt) {

decrement () ;
}// actionPerformed
}//ActionListener

);//addActionListener

public void increment () {
counter.increment () ;

valueLabel.setText (""+counter.getValue()) ;

public void decrement () {
counter.decrement () ;

valueLabel.setText (""+counter.getValue()) ;

9.2.4 [] Comparison of the four implementation techniques

We have seen four ways to implement a listener: in a separate class (Section 3.4), in
an internal class (Section 9.2.1), as an interface (Section 9.2.2) or as an anonymous
object (Section 9.2.3). The first method is especially suited to beginners with little
experience of using interfaces. It also makes sense if the listener has to manipulate
objects from many classes. Then references to all these classes are passed to the
listener in the constructor, so the listener can access them.

The second method allows the listener to directly access methods and variables
of the class it is defined in. This is suited for applications where the listener has
to manipulate objects from only one class.

The third method completely avoids having to define a listener class of its
own. This is considered a more elegant and efficient way by many authors. For
beginners in graphics programming, however, it is often confusing, and a more
structured approach with separate classes is preferred. It also limits the listener’s
range to the class that implements it.

The last method, anonymous listeners, assigns an individual listener to every
component. This saves the trouble of checking which component triggered the
listener. Also this method is not easy for beginners to understand.

Let us remark that philosophical wars are fought about what is the best way to
implement listeners and to introduce them to beginners in graphics programming.
The author’s opinion on teaching listeners clearly is to use separate classes in the
beginning. This is based on experience. Starting out with the method described
in Section 9.2.2 or 9.2.3 only makes sense if students are experienced with using

89

37.
38.

43.

90

Basics

interfaces or anonymous definitions. If not, this approach causes confusion (‘But,
then where is my listener after all?’).

In the three modifications of Counterpanel presented in this section, one
can also avoid defining the methods increment and decrement. Instead one can
transfer the respective code to the appropriate places in the listener.

9.2.5 [] Listeners and adapters

Listeners require the implementation of all their methods. Often one is interested
in only one of them and the rest are implemented with empty bodies. To save
some work, Java supplies classes that implement all the listener interface methods
with empty bodies. The name for such a class is the name of the corresponding
listener interface with ‘Listener’ replaced by ‘Adapter’, e.g. the class implementing
a MouseListener is called a MouseAdapter.

Adapters are present for most listeners that require more than one method to be
implemented. Then, instead of implementing all methods of the listener interface
one only has to override the desired method of the corresponding adapter class.

9.3 M Other kinds of listener

There are other kinds of listeners that are of interest, for example KeyListener,
DocumentListener and WindowListener. Key listeners react to key strokes. A
document listener monitors changes in text documents; see Chapter 18. Window
listeners react to events related to ‘windows’, i.e. ‘frames’ in Java. Such events are
for example opening a window, closing it, turning it into an icon or activating it.
We focus on closing the window here, i.e. on the event that occurs when the ‘close’
button of a frame is pressed.
In our basic frame class SimpleFrame we used the command

setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE)

to immediately exit the application when the ‘close’ button is pressed. Often one
would like to perform some clean-up or rescue work before termination, such as
saving changed data to the disk. We define class CleanupFrame which defines a
method cleanUp to perform this work. In our example it just writes a message to
the console and then exits the application. CleanUpFrame uses a window listener
to activate this method.

As we use only one of the seven methods of interface WindowListener we
actually use the corresponding adapter class windowAdapter and thus avoid im-
plementing six methods. We implement the class as an internal class Clean-
UpAdapter. It implements method windowClosing (WindowEvent we) which is
automatically called by the runtime system when the ‘close’ button is pressed.
Method windowClosing then calls the cleanUp method of the frame. In the con-
structor of CleanUpFrame an instance of CleanUpaAdapter is created and assigned
to the frame.

More on listeners

F“e:its/CleanUpFrame/CleanUpFrame.java

package its.CleanUpFrame;

import javax.swing.JFrame;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

public class CleanUpFrame extends JFrame

{

}

public CleanUpFrame ()

{
this.setSize(200,200);
this.setLocation(200,200) ;
this.setTitle("CleanUpFrame") ;
CleanUpAdapter cleaner = new CleanUpAdapter () ;

this.addWindowListener (cleaner) ;

public void showIt () {
this.setVisible (true) ;

public void hideIt () {
this.setVisible (false) ;

// Performs the clean up work before terminating the application.

private static void cleanUp() {
// Real code for the clean up goes here.
System.out.println("Cleaning up and then terminating the program.") ;
System.exit (0) ;

}

// Internal class

private class CleanUpAdapter extends WindowAdapter{

public void windowClosing (WindowEvent we)
{
// Call the cleanUp method of the frame.
cleanUp () ;
}
}// internal class

91

EE SIS

Y o N

40.
41.

92

Basics

9.1

9.2

Exercises

Modify the text analysis GUI from Chapter 4 by implementing the listener as
in internal class as described in Section 9.2.1. Decide into which class it should
be implemented.

Modify the text analysis GUI from Chapter 4 by implementing the listener as a
part of some other class as described in Section 9.2.1. Decide which class that
should be.

10

Loading, saving
and displaying text

In this chapter we begin to describe how graphical interfaces are used to display
and manipulate text. We introduce the methods for reading and writing text files
and for displaying text.

10.1 M Reading and writing text files

A text in Java is a sequence of characters in Unicode format. The Unicode char-
acter set contains more than 16,000 characters, including Japanese and Chinese
ones. Every Unicode character is stored in 2 bytes (16 bit). Most text files contain
data in ASCII format, which can express at most 256 characters and needs one
byte (8 bit) to store one character. Depending on the format of the text file an ap-
propriate way must be used to read or write it. If one reads an ASCII file as though
it were a Unicode file then two consecutive ASCII characters are interpreted as
one Unicode character. This looks funny but is not what we want. Nowadays, most
text files are in ASCII format. Let us briefly look at how data transfer is handled
in Java.

Input and output in Java are based on the concept of a data stream. Such a
data stream is a sequence of characters (or other data objects). One distinguishes
between an input stream from which one can extract (read) data and an output
stream to which one can append (write) data. Streams are not limited to reading
data from the hard disk. They can also be used to exchange data with the internet
or with another application.

The data in a stream do not have to be human-readable text. There are streams
in Java that consist of doubles or integers in binary representation. To extract data
from a stream in the appropriate form (or to add it) one uses so-called filters. The
stream is sent through a filter designed to handle the specific data format of this
stream. The filter then extracts and interprets the data in the desired way. The
names of filters for ASCII data streams end with Reader (input) or Writer (output).

The java.io library supplies the necessary classes and methods for file han-
dling. The library is included by

import java.io.*;

94

Basics

We now present the most important classes for reading and writing ASCII text files
and some of their methods.

10.1.1 [J Theclass File

The class File is the Java abstraction of a file or directory on the hard disk or
some other storage medium; we shall use the term ‘hard disk’ in the following.
Below we list a constructor and some methods we need:

File(String filename)

boolean exists()

boolean delete() ;

boolean renameTo (File newName)
boolean createNewFile ()
boolean isDirectory()

String getName ()

String getPath()

File(String filename) creates a file object for a file with name filename. Note
that neither an existing file with that name is opened nor is a file created on
the hard disk.

exists () returns true if the file exists.

delete() deletes the file from the hard disk and returns true if successful or
false otherwise, e.g. if the file did not exist.

renameTo (File newName) renames the file. The new name is that of the file object
newName.

createNewFile () creates a file on the hard disk. The file name is that specified
in the constructor, but only if the file does not already exist. If successful it
returns true and false otherwise.

isDirectory () returns true if the file is a directory and false otherwise.
getName () returns just the file name, without the path but with extension.

getPath () returns the whole path including file name and extension.

Possible file names (the last one is directory) are, for example

testFile.txt
C:/Java/kurs/FileIO/scr/testFile.txt
C:\\Java\\kurs\\FileIO\\scr\\testFile.txt
~/Java/kurs/FileIO/testFile.txt
./FileIO/testFile.txt

C:/Java/

Note that under MS Windows one can use both / or \ as a separator. Because of
the special meaning of backslash in Java strings it has to be duplicated.

Loading, saving and displaying text

10.1.2 [The classes FileReader and FileWriter

The classes FileReader and FileWriter supply methods for reading and writing
ASCII files. These are convenience classes as they make it easy to access files.
The programmer does not have to define a stream explicitly. We start by looking
at a constructor and some methods of class FileReader:

FileReader (File aFile)

void close()
int read()

int read(char[] buffer,int start,int length)

FileReader (File aFile) opens the file aFile for reading. All further methods
refer to this file.

close () stops the file reader and closes the file. It is important not to forget this
command, otherwise the file might not be accessible by other applications.

read () reads a single character from the file and returns its integer value (ASCII
code).

read (buffer, start, length) reads length and puts the characters into the
char-array buffer starting at position start of the buffer. Returns the number
of characters read or —1 if the file end is reached.

Most constructors and methods of java.io throw exceptions if errors occur,
mostly ToExceptions. Thus they have to be embedded into try-catch blocks
or the exceptions have to be thrown further.

Class FileWriter supplies methods for writing an ASCII file:

FileWriter (File aFile)

)

(
void write(char[] buffer)
(
(

void close
void write(char[] buffer,int start,int length)

void write(String str, int start, int length)

FileWriter (File aFile) — this constructor opens the file aFile for writing. If
the file is already present the old content is lost! All further methods refer to
this file.

close () stops the file writer and closes the file. It is important not to forget this
command, otherwise part of the data might not be written.

write(char[] buffer) writes the content of the buffer to the file by appending
it to the previously written text.

write (buffer, start, length) writes the number of characters equivalent to the
current value of length from buffer starting at position start of the buffer.
The text is appended to the previously written text.

95

96

NN S

10.
11.
12.
13.

o »® N o

Basics

write(str,start,length) writes the number of characters equivalent to the
current value of length of string str starting at position start of the string.
The text is appended to the previously written text.

10.1.3 [] Dealing with text files

The program FileReadwrite is given below and demonstrates the methods de-
scribed above. It reads some characters from the file testtextl.txt and stores
them in a buffer (char-array) for potential further use. The buffer is initialized
with dashes (-), so that the unused parts are visible when it is printed. The buffer
is written to the standard output (screen). After this, a part of the buffer is written
to another file testtext2.txt. If this file already exists, it is first erased. The
constant path has to be changed if the directory structure is different from the
one in the downloaded files. The path name has to end with a slash (/) or two
backslashes. Below we list the content of file testtextl.txt on the left and that
of testtext2.txt on the right:

Line 1 ne 1
Line 2 Line 2
Line 3 Line 3
Line 4 Line 4
Line 5 Line
Line 6

Line 7

Line 8

Line 9

The last line

When the buffer is printed, one can see that the line breaks appear as in the file
because a FileReader reads the line break characters (\n).

File: its/TextI0/FileReadWrite.java

. package its.TextIO;

import java.io.File;
import java.io.FileReader;

import java.io.FileWriter;

public class FileReadWrite
{
// This variable has to be set according to your system

public static String path = "./its/TestData/";

public FileReadWrite(String ReadFileName, String WriteFileName)
{

//Buffer for the text
char[] buffer = new char[128];

for

(int 1 = 0; 1 < buffer.length;
buffer([i] = '-';

// Create two File-variables

Loading, saving and displaying text

File readfile = new File(path+ReadFileName) ;

File writefile = new File(path+WriteFileName) ;

//READING:

if

{

(

readfile.exists())

try

{

}

// Create a reader.

FileReader fr = new FileReader (readfile);

// Read the file and store 100 characters in the

// buffer starting at position 5 of the buffer.

fr.read(buffer,5, 100);

// close file

fr.close();

catch (Exception ex)

{

}

System.out.println("Problem opening file "+readfile.getName()) ;

Y//if
else

{

}

System.out.println("File not found "+readfile.getName()) ;

System.out.println("Buffer>"+buffer+"<Buffer") ;

//WRITING:
try

{

if
{

}
if

(writefile.exists())

writefile.delete();

(writefile.createNewFile())

{

// create a writer

FileWriter fw = new FileWriter (writefile);

97

31.
32.

37.

Ul Ul Ul Ul Ul UL UL O
N A I o

98

61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.

Basics

// writes 40 characters from the buffer

// starting at position 7 of the buffer

fw.write (buffer,7,40);

// close file

fw.close();

Y//1if
else

{
System.out.println("File not created "+writefile.getName()) ;
}
}
catch (Exception ex)
{
System.out.println("Problem opening file "+writefile.getName()) ;

}

public static void main(String[] args)
{
FileReadWrite RWF = new FileReadWrite("testtextl.txt","testtext2.txt");

}

10.1.4 [] Reading text files line by line

Sometimes one would like to access a text file line by line. To do this another
reader is used, a Buf feredReader. We list the constructor and some methods:

BufferedReader (FilerReader fReader)

close()

String readLine ()

Buf feredReader (FilerReader fReader) constructs a buffered reader. A file
reader is given as argument.

close () stops the buffered reader and closes the file.

readLine () returns a single line of text or null if the end of the stream has been
reached. The line-end characters are not returned.

The following program LineRead reads a file line-wise. The while loop is terminated
when the string read is nul1, i.e., when the file end is reached.

Loading, saving and displaying text

File: its/TextIO/LineRead.java
package its.TextIO;
import java.io.*;

public class LineRead
{
// This variable has to be set according to your system
public static String path = "./its/TestData/";
public LineRead(String ReadFileName)
{
File readfile = new File(path+ReadFileName) ;
String line;
try
{
BufferedReader bfr = new BufferedReader (new FileReader (readfile)) ;
while((line = bfr.readLine()) != null)
{
System.out.println ("READ>"+1line+"<") ;

}

catch (Exception ex)

{

System.out.println("Problem opening file "+readfile.getName()) ;

public static void main(String[] args)

{
LineRead LR = new LineRead("testtextl.txt");

}

10.2 M Displaying text

We now show how to display text in a graphical component and not just on the
console. We use a JEditorPane to do this. We could have used other components
as well (JTextArea or JTextPane) but this one seems best suited for our purpose.

JEditorPane ()

void read (Reader myReader, Object description)

String getText ()

929

EE SIS

Y o N

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

100

L

=

© ® N w

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

Basics

JEditorPane () constructs an editor pane.

read (Reader myReader, Object description) reads the text supplied by
myReader and displays it in the editor area. In the second argument descrip-
tion further information on the type of text can be given; we do not use this
here, i.e. we set description = null.

getText () returns the text currently displayed in the editor area as one string,
including the line-end characters.

The following listing TextDisplayFrame implements a text display. We derive a
TextDisplayFrame from SimpleFrame and glue a JEditorPane into it as a cen-
tral component. The constructor gets a file name as a string. It constructs a file
readfile with this name. As in Section 10.1.3 a FileReader for file readfile
is created. This reader is then passed to the read-method of JEditorPane. The
pane then starts the reader and the text is displayed in the JEditorpPane. Class
TextDisplayDriver is just the start class.

File: its/TextDisplay/TextDisplayFrame.java

. package its.TextDisplay;

import its.SimpleFrame.SimpleFrame;
import java.io.File;
import java.io.FileReader;

import java.io.IOException;

. import javax.swing.JEditorPane;

import java.awt.BorderLayout;

public class TextDisplayFrame extends SimpleFrame
{
private JEditorPane textDisplayPane;

public TextDisplayFrame (String filename)

{

textDisplayPane = new JEditorPane() ;
this.getContentPane () .add(textDisplayPane, BorderLayout.CENTER) ;
this.setSize(200,160) ;

File readfile = new File(filename);

try{
FileReader fr = new FileReader (readfile);
textDisplayPane.read (fr,null) ;
}ecatch (IOException e) {
System.out.println("Problems opening or reading "
+readfile.getPath()) ;

Loading, saving and displaying text

101

27.
28.
29.
30.

File: its/TextDisplay/TextDisplayDriver.java
package its.TextDisplay;

public class TextDisplayDriver
{
// Adjust paths if necessary!!
private static String path = "./its/TestData/";
private static String fileName = "testtextl.txt";

public static void main(String[] args)

{
TextDisplayFrame TAF = new TextDisplayFrame (path+fileName) ;
TAF.showIt ("Text Display");

S

N o

10.
11.
12.
13.
14.

The result is shown in Figure 10.1. Obviously the frame is too small to display
all the text. In the next section we shall see how to display long large texts using

scrolling.

A JEditorPane supplies the basic functions of a text editor automatically. We
can place the cursor, insert or delete text and also copy (using CNTR-C and CNTR-
V). The reader is advised to try this. Other, more complex, functions such as

searching are not provided.

Figure 10.1 Display of TextDisplayDriver. Not all lines of the text are visible

Scrolling

In this chapter we see how to display long texts or large drawings that do not fit
into the window. Only a part of them can be made visible. So-called scroll panes
allow navigation in the text or the drawing and thus display different parts of the
document.

11.1 W Scrolling text components

Scrolling allows us to roll a long text upwards, downwards or sideways in a graph-
ical component or to change that part of a large drawing that is displayed. It is
not important what kind of document is displayed, whether it is text or a draw-
ing. Scrolling is realized as follows: imagine that the whole document is laid out
somewhere. A scrollable graphical component has a small area where a part of
the document is displayed. This area is called a viewport. The viewport can be
around the document with the help of sliders or scroll bars, thus changing the
part seen on the screen. See Figure 11.1. In Swing, scrolling is implemented by
class gscrollPane. The scroll bars are on the right and at the bottom by default.
We only use the following class JScrollPane:

JScrollPane (JComponent comp) ;
setHorizontalScrollBarPolicy (int policy)
setVerticalScrollBarPolicy (int policy)

JScrollPane (JComponent comp) this constructor generates a JScrollPane, the
viewport of which displays part of comp. If the whole component fits into
the viewport the scroll bars disappear. This behaviour can be changed using
the next method.

setHorizontalScrollBarPolicy (int policy) determines when the scroll bars
are visible. Class JScrollPane defines constant values for policy: HORIZON-
TAL_SCROLLBAR_ALWAYS, HORIZONTAL_SCROLLBAR_AS_NEEDED and HORIZON-
TAL_SCROLLBAR_NEVER and have obvious meanings.

setVerticalScrollBarPolicy (int policy) is the same as above, but for the
vertical scroll bar.

Scrolling

Frame Document (text or picture)

Slider
Slidebar

View to document
(viewport)

Area of the document which
is currently visible in the viewport

Figure 11.1 Structure of a scrollable component

Let us augment the application from Section 10.2 so that the text can be scrolled.
Our text is still loaded into a JEditorPane. We then generate a scroll pane
to display parts of it. The vertical scroll bar is visible at once. The horizontal
one does not appear even though the text contains a very long line. The rea-
son is that the JEditorPanel breaks long lines when reading them. One has
to first make the panel wide (using the mouse) and then narrow to make the
horizontal scroll bar appear. The functions of the scrollbars are automatically
supplied. Moving the horizontal or vertical slider moves the viewport inside the
document.

In the following we list the code for TextDisplayScrollFrame which dis-
plays scrollable text. The driver class TextDisplayScrollDriver is not listed.
Figure 11.2 shows the result.

Figure 11.2 TextDisplayScrollFrame

103

104

TS S

N o

©

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.
31.
32.

Basics

F“e:its/Scrolling/TextDisplayScrollFrame.java

. package its.Scrolling;
import its.SimpleFrame.SimpleFrame;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.awt.BorderLayout;
import javax.swing.JEditorPane;
. import javax.swing.JScrollPane;
public class TextDisplayScrollFrame extends SimpleFrame
{
private JEditorPane TextDisplayPanel;
public TextDisplayScrollFrame (String filename)
{
TextDisplayPanel = new JEditorPane() ;
JScrollPane scrollPane = mnew JScrollPane (TextDisplayPanel) ;
this.getContentPane () .add(scrollPane, BorderLayout.CENTER) ;
File readfile = new File(filename) ;
try{

FileReader fr = new FileReader (readfile);

TextDisplayPanel .read (fr,null) ;

}catch (IOException e) {

System.out.println("Problems opening or reading "
+readfile.getName ()) ;

11.2 W Scrolling panels

If we use the default policy HORTZONTAL_SCROLLBAR_AS_NEEDED for the text com-
ponent, the runtime system automatically determines the size of the area that is
filled with text. The scroll bars are shown only if that area does not fit into the
viewport. Using the default policy with panels will make the scroll bars appear
when the area specified with a setPreferredsize command does not fit into the
viewport.

Scrolling

Figure 11.3 The drawing display application. The vertical scroll bar is visible because the
height of the viewport is less than the preferred height of the panel to display. The horizontal
scroll bar is not visible because the viewport is wider than the preferred width of the panel.
The vertical line is the right edge of the preferred area. The drawing outside the preferred area
is not considered by the runtime system when determining whether to show the scroll bar

As an example we construct a panel and add some drawing commands to its
method paintComponent. The resulting class is called DrawingDisplayScroll-
panel. The size of the panel is set to 250 x 250 pixels. We draw a red rectangle
to indicate the border of this area and a text to denote it. We then draw a cir-
cle and a text outside the area specified in the setPreferredsize command. We
then create a scroll pane that displays the panel in its viewport. The scroll pane
is embedded into a frame. We list class DrawingDisplayScrollPanel below but
omit the listing of the frame class DrawingDisplayScrollFrame and the driver
DrawingDisplayScrollDriver; both can be downloaded from the book’s home
page. Try resizing the frame in different ways to see when scroll bars appear or
vanish.

Running this application and resizing the frame will show that the scroll bars
become visible if the preferred size area of the panel does not fit into the viewport.
The result can be seen in Figure 11.3. The runtime system does not recognize that
there is some drawing outside this area. The programmer must take care of that
by monitoring the current size of the drawing and adjusting the preferred size. In
Chapter 21 we shall learn an elegant way to do this.

File: its/Scrolling/DrawingDisplayScrollPanel.java
package its.Scrolling;

import java.awt.Color;
import java.awt.Dimension;
import java.awt.Graphics;

import javax.swing.JPanel;

105

[OSI \SI

AN

106 Basics

7

8. public class DrawingDisplayScrollPanel extends JPanel {
9

10. public DrawingDisplayScrollPanel () {

11. this.setBackground (Color.white) ;

12. this.setPreferredSize (new Dimension(250,250)) ;
13. }

14.

15. public void paintComponent (Graphics g) {

16. super.paintComponent (g) ;

17. Color oldColor = g.getColor();

18. g.setColor (Color.red) ;

19. g.drawRect (0,0,249,249) ;

20. g.drawString ("Border of preferred size.",10,240);
21. g.setColor (Color.blue) ;

22. g.fill0val(300,150,20,20);

23. g.drawString ("This is outside the preferred size",260,180);
24. g.setColor (oldColor) ;

25. }

26. }

Dialogues

In this chapter we introduce dialogues as a further means for user—program inter-
action. They are used when the application needs information from the user in
order to proceed. First, we look at dialogues that are predefined in Swing and
then turn to user-defined dialogues. We shall do this by extending the examples
from previous chapters into a small editor. We will also learn how to transfer data
between dialogues and the application.

In Chapter 10 we read a fixed file into our editor. In Section 11.1 we saw how
to display the text so that it can be scrolled. The use of menus was presented
in Chapter 8. Here, we combine these three things into an editor application. In
addition to that, we add some dialogues for choosing a file, searching and showing a
warning message. We begin by developing the skeleton of the application to which
we then add more and more functions. No model is used for the actual data —
the text — because our focus is on dialogues. Text models will be considered in
Chapter 18.

12.1 M The basic editor application

Our editor should support the following operations. There should be menus where
the user can select the actions ‘Load’, ‘Save’ and ‘Search’. The first one allows the
user to choose the text file to be loaded. The second one saves the currently loaded
text file (under the same name). The third action allows the user to search for a
word in the text. In order to implement these features, dialogues will be used.
Before turning to dialogues we first set up the skeleton of the editor applications
and fill in the relevant parts in later sections. The mechanism for editing a loaded
text is automatically supplied by the Swing text component used.

In the following listing of class EditorSkeletonFrame we define a frame with a
JEditorPane as a central component. The frame has a menu bar with two menus,
‘File’ and ‘Tools’. The first menu has three items ‘Load’, ‘Save’ and ‘Exit’. The
second menu has only one item ‘Search’. The implementation is a combination of
the implementations from Chapter 10, Section 11.1 and Chapter 8.

The skeleton contains four methods that implement the reactions to select-
ing a menu item. For now, the only action is to print a message on the console.

108

I

b

wn

® N

18.
19.
20.
21.
22.

24.
25.
26.
27.
28.
29.
30.
31.

Basics

The real actions are implemented later. We implement a listener in class Edi-
torListener which monitors the menu items. As a reaction to selecting a menu
item, the appropriate method of the class EditorSkeletonFrame is called. Class
EditorListener will not be changed later on, when we complete the editor.

File: its/Dialogs/EditorSkeletonFrame.java

. package its.Dialogs;

import its.SimpleFrame.SimpleFrame;
import java.awt.*;

import javax.swing.*;

. import java.io.*;

. public class EditorSkeletonFrame extends SimpleFrame {
10.
11.
12.
13.
14.
15.
16.

private JEditorPane textDisplayPane;

public EditorSkeletonFrame ()

{

textDisplayPane = new JEditorPane() ;

JScrollPane scrollPane = new JScrollPane (textDisplayPane) ;
this.getContentPane () .add(scrollPane, BorderLayout.CENTER) ;

// Create menu bar, menus and menu items
JMenuBar menubar = new JMenuBar () ;
this.setJMenuBar (menubar) ;

JMenu fileMenu = new JMenu("File");
JMenu toolMenu = new JMenu("Tools");
menubar.add(fileMenu) ;

menubar.add (toolMenu) ;

JMenuItem loadItem = new JMenultem("Load") ;
JMenultem savelItem = new JMenultem("Save");
JMenultem exitItem = new JMenultem("Exit");
JMenultem searchItem = new JMenultem("Search");

fileMenu.add(loadItem) ;

fileMenu.add (saveItem) ;

fileMenu.addSeparator () ;
fileMenu.add(exitItem) ;
toolMenu.add(searchItem) ;

// Create a listener and add it to the menu items
EditorListener editorListener = new EditorListener (this);
loadItem.addActionListener (editorListener) ;
saveltem.addActionListener (editorListener) ;

exitItem.addActionListener (editorListener) ;

Dialogues

searchItem.addActionListener (editorListener) ;
}
// The next four methods do not yet do anything
// useful. The real code is supplied later.
public void openFile () {

//Code for loading a file has to go here.

System.out.println("Menu item Load selected.");

public void saveFile() {
//Code for saving a file has to go here.

System.out.println("Menu item Save selected.");

public void search() {
//Code for searching has to go here.

System.out.println("Menu item Search selected.");

public void exitEditor () {
//Code for leaving the editor has to go here.

System.out.println("Menu item Exit selected.");

|90, O B |
—

©

N

109

=

b

SRR NNT BT I
2

*

O

~

o
b

o
<

o)
=

o
N

63.

File: its/Dialogs/EditorListener.java

package its.Dialogs;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

import javax.swing.JFrame;

public class EditorListener implements ActionListener {
private EditorSkeletonFrame editor;
public EditorListener (EditorSkeletonFrame edi) {

editor = edi;

public void actionPerformed (ActionEvent evt) {
String actionCommand = evt.getActionCommand() ;
if (actionCommand.equals ("Load")) {

editor.openFile() ;

S

110

Basics

else if (actionCommand.equals ("Save")) {
editor.saveFile() ;

}

else if (actionCommand.equals ("Exit")) {
editor.exitEditor () ;

}

else if (actionCommand.equals ("Search")) {
editor.search();

}

else {

System.out.println("Error: Unexpected action command.") ;

}

12.2 M File selection dialogues

File selection dialogues allow the user to select a file from the computer’s mass
storage (hard disk). We will make this dialogue appear when the menu item ‘Open’
is clicked. The file selected by the user is returned to the class that started the
dialogue.

12.2.1 [J The class JFileChooser

In Swing, file selection dialogues are predefined in the class JFileChooser. We
present only a few of its methods; the class offers a lot more possibilities. The
navigation in JFileChooser is (mostly) done as in the file selection dialogues of
the operating system. One can change directories, to choose a file from a list, or
by typing its name into a text field. There are buttons labelled ‘Open’ and ‘Cancel’.
We do not have to implement any listener for these buttons. All the functions one
expects from a file selection dialogue are supplied by JFileChooser.

JFileChooser (String startDirectory) ;

int showOpenDialog (Component parent) ;
int showSaveDialog (Component parent) ;
File getSelectedFile() ;

JFileChooser (String startDirectory) generates a file selection dialogue
which is not yet visible. When it becomes visible the files in startDirectory
are listed, provided that this string specifies an existing directory.

showOpenDialog (Component parent) displays the file selection dialogue for
opening files. Component parent is usually the component in which the
showOpenDialog was called. This is important because a file selection dialogue
ismodal; see explanations below. On closing, a file selection dialogue returns an
integer value which is one of the following integer constants: APPROVE_OPTION

Dialogues

Figure 12.1 A file selection dialogue

indicates that the ‘Open’ (or ‘Save’, in case of a save dialogue) button of the
dialogue has been clicked. cANCEL_oPTION indicates that the ‘Cancel’ button
of the dialogue has been clicked.

showSaveDialog (Component parent) displays the file selection dialogue for sav-
ing files; the rest is as for showOpenDialog.

getSelectedFile() returns the selected file in a variable of type File if aAp-
PROVE_OPTION has been selected.

Methods that display a file selection dialogue receive a Component parent as an
argument. Class Component from the AWT library is the mother class of all graph-
ical components in Java. The reference to the parent is needed because a JFile-
Chooser is modal. The parent component is blocked as long as it is visible itself.
Only after the dialogue is closed can the parent component be used again. This is
to avoid unwanted interactions such as modifying a file in the parent frame while
it is being saved.

Figure 12.1 shows the result of creating a JFileChooser with the TestData
directory of the ITS package, a start directory, and then making it visible by
showOpenDialog.

12.2.2 [] Adding the file chooser to the editor

We declare a variable chooser of type JFileChooser and a variable selectedFile
of type File in class EditorFrame by

private JFileChooser chooser;

private File selectedFile;

1

112

10.
11.
12.
13.
14.
15.
16.
17.
18.

N

o »® N o

Basics

These variables are not yet instantiated using new; this will happen in method
openFile which is described below. We then add the code for the dialogue at the
position marked ‘//Code for opening a file has to go here.’ in class Edi-
torSkeletonFrame. The code for the resulting method openFile is listed below.
The complete listing for the class Edi torFrame can be downloaded from the book’s
home page.

public void openFile() {

if (chooser == null) {
chooser = new JFileChooser (startPath);

}

int returnval = chooser.showOpenDialog(this) ;

if (returnval == JFileChooser.APPROVE_OPTION)

{
File selectedFile = chooser.getSelectedFile();
try{

FileReader reader = new FileReader (selectedFile);
textDisplayPane.read (reader,null) ;
reader.close() ;

}catch (IOException e) {

System.out.println("Problems opening or reading "

+selectedFile.getName()) ;

Y/ /if

The first lines create a file selection dialogue if this has not been done before. This
is because we would like to avoid unnecessarily creating new instances of it. The
condition in the if-statement in Line 2 is true only at its first execution. Then
an instance of the file chooser is created and assigned to the variable chooser in
Line 3. From that point on chooser is not null and hence the statement in Line 3
is not executed again.

We then make the file chooser visible in Line 5 as an ‘Open’-dialogue using
method showOpenDialog (this). The dialogue is modal and thus blocks its par-
ent component as long as it is visible. In our case the parent component is the
EditorFrame which is passed to the dialogue as this. The execution of the code
of the EditorFrame is stopped at Line 5 until either the ‘Open’ or the ‘Cancel’
button of the dialogue is selected. Then the variable returnval receives the value
APPROVE_OPTION or CANCEL_OPTION respectively, the dialogue is made invisible
and the execution of the code of EditorFrame is continued.

If APPROVE_OPTION is selected we find out which file has been selected using
method getSelectedFile. Then a file reader for this file is created in Line 10.
This reader is passed to the read method of JTextPanel which loads the file and
displays the text. As explained in Section 10.1, readers have to be placed inside a
try-catchblock. This concludes the implementation of the file opening procedure
of our editor.

Dialogues

The methods saveFile and exitEditor are implemented in a very simple
way; exercises to extend the implementation are given at the end of the chapter.
The saveFile method writes the current content of the editor area to a file with
the same name as the one it loaded from. The exitEditor method exits the
application.

public void saveFile() {
try{
FileWriter fw = new FileWriter (selectedFile) ;
fw.write(textDisplayPane.getText()) ;
fw.close();
}catch (IOException e) {
System.out.println("Problems writing "+selectedFile.getName()) ;
}
textDisplayPane.setText ("") ;

public void exitEditor () {
System.exit (0) ;
}

The implementation of the ‘Search’ feature is described in the next section.

12.3 M User-defined dialogues

We shall now augment the editor with a search function. To keep things simple,
we search for a whole word only and report how often it occurs in the text. The
user can specify whether the search should be case-sensitive or not.

We will create our own dialogue class Searchbialog by extending the Swing-
class gbialog. A Jbialog is much like a JFrame but it can be modal; see Sec-
tion 12.2.1. A Jbialog has a content pane into which further components are
embedded. We glue a panel with 4 x 2 grid layout into the content pane of the
dialogue. We then add components to the panel to get a layout as shown in Fig-
ure 12.2. The only new type of components here are the radio buttons which
select whether the search is case sensitive. They are explained below. From class

Figure 12.2 The search dialogue

113

114

Basics

Jbhialog we only need the constructor and some methods to add components.
The semantics of the methods is the same as that for JFrames.

JDialog (Frame parent, String title, boolean modal)

getContentPane.add (Component comp)
setVisible (boolean b)
pack ()

In order to have a proper display we call the default constructor of JDialog in the
constructor of SearchDialog using the super-method.

12.4 M Radio buttons

The two buttons ‘Find’ and ‘Cancel’ are JButtons, as in TextAnalysisGUI in
Chapter 4. The buttons ‘Yes’ and ‘No’ are radio buttons. Only one of them can
be pressed at a time. These buttons are implemented using the class JRadioBut-
ton. A radio button is rectangular. It contains a circular area on the left and a
label to the right of it. Radio buttons can be pressed and they can be grouped.
They stay pressed until another radio button of the group is pressed. A black dot
appears inside the circular area if the button is pressed. We need the following
methods:

JRadioButton (String buttonName)

setSelected (boolean pressed)
setActionCommand (String command)

String getActionCommand ()
JRadioButton (String buttonName) creates a button labelled buttonName

setSelected (boolean pressed) determines whether the button is selected
(pressed = true) or not (pressed = false). In the first case the black dot
is visible inside the circular area of the button. This method is used initially to
set which buttons are pressed before the first user action.

setActionCommand (String command) assigns the string command as the action
command to the button. Radio buttons are not automatically assigned an action
command. This is because their label is often not a text but a picture. We set
the action command ourselves using method setaActionCommand.

getActionCommand () returns the action command assigned to the button.

We still have to make sure that only one button is pressed at a time. This is done
by grouping the buttons. We use the class ButtonGroup from the AWT library.
Below we list the constructor and some methods:

JButtonGroup () ;

add (JRadioButton button)
String getSelection () .getActionCommand ()

Dialogues

JButtonGroup () constructs a button group not yet containing any button.
add (JRadioButton button) adds the radio button button to the group.

getSelection() .getActionCommand () returns the action command of the but-
ton which is currently selected in the group. This statement combines methods
from ButtonGroup and ButtonModel, a class we do not discuss here.

Once the buttons are in a group, only one at a time can be pressed. Pressing
an unpressed one releases the one previously pressed. The listing of the whole
dialogue can be found in Section 12.5.2.

12.5 M Exchange of information between dialogue
and program

Now that the layout of the dialogue is completed we take care of the information
exchange. We begin by describing the general principle and then apply it to our
editor.

12.5.1 [General scheme for information transfer

Depending on how much information has to be exchanged between a dialogue
and the program that created it, different methods of information exchange can be
used. Return values may be used to transfer a single variable from the dialogue back
to the program. This is, for example, done by JFileChooser. Further information
can then be accessed using get-methods of the dialogue such as getSelectedFile
and JrFileChooser. This approach is appropriate if the data format is fixed and
not too much data have to be transferred.

A more flexible way of realizing information transfer is to define a special object
for this purpose. The data transfer object has to be defined by the programmer to
store all the information to be transferred between the program and the dialogue.
It should also have get and set methods to access the data; see also Section B.3.

A data transfer object can be used to transfer data both ways, from the pro-
gram to the dialogue and back. It might contain some initial information which is
displayed by the dialogue. This is then altered by the user in the dialogue and the
modified data are returned to the program. We describe the framework for this
approach below and incorporate it into our editor after that. The basic steps for a
data transfer using an object are:

1. Define a class for the data transfer object. Let us call it DataTransferObject
here. A DataTransferObject contains the information that is to be exchanged
between the dialogue and the application that created the dialogue. Define the
get and set methods to access the data.

2. Define a dialogue class, say MyDialog, with the desired layout. The dialogue
should also contain two buttons labelled, for example, ‘OK’ and ‘Cancel’.

115

116

Basics

3. Define a method showIt (DataTransferObject dto) in class MyDialog. This
method receives a data transfer object dto as an argument. It (possibly) extracts
some data from dto which is to be displayed in the dialogue. It also makes the
dialogue visible.

4. Define a listener for the dialogue (preferably as an internal class). This listener
monitors the ‘OK’ and ‘Cancel’ buttons. When one of them is clicked the listener
updates the data transfer object. Changes made by the user while the dialogue
was visible, e.g. text inputs, are put into the data transfer object. In addition
the data transfer object has to contain the information whether ‘OK’ or ‘Cancel’
was clicked. Finally the listener makes the dialogue invisible.

5. The information transfer then proceeds as follows:

(a) The application creates an instance myDialog of MyDialog and an instance
dto of DataTransferObject.

(b) If desired, the application initializes some values of dto using the set meth-
ods.

(c¢) The application makes the dialogue visible by calling myDialog.showIt
(dto). As a dialogue is modal, the application pauses until the dialogue is
invisible again. During this time the user can change the information in the
data transfer object through the dialogue.

(d) Once the dialogue is invisible the application extracts the modified data
from dto and uses it.

12.5.2 [J Exchanging data with the search dialogue

We define the class DataTransferObject to exchange data. An object of type
DataTransferObject contains three fields: one string and two boolean variables.
The string searchword contains the text to search for. To indicate whether the
search has to be case sensitive we use the boolean field caseSensitive. Finally the
boolean field search indicates whether the dialogue was closed by clicking ‘Find’
(true) or ‘Cancel’ (false). The class also defines the get- and set-methods to
read and write these fields. For convenience there is a setal1l method to set all
information.

The application EditorFrame can now check whether it has to search (get-
Search() == true), which word to search for (getSearchword ()) and whether
to obey cases (getCaseSensitive() == true).

Class searchDialog has SearchListener as an internal class!. The listener
keeps track of the two JButtons ‘Find’ and ‘Cancel’ (it does not monitor the radio
buttons). On closing the dialogue, the current information of the dialogue is written
into the DataTransferObject. Then the program can extract the information
from it. In our example the search itself is done by just counting the number of
occurrences of the word. The respective method countWords of EditorFrame is
not listed here.

In order to avoid the generation of unnecessary objects from within the £di-
torFrame class, we generate the dialogue only once. After that, it is made visible or

1 See Chapter 9 for information on listeners as internal classes.

invisible. We check whether the dialogue is already defined by checking whether

the reference to it is null or not.

if (searchDialog == null)
{
searchDialog = new SearchDialog (this) ;
dataTransfer = new DataTransferObject () ;

}

Dialogues

The variables searchDialog and dataTransfer are previously declared, e.g.

but not instantiated using new. We now list the classes SearchbDialog and Data-

private SearchDialog searchDialog;

private DataTransferObject dataTransfer;

TransferObject.

File: its/Dialogs/SearchDialog.java

package its.Dialogs;

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

public class SearchDialog extends JDialog

{

private
private
private
private
private
private
private

private

JPanel mainPanel = new
JTextField searchTextField = new
JRadioButton yesButton = new
JRadioButton noButton = new
JButton searchButton = new
JButton cancelButton = new
DataTransferObject dataTransfer;

JPanel () ;
JTextField() ;
JRadioButton("Yes") ;
JRadioButton("No") ;
JButton ("Find") ;
JButton ("Cancel") ;

ButtonGroup group = new ButtonGroup () ;

public SearchDialog (Frame frame)

{

super (frame, "Search dialog", true) ;

JLabel questionS = new JLabel ("search word:");
JLabel questionCS = new JLabel ("case-sensitive?");
JLabel filler = new JLabel () ;

this.getContentPane () .setLayout (new BorderLayout()) ;
this.setLocation(300,300);
this.getContentPane () .add (mainPanel, BorderLayout.CENTER) ;

117

[OSINN NS

ook

Y o N

20.

118

37.

oo Ul Ul U
o - .

®

70.
71.
72.
73.
74.

=<

uoul Ul Ul u
N ©n Lt

o

Basics

mainPanel.setLayout (new GridLayout(4,2,10,0));
mainPanel .add (questionS) ;

mainPanel .add (questionCs) ;

mainPanel.add (searchTextField) ;

mainPanel.add (yesButton) ;
mainPanel.add(filler) ;
mainPanel.add (noButton) ;
mainPanel.add (searchButton) ;

(
(
(
(
(
(
(
(

mainPanel.add (cancelButton) ;

group.add(yesButton) ;

group.add (noButton) ;

yesButton.setActionCommand ("yesActionCommand") ;
noButton.setActionCommand ("noActionCommand") ;
yvesButton.setSelected (true) ;

noButton.setSelected(false) ;

SearchListener SLis = new SearchListener();
searchButton.addActionListener (SLis) ;
cancelButton.addActionListener (SLis) ;

this.pack();

public void showIt (DataTransferObject dto)
{
dataTransfer =dto;

this.setVisible (true) ;

. // Internal class

class SearchListener implements ActionListener
{

// No constructor defined, default constructor is used

public void actionPerformed(ActionEvent evt)
{

String searchText = searchTextField.getText () ;

boolean caseSensitive =
(group.getSelection () .getActionCommand () .equals ("yesActionCommand")) ;

String command = evt.getActionCommand() ;

if (command.equals ("Cancel"))

{

dataTransfer.setAll (searchText, caseSensitive, false) ;

//Note that setVisible is a method of class SearchDialog,

//not of the internal class SearchListener!
setVisible (false) ;

}

else if (command.equals ("Find"))

{

dataTransfer.setAll (searchText, caseSensitive, true) ;

setVisible (false) ;
}
}

}// internal class

Dialogues

File: its/Dialogs/DataTransferObject.java

package its.Dialogs;

public class DataTransferObject

{

private String searchWord;
private boolean caseSensitive;

private boolean search;

public DataTransferObject ()
{
searchWord = "";
caseSensitive = true;
search = true;

}

public void setAll (String w, boolean cs, boolean s)
{
searchWord = w;
caseSensitive = cs;

search = s;

public String getSearchWord()
{

return (searchWord) ;

}

public boolean getCaseSensitive()

{

119

~
o

77.
78.
79.
80.
81.
82.
83.
84.

S S

(o

~

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

120

Basics

return (caseSensitive) ;

public boolean getSearch()
{

return (search) ;

12.6 M Predefined option dialogues

For a number of simple but frequently used dialogues, Swing offers predefined
components. Messages such as ‘File Win.ini has been deleted’ and questions such
as ‘Format hard disk? Yes/No’ are examples. The Swing class JoptionPane supplies
methods for making such simple dialogues appear. The following most frequently
used ones are: showMessageDialog, showConfirmDialog and showOptionDia-
log.

We use such a dialogue — a message dialogue — to display the result of our
search:

JOptionPane.showMessageDialog (Component parent,
String title,
String message,

int type);

As for other kinds of dialogue, the parent component is blocked while the mes-
sage is visible. The text title appears in the title bar of the dialogue. The text
message is shown in the dialogue. Argument type determines which symbol (e.g.
warning sign, exclamation mark) is shown next to the message. There are prede-
fined constants in ‘JoptionPane’. Figure 12.3 shows the result. This completes our
editor. The editor also needs the classes SearchbDialog and InfoTransferObject
defined in Section 12.5. The whole program is found on the home page of the
book.

Figure 12.3 The dialogue used to display the search result

12.1

12.2

12.3

12.4

12.5

Dialogues

Exercises

Add a menu item ‘Save as’ to the first menu. When clicking it, a file selection
dialogue should appear where one can select a file or input a new name. The
text is then saved to this file.

Augment the ‘Load’ function as follows. If a file has already been loaded and
is displayed, a dialogue box appears. The user is asked whether the displayed
text should be saved before loading the new one. Depending on the user’s
choice the old text is simply erased (using setText (" ")) or saved and erased
before loading the new one.

Augment the ‘Exit’ function as follows. If ‘Exit’ is selected while a text is dis-
played, a dialogue appears. The user is asked whether the text should be
saved before exiting or not. Depending on the user’s choice the appropriate
action is performed. This procedure should also be executed when the close
button to the frame is pressed.

Add another menu ‘Help’ to the editor. It should have two items ‘Help’ and
‘About’. The first should display a help text in a dialogue window and the
second some information on the program.

Add a status bar under the editor pane which displays some additional infor-
mation, e.g. the number of lines or the file name.

121

More on graphics 1 3

In this chapter we discuss some techniques to improve drawings. This chapter can
be skipped on a first reading.

13.1 M The class Graphics2D

In the previous examples for displaying drawings, we used the class Graphics
from the AWT library to supply the drawings commands. This class offers only
basic commands for drawing shapes. The line width, for example, is limited to one
pixel. To draw wider lines one can draw more than one line in parallel. One has to
consider the direction of the line in order to make this look nice. For thicker lines
one would also like to allow different kinds of line ends, e.g. rounded, square. This
and much more is provided by the class Graphics2D which is also found in the AWT
library. This class together with its helper classes such as shape, AffineTransform
and stroke provide very powerful methods to create and modify drawings. To
use it in paintComponent, one casts the Graphics parameter to Graphics2D.
As Graphics2D is derived from Graphics, all the ‘old’ drawing commands are
available.

A complete description of these classes is beyond the scope of this book. We
restrict ourselves to a brief description of strokes. This is, in the author’s experi-
ence, the feature that is most missed in class Graphics. A stroke may be thought
of as a drawing tool like a pen or a brush. The user can define such a tool with a
given width and shape and then use it to draw lines on curves. Besides this, one
can also set the line style. The use is quite simple: first define some strokes. Then
choose the desired one and all following drawing commands use it until another
stroke is selected.

Stokes in Java are realized by the interface stroke. Java also supplies an im-
plementation of Stroke in the class BasicStroke. This class allows us to define
the line width, the line endings (rounded/square), and the way line segments are
connected to form a nice looking polygon. The width is specified by parame-
ter width in the constructors below, the style of the line end by parameter cap
and the joining method by join. For example to have rounded line ends one

More on graphics

uses cap = BasicStroke.CAP_ROUND. The class provides more features, such as
dashed lines, which we do not discuss here.

BasicStroke (float width) constructs a solid BasicStroke with the specified
line width and with default values for the cap and join styles.

BasicStroke (float width, int cap, int join) constructs a solid Basic-
Stroke with the specified attributes.

The following code snippet shows how to use class Graphics2D and BasicStroke
to draw lines 5 and 6 pixels wide and have rounded and square ends respectively:

// define strokes in the preamble
BasicStroke stroke5 =

new BasicStroke(5.0f,BasicStroke.CAP_ROUND, BasicStroke.JOIN_BEVEL) ;
BasicStroke stroke6 =

new BasicStroke(6.0f,BasicStroke.CAP_BUTT, BasicStroke.JOIN_BEVEL) ;

// using the strokes in paintComponent

public void paintComponent (Graphics g) {
super.paintComponent (gr) ;

// cast to Graphics2D
Graphics2D g2d = (Graphics2D) g;

// draw a line with width 5
g2d.setStroke (stroke5) ;
g2d.drawLine (10,10,30,40) ;

// draw a line with width 6
g2d.setStroke (strokeb) ;
g2d.drawLine(10,40,30,10);

13.2 B Finding the screen parameters

When displaying a frame, one often wants to fill only a certain area of the screen.
Those parts of the frame that are ‘outside’ the screen should be avoided because
the frame is large and the screen resolution is low. The following lines show how
to find the number pixels per column and row, and the screen resolution, i.e.
the number of pixels per inch. We do not explain the class Toolkit used for this
purpose. Just think of it as a class that allows access to information on the system.

Toolkit tk = Toolkit.getDefaultToolkit () ;
Dimension screenDim = tk.getScreenSize() ;

int screenHeight = screenDim.height;

123

124

Basics

int screenwidth screenDim.width;

int pixPerInch tk.getScreenResolution() ;

13.3 M Scaling a drawing

Resizing the frame from Section 5.3 does not resize the drawing. Thus it might
become partly invisible if the frame is made small or just fill a very small portion of
the frame if the frame is large. To access a large drawing one can use scroll panes
as described in Chapter 11. Sometimes this is not appropriate because one wants
the whole drawing displayed regardless of the size of the window. Here we describe
how to resize a drawing if the window is resized. This approach is suited for simple
and more or less static drawings. In Chapter 21 a much more elaborate method
is presented, which allows complex, highly dynamical and resizeable drawings to
be displayed.

We derive a frame ResizeFrame from SimpleFrame. In its content pane we
glue a ResizePanel which we derive from Jpanel. A ResizePanel has a yellow
background and a black rectangle in the middle. The black rectangle is one-third
as wide and high as the panel. This ratio is preserved if the frame (and with it the
panel) is resized.

In order to do this we have to know the current size of the panel. We use the
methods

int getwidth();
int getHeight () ;

They return the current width and height of the panel in pixels. The left edge of the
black rectangle is then one-third the width of the panel. We then place the black
rectangle at the desired position by calling drawrRect with the appropriate val-
ues. The following listings show the code including the start class ResizeDriver.
Figure 13.1 shows the result.

Figure 13.1 The resizeable frame

More on graphics

File: its/ResizeDisplay/ResizeFrame.java
package its.ResizeDisplay;
import its.SimpleFrame.SimpleFrame;
public class ResizeFrame extends SimpleFrame{
public ResizeFrame () {
ResizePanel rp = new ResizePanel () ;

this.setSize(500,300) ;

this.getContentPane () .add(rp) ;

File: its/ResizeDisplay/ResizePanel.java
package its.ResizeDisplay;

import java.awt.Color;
import java.awt.Graphics;

import javax.swing.JPanel;
public class ResizePanel extends JPanel({

public ResizePanel () {
this.setBackground (Color.yellow) ;

public void paintComponent (Graphics g)
{
super.paintComponent (g) ;
// get the current dimensions of the panel
int currentWidth = this.getWidth() ;
int currentHeight = this.getHeight() ;

// take a third of the current dimensions
int wThird = currentwidth/3;
int hThird = currentHeight/3;

// set color to black

125

EE SIS

Y o N

10.

12.
13.
14.

@ NS LN

[T S T S O T T T e T = T = S Sy
AR R T L i I e e

126 Basics

24. g.setColor (Color.black) ;

25. // and draw the rectangle

26. g.fillRect (wThird, hThird, wThird, hThird);
27. }

28.

29.

30. }

File: its/ResizeDisplay/ResizeDriver.java

1. package its.ResizeDisplay;

2

3. public class ResizeDriver

4. {

5. public static void main(String[] args) {
6. ResizeFrame rf = new ResizeFrame() ;
7. rf.showIt ("ResizeFrame") ;

8. }

9.1}

Exercise

13.1 Extend the resizeable frame as follows: add four buttons labelled ‘up’, ‘down’,
‘left” and ‘right’. When clicking one of them, the black rectangle has to move
in that direction (by an amount you can specify). Make sure it is always fully
contained in the panel!

An example project1 4

In this chapter we present a small project based on the model-view—control ap-
proach. The aim is to implement a game that can be interactively played by the user.
The design and implementation are described in some detail because this example
is also to serve as a template for further projects. The aim is not to design a stylish
layout, but a working graphical interface.

14.1 M Specification

Our example game is the 15-puszle. It consists of a 4 x 4 board with 15 movable
blocks and one free space. One can move a block adjacent to the empty place in
that direction. See Figure 14.1 for an example.

The user interface has to display the board and enable the user to move blocks.
The implementation has to ensure that only legal moves are possible. These are
moves that can be performed in the real puzzle.

14.2 M The model part

The first step in the model design is to find out what the essential components in
the project are. Here it is quite natural that the ‘hardware’ of the game, the board,
is one such component. Other components are more abstract, such as the current
configuration of blocks on the board and the concept of a move. Every essential
component should be implemented into a class of its own. In our example, it is
more or less clear what the essential components are. In more complex projects
there might be different ways to structure the problem, which would result in
different definitions of the essential components. Which of the solutions is better
cannot always be decided. In any case the use of large, all-purpose classes should
be avoided.

The model part of the puzzle is implemented in the classes BoardModel, Move-
Model, ConfigurationModel and Constants. They offer all the methods to make
moves in an abstract way. In addition, class BlockPuzzleTest is a non-graphical

128

Basics

3 2 7 4 3 2 7 4
12 14— 11 12 T 1|1
|
8 || 13 50|15 8 || 13 51|15
10| 6 10/]9 10]|| 6 109
(@) (b)
3 2 7 4 3 2 7 4
12 || 13 1|1 12|13 1|l
8 T 5|15 8 6 51|15
|
10 || 6 10 |9 10— 10 || 9
(©) (d)

Figure 14.1 The 15-puzzle: (a) some configuration of the 15 blocks; (b), (c) and (d) are
derived from (a) by moving one block at a time. The aim is to arrange the blocks in such a
way that the numbers increase when read row-wise

driver to test the functionality of the non-graphical classes. One might argue
whether a class for moves or constants is really necessary for this simple game.
In fact, the use of these classes here helps to structure the project, speeds up the
design, and makes the program easy to maintain.

The BoardModel is not restricted to a size of 4 x 4 but allows an arbitraryn x m
board. The parameters determining the size are passed in the constructor. The
blocks are numbered 0, 1, 2, ..., nm — 1; where 0 stands for the empty place. The
board is represented by the two-dimensional n x m array board. The array stores
at board([i][j] the number of the block in row i column j. Two other arrays
rowOfBlock and colOfBlock store for every block the number of the row and
column that it is currently in. This way positions and numbers of the blocks can
be easily linked. The board is initialized with the blocks consecutively numbered
in a row-wise fashion with the empty place at the lower right corner.

The class supplies get-methods to access the current configuration and the
board size. The dynamics of the game is provided by method movert. It receives
an instance of MoveModel, checks whether the move is legal and — if so — moves
the block. It returns a boolean value to indicate whether the move has been made
or not.

An example project

File: its/BlockPuzzle/BoardModel . java

package its.BlockPuzzle;

public class BoardModel/{
private int noOfRows, noOfCols;
private int[][] board; // The board as an array
private int[] rowOfBlock; // The number of the row of every block

private int[] colOfBlock; // The number of the column of every block

public BoardModel (int nr, int nc) {
noOfRows = nr;
noOfCols = nc;
board = new int[noOfRows] [noOfCols];
rowOfBlock = new int[noOfRows * noOfCols];
colOfBlock = new int[noOfRows * noOfCols];
// initialize the board. The blocks are
// numbered row-wise 1,2,...
int kk = 1;

for (int r=0; r < noOfRows; r++){
for (int c=0; ¢ < noOfCols; c++){
if (kk < noOfRows * noOfCols) {
board[r] [c] = kk;

rowOfBlock[kk] = r;
colOfBlock[kk] = c;
kk++;
}
}Y//for c
}//for r
// ... and the missing block is at the lower right.
board [noOfRows-1] [noOfCols-1] = 0;
rowOfBlock([0] = noOfRows-1;
colOfBlock([0] = noOfCols-1;

public boolean moveIt (MoveModel mm) {
int dir = mm.getDirection();
int block = mm.getBlockNumber () ;
int row rowOfBlock[block];
int col = colOfBlock[block];

boolean ok = true;

// an UP move is possible if the missing block

129

EE SIS

Y o N

32.
33.
34.
35.
36.
37.
38.

40.
41.
42.
43.

130

44.
45.

ur
=)

(V10O BN B |
~

o N
® N

NN NNN D
Ll S e AL R Sl D el

75.

83.
84.
85.
86.
87.
88.
89.
90.

LN

wn

[S1Y)]
e

Basics

// 1is above the position (r,c), i.e., at

// (r-1,c). Esp. r has to be larger than 0.

// The tests for the other directions are similar.

if (dir == Constants.DIRECTION_UP) {
if ((row > 0) && (board[row-1][col]l == 0)){
board[row-1] [col] = board[row] [col];

rowOfBlock([block]--;
board[row] [col] = 0;
rowOfBlock [0]++;
}
else(
ok = false;
}
} else if (dir == Constants.DIRECTION_DOWN) {
if ((row < noOfRows-1) && (board[row+1] [col]
board[row+1] [col] = board[row] [col];
rowOfBlock [block] ++;
board[row] [col] = 0;
rowOfBlock([0]--;
}
else(
ok = false;
}

}else if (dir == Constants.DIRECTION_LEFT) {
if ((col > 0) && (board[row] [col-1] == 0)){
board[row] [col-1] = board[row] [col];
colOfBlock([block]--;
board[row] [col] = 0;

colOfBlock [0]++;
}
else{
ok = false;
}
}else if (dir == Constants.DIRECTION_RIGHT) {
if ((col < noOfCols-1) && (board[row] [col+1]
board[row] [col+1l] = board[row] [col];
colOfBlock[block]++;
board[row] [col] = 0;
colOfBlock([0]--;
}
else(
ok = false;
}
} return (ok) ;

0)){

) A

public ConfigurationModel getCurrentConfiguration() {

An example project 131

return (new ConfigurationModel (board)) ; 91.

} 92.
93.

public int getNoOfCols () { 94
return (noOfCols) ; 95.

} 96.
97.

public int getNoOfRows () { 98.
return (noOfRows) ; 99.

} 100.
} 101.

The class MoveModel provides the abstract description of a move. It specifies the
number of the block to be moved and its direction. The direction is one of the
constants defined in class Constants.

File: its/BlockPuzzle/MoveModel . java

package its.BlockPuzzle; 1.
2.

3.

public class MoveModel { 4.
5.

private int direction; 0.
private int blockNumber; 7.
8.

public MoveModel (int dir, int bn) { 9.
direction = dir; 10
blockNumber = bn; 11.

} 12.
13.

public int getBlockNumber () { 14
return (blockNumber) ; 15.

} 16.
17.

public int getDirection () { 18
return (direction) ; 19.

} 20.

} 21.

Instances of class ConfigurationModel represent a snapshot of the board. This
can be used to protocol the course of a game, or to store the current state of the
game. Method equals checks whether two configurations are identical. This can
be used for test purposes. The class provides a method tostring which returns
the configuration in a format that can also be printed on the console.

132 Basics

File: its/BlockPuzzle/ConfigurationModel . java

1. package its.BlockPuzzle;

2

3

4. public class ConfigurationModel {

5

6. private int[][] board;

7. int noOfRows, noOfCols;

8

9. public ConfigurationModel (int[][] b) {
10. noOfRows = b.length;

11. noOfCols = b[0].length;

12. board = new int[noOfRows] [noOfCols];
13. for (int r=0;r < noOfRows ; r++) {
14. for (int c=0;c < noOfCols ; c++) {
15. board[r] [c] = blr]lc];

16. }// for

17. }//for

18. }

19.

20. public int getBlockNo (int r, int c){

21. return(board(r][c]);

22. 1}

23.

24. public String toString() {

25. String confAsString = "";

26. for (int r=0; r < noOfRows; r++){

27. for (int c¢=0; c < noOfCols; c++){

28. if (board([r][c] < 10)

29. {

30. confAsString += " "+board[r][c];
31. }

32. else

33. {

34. confAsString += " "+board[r][c];
35. }//ifelse

36. }//for c

37. confAsString += "\n";

38. }//for r

39. confAsString += "\n";

40. return (confAsString) ;

41. }

42.

43. public boolean equals (ConfigurationModel conf) {

44. boolean result = true;

An example project

for (int r=0; r < noOfRows; r++) {

for (int c¢=0; ¢ < noOfCols; c++){

if (this.board[r] [c] != conf.board([r][c]) {
result = false;
Y//if
}Y//for c
}Y//for r

return (result) ;

133

o Ut
M=o

o
©

wn
b

Class constants define constants for the possible directions of the moves.

File: its/BlockPuzzle/Constants.java

package its.BlockPuzzle;

public class Constants {

public static final int DIRECTION_UP =

public static final int DIRECTION_DOWN
public static final int DIRECTION_RIGHT =
public static final int DIRECTION_LEFT =

B~w N

The test of the model is done by class BlockPuzzleTest. It constructs a 4 x 4
board, fetches the initial configuration of the board and prints it. Then two moves
are generated and executed. The first one is legal but the second one is not. A
thorough test should of course check more situations, such as attempting to move
a block off the board or whether there are two blocks with the same number. The

test is performed by comparing the true and expected configurations.

File: its/BlockPuzzle/BlockPuzzleTest.java

package its.BlockPuzzle;

public class BlockPuzzleTest{
private static boolean passed;

public static void main(String[] args) {

ISR NI

Y o N

10.

W =

v

)

134 Basics

9. passed = true;

10. //Generate a model and print it (also as string)

11. BoardModel bm = new BoardModel (4,4) ;

12. ConfigurationModel trueConf, expectedConf;

13. trueConf = bm.getCurrentConfiguration() ;

14. expectedConf = new ConfigurationModel (new int[][]

15. {{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,0}});
16. check (expectedConf, expectedConf) ;

17.

18. //Make a move
19. System.out.println("Move 15 right");
20. MoveModel movel = new MoveModel (Constants.DIRECTION_RIGHT,15) ;

21. if (!bm.movelt (movel)) {

22. System.out.println("Illegal Move!");

23. }

24. trueConf = bm.getCurrentConfiguration() ;

25. expectedConf = new ConfigurationModel (new int[][]

26. {{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,0,15}});
27. check (expectedConf, expectedConf) ;

28.

29. //Make another move
30. System.out.println("Move 5 up");
31. MoveModel move2 = new MoveModel (Constants.DIRECTION_UP,5);

32. if (!bm.movelt (move2)) {

33. System.out.println("Illegal Move!");

34. }

35. trueConf = bm.getCurrentConfiguration() ;

36. expectedConf = new ConfigurationModel (new int[][]
37. {{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,0,15}});
38. check (expectedConf, expectedConf) ;

39. // display the test result

40. if (passed) {

41. System.out.println("Test passed");

42. }

43. else {

44. System.out.println("Test NOT passed");

45. }

46. }

47. private static void check(ConfigurationModel confl,
48. ConfigurationModel conf2) {

49. if (confl.equals(conf2)) {

50. System.out.println("Configuration ok:");

51. System.out.println(confl.toString()) ;

52. }

53. else{

54. System.out.println("Expected and true configurations"
55. + " do NOT match");

An example project 135

System.out.println(conf2.toString()) ; 56.
System.out.println(confl.toString()); 57.
passed = false; 58

} 59.

} 60.

} 61.

The listing below shows the test result as it is displayed on the console. It is
correctly detected that the second move is illegal.

Configuration ok:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0

Move 15 right
Configuration ok:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 0 15

Move 5 up
Illegal Move!
Configuration ok:
1 2 3 4
5 6 7 8
9 10 11 12
13 14 0 15

Test passed

14.3 M The view part

Once the model is implemented and tested, one can begin to design the display
of the game. The layout we have chosen consists of two panels embedded side by
side into a frame. The left one displays the current configuration of the board. The
right one allows a direction to be selected for a move. The appearance is shown
in Figure 14.2.

We begin by describing class BlockPuzzlePanel which displays the board. In
the constructor, the panel receives a reference to the board model it has to display.
By querying the board model it determines the number of rows and columns to
display.

As usual, the painting is done by overriding method paintComponent. Here,
the current configuration from the BoardModel is fetched. Then one queries the

136

SRR S

o)}

Basics

title

3|27 4 |||Cup

12 1 1 ® down

8 13 5 15 Oleft

10 6 10 9 Oright

Figure 14.2 The layout of the GUI for the block puzzle

configuration on all positions (r, ¢), (r is the row number, ¢ is the column number)
to find the block number at this position. The blocks are drawn as rectangles with
a number near the middle. The missing block is shown as a filled black rectangle.
The code for drawing a block and the empty place is put into two private methods.
Putting it into paintComponent is of course possible, but would make the structure
hard to follow. The drawing is scalable (resizeable). We use the technique described
in Section 13.3 for this purpose.

The panel does not know anything about the rules of the game, it can merely
display the current state. Therefore, method makeMove (move) makes a move by
calling the method moveIt (move) of the board model. The panel’s display has to
be updated if the configuration is changed. This update is made by calling the
panel’s repaint method. If the move has not been made a warning message is
displayed. It uses a predefined message dialogue from class JoptionPane.

The class has a public method getBlockNoAtPixels (x,y) which will be used
in the control part. It determines the number of the block that contains the pixel
coordinates (x,y). In order to find out which row of blocks contains the given
pixel y-coordinate we first divide the height of the panel by the number of rows.
This is the height of a single row in pixels. Then we divide y by this height to
get the row number. Note that all numbers involved are integers; then rounding
is downwards and the correct row number is computed. The column number is
computed analogously.

File: its/BlockPuzzle/BlockPuzzlePanel . java

. package its.BlockPuzzle;

import java.awt.Color;
import java.awt.Dimension;

import java.awt.Graphics;

. import javax.swing.JPanel;

An example project

import javax.swing.JOptionPane;
public class BlockPuzzlePanel extends JPanel{

private BoardModel boardMod;
private ConfigurationModel currentConf;
private int noOfRows, noOfCols;

private int columnWidth, rowHeight;

public BlockPuzzlePanel (BoardModel bm) {
boardMod = bm;
noOfRows = bm.getNoOfRows () ;
noOfCols = bm.getNoOfCols() ;
this.setPreferredSize (new Dimension(300,300));

this.setBackground (Color.white) ;

public void paintComponent (Graphics g) {
super .paintComponent (g) ;
int w = getWidth();
int h = getHeight();
columnWidth = w/noOfCols;
rowHeight = h/noOfRows;
currentConf = boardMod.getCurrentConfiguration() ;
for (int r=0; r < noOfRows; r++) {
for (int c=0; ¢ < noOfCols; c++){
if (currentConf.getBlockNo (r,c) != 0){
drawBlock (r,c,currentConf.getBlockNo (r,c),qg);
}
else
{
drawMissingBlock (r,c,qg) ;
}
}Y//for c
}//for r

public void makeMove (MoveModel move) {

if (boardMod.movelIt (move)) {
this.repaint () ;

}

else{
JOptionPane.showMessageDialog (this,
"Illegal Move","ITS BlockPuzzle",
JOptionPane.WARNING_MESSAGE) ;

}//ifelse

137

o » N

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

40.

|9 B Y|
o

=

138

(O B

QU1 U1 Ul U
S0 PN R L

S
N gk @

68.

e

® N o »

Basics

private void drawBlock(int r, int c, int n, Graphics g){
g.drawRect (c*columnWidth+2, r*rowHeight+2, columnwWidth-4,
rowHeight-4) ;
g.drawString (""+n, c*columnWidth+ (columnWidth/2) ,
r*rowHeight+rowHeight/2) ;

private void drawMissingBlock(int r, int c, Graphics g){

g.fillRect (c*columnWidth, r*rowHeight, columnWidth, rowHeight) ;

public int getBlockNoAtPixels (int x,int v) {
int ¢ = x/(this.getWidth()/noOfCols) ;
int r = vy/(this.getHeight () /noOfRows) ;

return (currentConf.getBlockNo(r,c)) ;

Class DirectionPanel is quite simple. It receives a 4 x 1 grid layout, into which
four radio buttons are placed. They are labelled with the four directions and receive
action commands. The action commands will be used to determine which button
is selected. The radio buttons are grouped as described in Section 12.4. The ‘up’-
button is selected. The class has only one method, getDirection. This returns
the direction specified by the currently selected button. The return value is the
corresponding direction-constant defined in class Constants.

File: its/BlockPuzzle/DirectionPanel .java

. package its.BlockPuzzle;

import java.awt.GridLayout;
import javax.swing.ButtonGroup;
import javax.swing.JPanel;

import javax.swing.JRadioButton;

. public class DirectionPanel extends JPanel {
10.
11.

private JRadioButton upBut, downBut, rBut, 1But;

private ButtonGroup group;

12.

13.
14.

public DirectionPanel () {

this.setLayout (new GridLayout (4,1));

An example project 139

upBut = new JRadioButton("up"); 15.
downBut = new JRadioButton ("down") ; 16.
1But = new JRadioButton("left"); 17
rBut = new JRadioButton("right") ; 18.
19.

upBut.setActionCommand ("u") ; 20.
downBut.setActionCommand ("d") ; 21.
1But.setActionCommand ("1") ; 22.
rBut.setActionCommand("r") ; 23.
24.

group = new ButtonGroup() ; 25.
group.add (upBut) ; 26.
group.add (downBut) ; 27.
group.add (1But) ; 28.
group.add (rBut) ; 29.
upBut.setSelected (true) ; 30.
31.

this.add (upBut) ; 32.
this.add (downBut) ; 33.
this.add(1But) ; 34.
this.add(rBut) ; 35.
} 36.
37.

public int getDirection() { 38
String actionCommand = group.getSelection() .getActionCommand() ; 39
int result = 0; 40.
if (actionCommand.equals ("u")) { 41.
result = Constants.DIRECTION_UP; 42

} else if (actionCommand.equals("d")) { 43.
result = Constants.DIRECTION_DOWN; 44.

} else if (actionCommand.equals("r")) { 45.
result = Constants.DIRECTION_RIGHT; 46

} else if (actionCommand.equals("1")) { 47.
result = Constants.DIRECTION_LEFT; 48

} 49.
return(result); 50.
} 51.
} 52.

The class BlockPuzzleFrame is not derived from SimpleFrame but from JFrame
to make this project independent of the its-package. In order to use it on its
own, one has to replace the package name its.BlockPuzzle by BlockPuzzle.
The frame implements a window listener, which terminates the application when
the frame is closed; see Section 9.3.

140 Basics

File: its/BlockPuzzle/BlockPuzzleFrame. java

. package its.BlockPuzzle;

e

import java.awt.event.WindowAdapter;

w

import java.awt.event.WindowEvent;

o

import java.awt.BorderLayout;

-~

import javax.swing.JFrame;

o ®

10. public class BlockPuzzleFrame extends JFrame
11. {
12. private DirectionPanel dirPanel;

13. private BlockPuzzlePanel bpPanel;

14.

15. // Constructor

16. public BlockPuzzleFrame (int rows, int cols) {

17.

18. this.setLocation(200,200);

19. this.setTitle("ITS Block Puzzle");

20. BoardModel boardMod = new BoardModel (rows,cols);

21. bpPanel = new BlockPuzzlePanel (boardMod) ;

22. dirPanel = new DirectionPanel () ;

23. getContentPane () .add (bpPanel, BorderLayout .CENTER) ;
24. getContentPane () .add (dirPanel, BorderLayout.EAST) ;

25.

26. BlockPuzzleListener bpList = new BlockPuzzleListener (bpPanel,dirPanel) ;
27. bpPanel .addMouseListener (bpList) ;

28.

29. // Correct termination:

30. // Otherwise only the frame disappears when clicking
31. // on the ”close” symbol but the process keeps running.
32. addWindowListener (new WindowAdapter ()

33. { public void windowClosing (WindowEvent e)

34. {

35. System.exit (0) ;

36. }

37.)i

38. pack () ;

39. }

40.

41.

42. public void showIt () {

43. this.setVisible (true) ;

An example project

public void hideIt() {
this.setVisible (false) ;

141

o
=

14.4 M The control part

The user—-program interaction is specified as follows. The user selects a direction
by clicking a radio button in the direction panel. This requires no listeners because
the mechanism is supplied by RadioButton and ButtonGroup. Once a direction
is selected a move can be made by clicking on a block in the BlockPuzzlePanel.
This block is then moved in the specified direction if the move is legal, i.e. if the
empty place is adjacent to the block in that direction.

A listener is used to detect when a click in the BlockPuzzlePanel occurs and
to make the move. As we are reacting to a mouse click we extend a MouseAdapter
in class BlockPuzzleListener. In order to be able to perform the desired task, the
listener has to know the direction and the block of the desired move. The move is
then made in the block puzzle panel. Therefore BlockPuzzleListener receives
references to the DirectionPanel and the BlockPuzzlePanel in the constructor.
The listener is assigned to the BlockPuzzlePanel.

If a mouse click occurs in the BlockPuzzlePanel, the listener’s mouseClicked
method is invoked. The listener extracts the x- and y-coordinates of the location
of the click from the mouse event object. These are in pixels. The listener asks the
panel which block is at that location. This is done by using the block panel’s get -
BlockNoAtPixels (x,y) method. The listener determines the direction by asking
the direction panel using getDirection().

Now that the block number and direction are known, the listener constructs an
instance MoveModel for the desired move. The move is passed to the block puzzle
panel using method makeMove (move) .

File: its/BlockPuzzle/BlockPuzzleListener.java

package its.BlockPuzzle;
import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

public class BlockPuzzleListener extends MouseAdapter{

private DirectionPanel dirPanel;

[)]
“ Ny

Nk L=

142

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

Basics

private BlockPuzzlePanel bpPanel;

BlockPuzzleListener (BlockPuzzlePanel bp, DirectionPanel m) {
dirPanel = m;
bpPanel = bp;
}

public void mouseClicked (MouseEvent evt) {
//

int x = evt.getX();

int vy = evt.getY();

int blockNo = bpPanel.getBlockNoAtPixels(x,V);
// Constructs the move

MoveModel move =

new MoveModel (dirPanel.getDirection (), blockNo) ;

// Request a move to made be in the BlockPuzzlePanel.
// Note that the BlockPuzzleListener does not know HOW to make
// a move.

bpPanel .makeMove (move) ;

The driver class BlockPuzzle creates a BlockPuzzleFrame and makes it visible.
A screen shot of the program is shown in Figure 14.3.

Figure 14.3 The block puzzle application after some moves have been made

An example project

File: its/BlockPuzzle/BlockPuzzle.java

package its.BlockPuzzle;

class BlockPuzzle{

public static void main(String[] args) {
BlockPuzzleFrame glf = new BlockPuzzleFrame(4,4);
glf.showIt();

14.5 B Summary

The example in this chapter is to illustrate the design process of a graphical ap-
plication. The non-graphical part is specified, implemented and tested separately
from the graphical one. Both graphical and non-graphical classes supply the meth-
ods needed by the control part. For example BoardModel implements the move in
moveIt and BlockPuzzelPanel supplies a pixel-to-block-number transformation
in getBlockNoAtPixels.

The approach of separating data administration, graphics and user interaction
is the key to a rapid save and easily maintainable implementation. An often-heard
claim is that this slows down the program execution because, for example, the use
of get- and set-methods is slower than direct access to public variables. This is
almost always incorrect. One can achieve between 0 and 2 per cent speed-up for
most applications by using a badly structured unsave and hard-to-maintain imple-
mentation. The time to debug such an implementation is, however, considerably
larger.

In our block puzzle example we have been able to implement the model, view
and control parts one after the other. Though a conceptional separation of these
parts is always possible, a temporal separation is not. One will often have to develop
the three parts separately, but parallel.

The block puzzle example is kept very short. It lacks a number of important
tests, such as checking whether the numbers of rows and columns are positive
in the constructor of BoardModel. Also the determination of the block clicked by
method getBlockNoAtPixels is precise only to within a few pixels.

Exercises

14.1 Add a ‘reset’ button to the GUI. On pressing it the blocks are arranged in the
initial configuration.

143

EE SIS

Y o N

10.

144

Basics

14.2

14.3

Add a text area to the GUI which displays the history of the game by displaying
the moves made, one per line. It should be scrollable and cleared if the game
is reset.

Add a menu to the GUI. There should be menu items ‘Save’ and ‘Load’. On
selecting them the current state of the game (the current configuration) is
saved or a saved game is loaded and displayed, respectively. The files to save
to or load from should be user selectable. Make sure that boards of different
size can be handled.

O

Figure 14.4 Sketch of the GUI for Exercise 14.6

Figure 14.5 Sketch of the GUI for Exercise 14.7

14.4

14.5

14.6

14.7

An example project

Add a menu item ‘Select board size’ to one of the menus. When selecting it, a
dialogue appears, prompting the user for the numbers of rows and columns.
On closing the dialogue, the board size is reset to the new values and the
blocks are arranged in the original configuration.

Change the way the user selects a move as follows: the direction panel is
removed. To make a move the user clicks on a block B. If the empty place is in
the same row or column as B, then all blocks between the empty place and
B are moved, including B. The empty place then is at the former position of
B. Note that this requires changes in or re-implementation of many classes.

Implement the following GUI. There is a rectangular grid with n x m cells.
Initially the cells are empty. A red chip is placed into one of the cells. Then the
chip can be moved to another, different, cell. A yellow chip is put into the cell
of the previous position of the red one. There are always at most two chips
on the grid. The game can be restarted with an empty grid. See Figure 14.4.

Implement the following game (tic-tac-toe light). There is a rectangular grid
with n x ncells, n > 3. Initially the cells are empty. Two players, called RED and
BLACK, take turns to place chips of their colour into empty cells. RED begins.
The game is over if one player has three chips next to one another in one row
or all cells are occupied. The game can be restarted with an empty grid. See
Figure 14.5.

145

PART I I

More components
and techniques

15

Pixel graphics

Pixel images are an essential ingredient in most graphical interfaces. They occur
as small symbols on buttons or in messages or they are the main data object, for
example in an application that displays photos. Such images are stored pixel by
pixel. We shall not create such images ourselves. Instead we focus on displaying and
manipulating existing ones.

We begin by discussing different types of pixel graphics and the Java classes for
these kinds of image. We then show how images can be displayed and manipulated.

15.1 M Some graphics file types

Examples of pixel graphics are digital photos or scanned pictures. They are usually
rectangular and are composed of pixels. A pixel is a small, coloured square. These
squares are tiled to compose the picture. The possible colours vary with the type of
picture. For scanned documents the pixels are usually white or black; then one bit
is sufficient to store the information of a single pixel. Black-and-white photos are
usually stored as grey-scales. Every pixel has a value representing its ‘grey-ness’,
e.g. 0 white and 255 is black. For colour pictures every pixel describes a colour.
There are different ways to represent a colour. The RGB-model uses three values
which indicate the amount of red, green and blue in the colour. Often one byte is
used for each of the values, thus one pixel requires 3 bytes or 24 bits. This allows
us to define 16,777,216 different colours.

Storing pixel graphics requires a lot of memory. To store an image with
2048 x 1536 pixels and 24-bit colours (the format of a 3 mega-pixel digital photo)
requires 9 megabytes. In order to save disk space, images are often stored in a
compressed format. When a picture is compressed some image information might
be lost. Roughly speaking, compression combines the information on adjacent or
similar pixels. Decompressing such an image results in a coarser image than the
original one. The higher the compression rate, the more image information is lost.
With a reasonable, e.g. hardly visible, loss of image quality the aforementioned
photo can be reduced to about 1.5 megabytes. Photos or drawings that are not too
detailed and have a low contrast allow a higher compression rate than detailed and

150

More components and techniques

contrast-intense images in order to achieve the same visual quality. Some
compressed image formats are loss-free, i.e. the original image can be precisely
recovered.

The Java libraries support the following image formats. When loading such an
image it is automatically decompressed and can be displayed.

B Graphics Interchange Format, file extension GIF. This format stores images in
256-bit colours, one byte per pixel. The pictures are compressed without loss of
information. It is often used for small icons or graphics on the Internet. Using
this format might cause legal problems, because the CompuServe company
holds patents for the compression method.

B Joint Photographic Experts Group, file extensions JPG, JPEG. This format
uses a compression method in which image information is lost. For photos a
reduction to 20 per cent of the original image file size can be achieved while
still maintaining a good quality. JPEG is probably the most widely used format
to store larger photos or drawings.

B Portable Network Graphic, file extension PNG. A newer image format with
growing importance. It uses a loss-free compression and might replace the GIF
format in the long run.

Most Internet browsers can render images in any of these three formats. In this
book we shall mostly use PNG images; the examples work also when using JPEG or
GIF. Using compressed image formats is especially advisable if the pictures have
to be sent over a network: sending or loading times are drastically reduced.

Loading a large image into an application takes some time, even on a modern
computer. To save the user from waiting for the image to be displayed, images are
often loaded asynchronously. This means that a second process is started which
runs in parallel to the main program and loads the image. This way the main
program is not blocked and the user can go on working while the image is loaded.
If, however, the image has to be processed right away by the application then it
should be loaded synchronously and the main program has to wait until the image
is available.

15.2 M Class ImageIcon

The Swing library provides class TmageIcon for pixel graphics. Although ‘icon’ is
mostly used for small images this class is well suited to handle large images and
supports the basic operations on images. For more elaborate manipulation, class
Image from the AWT library can be used. Some constructors and methods of class
ImageIcon are listed and described below:

ImageIcon()
Imagelcon (Image picture)
ImageIcon(String filename)

ImageIcon (URL webaddress)

Pixel graphics 151

int getImageHeight ()
int getImagewidth()

ImageIcon () default constructor.

ImageIcon (Image picture) creates an ImageIcon out of an instance of the AWT
class Image.

ImageIcon (String filename) creates an ImageIcon from an image file, the
name of which is supplied in the argument filename.

ImageIcon (URL webaddress) creates an ImageIcon from a web address which is
supplied in the argument webaddress. Class URL is from the java.net library.

getImageHeight () returns the image height in pixels.

getImagewWidth () returns the image width in pixels.

15.3 M Displaying pixel graphics in Swing

Program ImageFrame demonstrates how a picture is loaded and displayed. We want
to display the image orange.png in a frame. The image is a digitized photo of size
400 x 400 pixels. Instances of class TmageIcon are non-graphical components.
They have to be displayed inside some graphical Swing component. We use a
JLabel for this purpose. In Section 3.3.1 we introduced the constructor

public JLabel (ImagelIcon picture)

which we shall use now. We create an TmageIcon by passing the file name of the
image in the constructor. Note that you might have to adjust the path to match
your directory structure. To keep the program short, we do not check whether the
specified file really exists. The image is then displayed in the label. The size of the
label is adjusted so that it matches the image size, provided the layout manager of
the parent component allows that size. The label is centrally embedded into the
frame. We use the pack method of the parent frame to guarantee this. The result
is shown in Figure 15.1.

File: its/Images/ImageFrame.java

package its.Images; 1.
2.
import its.SimpleFrame.SimpleFrame; 3.
import javax.swing.*; 4.
5.
6.
public class ImageFrame extends SimpleFrame 7.
{ 8.
9.

private ImagelIcon picture; 10

152 More components and techniques

Figure 15.1 Application ImageFrame

11. // Adjust the following path if necessary

12. private final String picturePath = "./its/TestData/";
13. private final String imageFileName = "orange.png";

14.

15. public ImageFrame ()

16. {

17. picture = new Imagelcon (picturePath+imageFileName) ;
18. JLabel pictureLabel = new JLabel (picture) ;

18. this.getContentPane () .add (picturelLabel) ;

20. pack () ;

21. }

22.

23. public static void main(String[] args)

24. {

25. ImageFrame imfr = new ImageFrame() ;

26. imfr.showIt ("ImageFrame: loading image from a file");
27. }

28. 1}

The picture to be displayed does not have to be on the local hard disk, it might
just as well be on some place on the Internet. Internet locations are specified
by their uniform resource locator, URL for short. In Java these are realized by

Pixel graphics

class URL from the java.net library. One passes the address as a string in the
constructor. More on accessing the net may be found in Chapter 22. The fol-
lowing application WebTImageFrame fetches the picture of a pear pear.png from
the specified net address and displays it. The file size is 190 kilobytes. Depend-
ing on the bandwidth of the network connection, it can take up to 10 seconds
to load. The application works only if the computer has access to the Internet.
Attempts to access net locations can fail for many reasons, which are beyond
the control of the user. Therefore, the corresponding Java statements are embed-
ded into try-catch blocks. This allows the program to continue in case network
access fails.

File: its/Images/WebImageFrame.java
package its.Images;

import its.SimpleFrame.SimpleFrame;
import java.net.URL;
import javax.swing.ImageIcon;

import javax.swing.JLabel;

public class WebImageFrame extends SimpleFrame
{

public WebImageFrame ()
{
URL picURL = null;
JLabel picturelLabel = null;
try
{
pPicURL = mnew URL("http://www.imm.dtu.dk/swingbook/"+

"+HTMLTest /pear.png") ;
}
catch (Exception ex)
{System.out.println("Problems in creating URL"+picURL.getPath());}
if (picURL != null) {

Imagelcon picture = new Imagelcon (picURL) ;
pictureLabel = new JLabel (picture) ;
}
else(
pictureLabel = new JLabel ("Image not loaded");
}
this.getContentPane () .add (pictureLabel) ;
pack();

public static void main(String[] args)

153

[OSI \SI

Y 2N

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

26.
27.
28.
29.
30.
31.
32.
33.

154

More components and techniques

WebImageFrame wifr = new WebImageFrame () ;

wifr.showIt ("WebImageFrame: loading Image from the net");

15.4 W Manipulating images

You may want to resize, rotate or reflect your image, or display only part of it,
rather than view it as it is stored on the hard disk. These operations are supported
by classes from the AWT library. We shall now introduce some techniques to solve
the aforementioned image manipulations. Class Tmage from the AWT library plays
a central role for image manipulations.

15.4.1 [Loading images asynchronously

As mentioned above, loading a picture might take some time, especially if the
image has to be transferred over a network. To avoid blocking the main application
while the image is fetched, the loading process can be run asynchronously. Class
Toolkit from the AWT library supplies methods for this purpose. We shall use
the getImage-method of the default toolkit to load images. One can specify the
name of the image file or a web location (URL) where the image is stored. Method
getImage returns an object of class ITmage:

Image picture = Toolkit.getDefaultToolkit.getImage (String filename) ;
Image picture = Toolkit.getDefaultToolkit.getImage (String url) ;

Once the picture is loaded into an object of class ITmage, it can be manipulated
by methods of this class. As a first application we show how a number of images
can be arranged. We derive class ImagePanel from JPanel. An image panel will
automatically arrange pictures and display them. The background colour is set to
be yellow to emphasize the contrast to the pictures.

The images are displayed in method paintComponent of the panel. We use the
following method of class Graphics. The arguments are explained afterwards.

drawImage (Image picture,int left, int top, ImageObserver imObs)

The first argument (picture) contains the image to display. The two integer
arguments left and top specify the pixel position of the upper left corner of the
image inside the panel. The last argument is of type ImageObserver. This is an
interface from the AWT library which is of great help when loading or displaying
images. Fortunately, we do not have to implement this interface ourselves. Every
graphical component, regardless whether it is AWT or Swing, implements this
interface. We therefore can use this as image observer.

Pixel graphics

To determine the width or height of an image we use the following two methods
of class Tmage which return, respectively, these two values in pixels. Note that
these values refer to the size of the picture in the Image variable. The actual
display might be enlarged or shrunk with techniques described later on.

int getWidth (ImageObserver imo)

int getHeight (ImageObserver imo)

An ImagePanel uses a vector images to store the images to be displayed. In
method paintComponent this vector is traversed. For every image in the vector its
width and height are determined for an adequate placement. This is done every
time the panel is repainted. Thus the pictures are always arranged to fit the width
of the panel, unless the panel is too small to fit a single picture in which case
the picture is partly invisible. In ImagePanel we define three methods to add a
picture:

addImage (Image picture)
addImage (String filename)

addImageAndTrack (String filename)

The first adds a picture that is already stored as an instance of class Tmage.
The second one loads a picture from a file. The third one also loads a picture
from a file but in a slightly different way that we shall explain later. In any case
a re-drawing of the panel is initiated after a picture is added by calling repaint.
The following listing contains the classes TmagePanel and TmagePanelFrame. The
latter one creates an ImagePanel and adds some pictures to it. The result is shown
in Figure 15.2.

Figure 15.2 ImagePanelFrame. Resizing the frame might change the arrangement of the
pictures

155

156

~ N U

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

e

o ®

More components and techniques

File: its/Images/ImagePanel . java

import
import

import

public
{

3
3
3

c

. package its.Images;

ava.awt.*;
avax.swing.JPanel;

ava.util.Vector;

lass ImagePanel extends JPanel

private Vector images;

private int gap = 10;

private MediaTracker mediTracker;

private int imagelD;

public ImagePanel ()

{

this.setLayout (new BorderLayout()) ;

this.setBackground (Color.yellow) ;

images = new Vector();

mediTracker = new MediaTracker (this) ;

imageID = 0;

this.setPreferredSize (new Dimension(1000,1400)) ;

public void paintComponent (Graphics g)

{

super.paintComponent (g) ;

int
int
int
int
int
for

currentYPosition = gap;

currentXPosition = gap;

imageWidth, imageHeight;

maxHeight = -1;

panelWidth = this.getWidth() ;

(int 1 = 0; i < images.size(); i++) {
Image currentImage = (Image) (images.get(i));
imageWidth = currentImage.getWidth (this);
imageHeight = currentImage.getHeight (this) ;
// Check whether to start a new row.
if ((gap+imageWidth+currentXPosition) > panelWidth)

{

}
if

currentYPosition += maxHeight + gap;
maxHeight = -1;

currentXPosition = gap;

(imageHeight > maxHeight)

Pixel graphics

maxHeight = imageHeight;
}
g.drawImage (currentImage, currentXPosition, currentYPosition, this) ;
currentXPosition += gap + imageWidth;
}Y// for 1

public void addImage (String filename)

{
Image im = Toolkit.getDefaultToolkit () .getImage (filename) ;
images.add (im) ;

repaint () ;

public void addImageAndTrack (String filename)
{
Image im = Toolkit.getDefaultToolkit ().getImage (filename) ;
imageID++;
mediTracker.addImage (im, imagelD) ;
try
{
// Wait for the image to be completely loaded.
mediTracker.waitForID (imagelD) ;
}
catch (InterruptedException ex) {
System.out.println("Error loading image "+filename+".");
}
images.add(im) ;

repaint () ;

public void addImage (Image picture)
{

images.add (picture) ;

repaint () ;

|90, O B |
—

@

D

157

=

9
b

|9 B B)]
o

®

O

~

o
b

o
<

o)
=

o
N

o)
o

o
L

o
O

oy
2

o
-

68

F“e:its/Images/ImagePanelFrame.java
package its.Images;

import its.SimpleFrame.SimpleFrame;

import java.awt.BorderLayout;

Ll

158

w

o ®

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

NS

More components and techniques

public class ImagePanelFrame extends SimpleFrame
{
// Adjust the following path if necessary
private final String picturePath = "./its/TestData/";

public ImagePanelFrame ()
{

this.setSize(900,600) ;
ImagePanel ip = new ImagePanel () ;
this.getContentPane () .add(ip, BorderLayout.CENTER) ;
ip.addImage (picturePath+"strawberry.png") ;
ip.addImage (picturePath+"banana.png") ;
ip.addImage (picturePath+"lime.png") ;

(
(
ip.addImage (picturePath+"plum.png") ;
ip.addImage (picturePath+"lemon.png") ;
ip.addImage (picturePath+"apple.png") ;
ip.addImage (picturePath+"grapes.png") ;
}
public static void main(String[] args)
{

ImagePanelFrame ipf = new ImagePanelFrame () ;

ipf.showIt ("Loading Images") ;

Depending on the version of the SDK, the operation system and the hardware,
one might observe slightly different behaviour. It might happen that only the yellow
background of the panel is visible or only some of the images are displayed. The
reason for this is the asynchronous loading. Let us look at three lines of code used
in the addImage method of ImagePanel:

Image im = Toolkit.getDefaultToolkit () .getImage(filename) ;
images.add (im) ;

repaint () ;

They suggest that the image stored in filename is first loaded, then added to
the vector images and finally a re-drawing is initiated. As the image is in the vector
it should be displayed. The real time line is, however, different. The first command
initiates the loading process, which then runs in parallel to the main application.
This means that the two other statements of the above code fragment might be
executed while the image is being loaded. Thus the image added to the vector
might be incomplete or even empty and repaint would display it only partly or
not at all. If one resizes the frame later, when all images are loaded, the automatic
repainting will make them appear. The time needed to load a picture depends on

Pixel graphics

its size and the hardware used. Therefore the aforementioned problems might not
occur on some systems. For more on the mechanism of asynchronous loading
consult Chapter 20.

To solve this problem one uses the concept of a media tracker. This can be
used to monitor the loading process, wait for the picture to be fully loaded and
only then display it. Class MediaTracker can be found in the AWT library. A
media tracker can monitor the loading process of many images. To distinguish the
different images, every image receives an identification (ID) number. We use the
following constructor and methods:

MediaTracker (Component comp)

addImage (Image picture, int id)
waitForID(int id)
waitForID(int id, int msec)

MediaTracker (Component comp) creates a media tracker which monitors images
loaded for component comp.

addImage (Image picture,int id) adds picture to those images monitored by
the media tracker. The picture gets identification number id.

waitForID(int id) waits for the loading process of the image with identification
number id to finish. The application waits at this point until the picture is fully
loaded. The statement has to be embedded into a try-catch block because
it throws an InterruptedException if the loading process fails (e.g. due a
network failure). The programmer can implement appropriate reactions for
this case.

waitForID(int id,int msec) waits for the loading process of the image with
identification number id to finish or for msec milliseconds to pass, whichever
happens first. Also this statement has to be embedded into a try-catch block.

In method addImageAndTrack of class TmagePanel we implement this concept.
The identification numbers are increased from one picture to the next to guaran-
tee uniqueness. The repaint method is called only when the image is fully loaded.
Class ImagePanelTrackerFrame is like ImagePanelFrame except that it uses
addImageAndTrack instead of addImage. It can be downloaded from the book’s
home page.

15.4.2 [] Modifying images

Up to now, we displayed the images ‘as they are’, i.e. every pixel in the image
file was shown on the screen. Pictures loaded into Image variables can also be re-
scaled or reflected or only a part of them can be displayed. To this end it suffices to
use method drawImage from class Graphics with an appropriate set of argduments.
Recall that only part of an image might be displayed if drawImage is used while
the image is not yet fully loaded.

159

160

More components and techniques

The various ways of calling drawImage are described below. They all expect an
instance of ImageObserver as one of the arguments. As discussed in Section 15.4.1
we can use this here. In the following, we assume that we draw into a panel, the
procedure remains the same for other components which can display images.

drawImage (Image picture, int left, int top, ImageObserver imo)

drawImage (Image picture,int left,int top, int width, int height,
ImageObserver imo)

drawImage (Image picture, int tl, int tt, int tr, int tb, int sl,

int st, int sr, int sb, ImageObserver imo)

drawImage (Image picture, int left, int top, ImageObserver imo) has
already been described in Section 15.4.1. It displays image picture such that
its upper left corner is at pixel coordinates 1eft and top of the panel.

drawImage (Image picture, int left, int top, int width, int height, Image-
Observer imo) draws image picture, such that its upper left corner is at
pixel coordinates left and top in the panel. The displayed image is width
pixels wide and height high. The image is shrunk or stretched to match these
constraints. It is important to note that the image itself, i.e. the content of
variable picture, is not changed. The resizing is only in the display.

drawImage (Image picture, int tl, int tt, int tr, int tb, int sl, int
st, int sr, int sb, ImageObserver imo) draws a rectangular clip of the
image picture into a rectangular target area of the panel. The integer values
tl, tt, tr and tb specify, respectively, the pixel coordinates of the left,
top, right and bottom edges of the target rectangle. The values s1, st, sr
and sb specify, respectively, the pixel coordinates of the left, top, right and
bottom edges of the source rectangle in picture. The width and height of
the source rectangle do not have to match the corresponding values of the
target rectangle; the clip will be resized to fit into the target area. See also
Figure 15.3.

These commands can also be used to reflect an image. If one chooses a negative
value for argument width in the second drawImage method then the image will
be vertically reflected. The displayed image has a width that is the absolute value
of argument width but left and right are interchanged. Using a negative value
for height results in a horizontal reflection. This also affects the meaning of the
parameters left or top. These always reference the position of the upper left
corner of the original picture. After a vertical reflection this becomes the upper
right corner of the displayed image.

Also the last drawImage method can be used to reflect the clipped part. Here,
(sl, st) (the upper left corner of the source rectangle) is always mapped onto (tl, tt)
(the upper left corner of the target rectangle). Similar for (sr, sb) and (¢r, tb). In an
unreflected display we have sl < sr, st < sb, tl < tr, tt < tb. To vertically reflect
the clipped area one only has to swap left and right by choosing tr < tl, i.e. by
choosing the ‘right’ edge of the target left of its ‘left’ edge. For a horizontal reflection
tt > tb is set.

Pixel graphics 161

(0’33 sl sr (0{)) tl tr

st|... . , et ' _ '
‘ tb ---------
sb|...
Image \

Source rectangle Panel

Target rectangle

(a) (b)

Figure 15.3 How to use method drawImage to display part of a picture. (a) A source
rectangle is specified by its left, right, top and bottom coordinates. (b) A target rectangle is
specified in the same way. The content of the source rectangle is stretched or shrunk to fit
into the target rectangle and displayed there

Rotating an image is not supported by the Graphics class. As the pixels of
images are normally organized in a row-wise fashion, rotations require substantial
computational effort.

We illustrate the use of drawImage in application ImageCutAndMirrorFrame.
The frame contains CutAndMirrorPanel as an internal class. In the constructor of
the frame, the digitalized photo orange . png is loaded and passed to the panel. The
photo is 400 x 400 pixels. The paintComponent method of the panel contains six
drawImage commands which are described below. The 1eft and top parameters
are chosen such that there are always 10 pixels between any two images. The
different drawImage commands are labelled -G in the listing.

(a) draws the original image of size 400 x 400 at position (10, 10) of the panel.

(B) draws an image to the right of the original one at position (420, 10). The height
is the original one (400) but the width is only 50, i.e. the image is horizontally
shrunk to one-eighth.

(C) draws the image even further right in original height (400) but only 100 pixels
wide and vertically reflected. The reflection is achieved by letting width be neg-
ative (—100). As mentioned above, this swaps left and right. Position (580, 10)
therefore denotes the right upper corner of the displayed image which is the
left upper corner of the original.

(D) draws an image below the original one at position (10, 420). The width is the
original one (400) but the height is only 50, i.e. the image is vertically shrunk
to one-eighth.

(E) draws the image even further down in original width (400) but only 100 pixels
high and horizontally reflected. The reflection is achieved by letting height

162 More components and techniques

be negative (—100). Similar to (c) this swaps up and down. Position (10, 580)
therefore denotes the lower left corner of the displayed image which is the
upper left corner of the original.

(F) Draws an enlarged copy of a part of the original image. The first four numerical
parameters 420, 420, 580, 580 specify the upper left and lower right corners of
the target rectangle in the panel. This area is 160 x 160 pixels. The following
four parameters 250, 130, 290, 170 determine a 40 x 20 source rectangle in
the original image. Note that these coordinates refer to the original 400 x 400
picture in the Image variable, not to the displayed one in the panel. The source
has to be horizontally stretched by a factor of four and vertically by a factor of
eight to fit into the target area.

(@) To indicate the source for (F) area, a white rectangle is drawn in the panel.

The result is shown in Figure 15.4.

Figure 15.4 Application ImageCutAndMirrorFrame. Top left: original size picture. Lower
right: enlarged images of the area in the white rectangle. Lower left and top right: the original
image shrunk and reflected

Pixel graphics

File: its/Images/ImageCutAndMirrorFrame. java
package its.Images;

import its.SimpleFrame.SimpleFrame;
import java.awt.*;

import javax.swing.JPanel;

public class ImageCutAndMirrorFrame extends SimpleFrame {

// Adjust the following path if necessary
private static final String picturePath ="./its/TestData/orange.png";

private MediaTracker mediTracker;

public ImageCutAndMirrorFrame () {
this.setSize(600,610);
Image im = Toolkit.getDefaultToolkit () .getImage (picturePath) ;
CutAndMirrorPanel capp = new CutAndMirrorPanel (im) ;
this.getContentPane () .add (capp) ;
int imagelID = 1;
mediTracker = new MediaTracker (this);
mediTracker.addImage (im, imagelD) ;
try{
mediTracker.waitForID (imagelD) ;
}
catch (InterruptedException ex) {

System.out.println("Error loading "+picturePath+".");

}
public static void main(String[] args) {
ImageCutAndMirrorFrame icamp = new ImageCutAndMirrorFrame () ;

icamp.showIt ("ImageCutAndMirrorFrame") ;

// internal class
private class CutAndMirrorPanel extends JPanel({

private Image im;

CutAndMirrorPanel (Image 1) {

public void paintComponent (Graphics g) {

super .paintComponent (g) ;

163

EE SIS

Y o N

32.
33.
34.
35.
36.
37.
38.

40.
41.
42.
43.
44.

164 More components and techniques

45. g.drawImage (im, 10,10, this) ; // (A)
46. g.drawImage (im,420,10,50,400, this) ; // (B)
47. g.drawImage (im,580,10,-100,400, this) ; // (C)
48. g.drawImage (im,10,420,400,50,this) ; // (D)
49. g.drawImage (im,10,580,400,-100, this) ; // (E)
50. g.drawImage (im, 420,420,580,580,250,130,290,150,this); // (F)
51. g.setColor (Color.white) ;

52. g.drawRect (260,140,40,20) ; /7 (G)
53. }

54. }// internal class

55. }// class

The resizing done in the previous paragraphs affected only the displayed image,
not the one contained in the Image variable. We now describe how an image
can be physically resized. Such a resizing can, for example, be used to generate
thumbnails for digitized photos. Think of an application that has to display an
overview of a number of digitized photos. Such photos need several megabytes of
memory each when stored as an instance of class Tmage. Using the appropriate
drawImage method to display a miniaturized version does not solve the memory
problem because only the display is resized while the picture in the Image variable
maintains its full size. Then a few photos fill the main memory and the application
is slowed down owing to swapping.

We now describe how smaller (or larger) copies of pictures can be generated. To
overcome the aforementioned memory problem one can load the photos one at a
time, generate small copies and keep just those. Only the copies are maintained in
the memory. The programmer has to make sure that references to the original big
image are destroyed (e.g. by use of local variables) so that the automatic garbage
collection of Java releases the memory.

We use the following method of class Image to create a resized copy of an image:

Image getScaledInstance(int width, int height, int hints)

Arguments width and height specify the width and height of the resulting new
image. The third argument hints determines which technique is used to enlarge
or shrink the image. For an enlargement additional pixels have to be generated, for
a miniaturization several pixels have to be combined. The quality of the resulting
picture depends on the way this is done. A better quality usually requires a longer
conversion time. We list the constants for hints which are defined in class Image
together with the qualities achieved by the corresponding conversion techniques.

SCALE_DEFAULT Good trade-off between speed and quality
SCALE_FAST Fast conversion and moderate quality
SCALE_SMOOTH Reasonably good quality
SCALE_REPLICATE Good quality

SCALE_AREA_AVERAGING | Good quality

Pixel graphics

Figure 15.5 Application ImageScaleFrame. Top: original size image and a copy that is
linearly scaled by 0.5. Bottom: upper part of the copy scaled by 2.0. The scroll pane can be
used to show the hidden parts

Scaling is done asynchronously. To ensure that the resulting image is only
displayed after it is completed one can again use a media tracker. The following
application TmageScaleFrame demonstrates scaling a picture. The main program
loads a photo into the Tmage object original. Then two copies small and large
are generated. They are copies of the original scaled by a factor of 0.5 and 2.0,
respectively. We defined method scaleImage (image, factor) which determines
the size of the resulting picture from the dimensions of image and the scale factor
factor. Horizontal and vertical scaling factors are equal; it is left as an exercise
to extend the method to different factors. ImagePanel is used to display the three
images. It is embedded into a scroll pane to be able to access all of the pictures.
See Figure 15.5.

File: its/Images/ImageScaleFrame.java
package its.Images;
import its.SimpleFrame.SimpleFrame;

import java.awt.*;

import javax.swing.*;

public class ImageScaleFrame extends SimpleFrame {

165

W =

v

)

166 More components and techniques

9

10. // Adjust the following path if necessary

11. private static final String picturePath ="./its/TestData/orange.png";
12. private MediaTracker mediTracker;

13. private int imageID = 0;

14.

15. public ImageScaleFrame () {

16. this.setSize(800,600);

17. ImagePanel ip = new ImagePanel () ;

18. JScrollPane sp = new JScrollPane(ip) ;

19. sp.setHorizontalScrollBarPolicy
(JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS) ;

20. sp.setVerticalScrollBarPolicy (JScrollPane.VERTICAL_SCROLLBAR_ALWAYS) ;

21. this.getContentPane () .add(sp) ;

22. mediTracker = new MediaTracker (this) ;

23.

24. Image original = loadImageAndTrack (picturePath) ;

25. ip.addImage (original) ;

26. Image klein = gscaleImage(original,0.5);

27. ip.addImage (klein) ;

28. Image gross = scaleImage(original,2.0);

29. ip.addImage (gross) ;

30. repaint () ;

31. }

32.

33. private Image scaleImage(Image im, double factor) {

34. imageID++;

35. int newWidth = (int) (im.getwidth (this) *factor);

36. int newHeight = (int) (im.getWidth (this) *factor) ;

37.

38. Image scaledIm =

im.getScaledInstance (newWidth, newHeight, Image.SCALE_FAST)

39.

40. mediTracker.addImage (scaledIm, imagelID) ;

41. try {

42. mediTracker.waitForID (imagelD) ;

43. }

44. catch (Exception ex) {

45. ex.printStackTrace() ;

46. }

47. return (scaledIm) ;

48. }

49.

50. private Image loadImageAndTrack (String filename)

51. {

52. Image im = Toolkit.getDefaultToolkit () .getImage (filename) ;

53. imageID++;

Pixel graphics 167

mediTracker.addImage (im, imagelD) ; 54
try 55

{ 56.
mediTracker.waitForID (imagelD) ; 57.

} 58
catch (InterruptedException ex) { 59.
System.out.println("Error loading "+filename+"."); 60

} 61.
return (im) ; 62

} 63.
64.

public static void main(String[] args) { 65
ImageScaleFrame isf = new ImageScaleFrame() ; 66
isf.showIt ("ImageScaleFrame: Scaled images"); 67

} 68.

Ll AN =

More Swing
components

In this chapter we introduce more graphical components from the Swing library.
Some of them, such as lists and tables, are used to display data in a structured way.
Others, such as split panes or tabbed panes, are used to embed other components
so that one can easily switch between them.

16.1 M Borders

One can draw a line — a border — around most Swing components in order to
separate them from one another. Swing offers class Border and the utility class
BorderFactory for this purpose. There are various different types of borders. We
show only how to get an ‘etched border’; for others see the documentation. Let
comp be a Swing component. To get a border, use the appropriate methods of the
class BorderFactory namely:

Border bdr = BorderFactory.createEtchedBorder () ;

comp.setBorder (bdr) ;

To create a border with a text, one first creates a border bdr and then adds the
text:

Border bdr = BorderFactory.createEtchedBorder () ;
Border textbdr = BorderFactory.createTitledBorder (Border bdr,
Stringtext) ;
Here is an example consisting of four panels with borders, two have a text. The
result is shown in Figure 16.1. Note that the border is inside the panel, so leave
a margin if you draw in the panel.

File: its/Borders/BorderPanel . java
package its.Borders;

import java.awt.*;

import javax.swing.JPanel;

More Swing components

Figure 16.1 A frame with four embedded bordered panels

import javax.swing.border.*;

import javax.swing.BorderFactory;

public class BorderPanel extends JPanel
{
public BorderPanel ()
{
this.setBackground (Color.lightGray) ;
Border bdr = BorderFactory.createEtchedBorder () ;
this.setBorder (bdr) ;
}
public BorderPanel (String text)
{
this.setBackground(Color.lightGray) ;
Border bdr = BorderFactory.createEtchedBorder () ;

Border titlebdr = BorderFactory.createTitledBorder (bdr ,text);

this.setBorder (titlebdr);

F“e:its/Borders/BorderFrame.java
package its.Borders;

import java.awt.*;

import its.SimpleFrame.SimpleFrame;

public class BorderFrame extends SimpleFrame

{

169

wn

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

e =

o ®Now

170

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

More components and techniques

public BorderFrame ()

{
this.getContentPane () .setLayout (new GridLayout (2,2));
BorderPanel borderPanell = new BorderPanel () ;
BorderPanel borderPanel2 = new BorderPanel () ;
BorderPanel borderPanel3 = new BorderPanel ("Panel 3");
BorderPanel borderPanel4d = new BorderPanel ("Panel 4");
this.getContentPane () .add(borderPanell) ;
this.getContentPane () .add (borderPanel2) ;
this.getContentPane () .add (borderPanel3l) ;

) (

this.getContentPane () .add (borderPaneld) ;

public static void main(String[] args) {
BorderFrame borderFrame = new BorderFrame() ;

borderFrame.showIt ("Borders") ;

16.2 M Lists

Lists serve two purposes. They can be used to display text information in rows
and they enable the user to select rows and use the selected information in the
program. The graphical concept of a list should not be confused with the data
structure with the same name. Java contains an implementation of the latter in
the class LinkedList. The graphical component for lists is the Swing class JList.
The list entries are shown as rows.

Instances of JList allow arbitrary objects as list entries. The data are inter-
nally stored in a ListModel, a class we describe in Section 16.2.3. An explicit
use of list models is advisable if the data displayed in a list change as the pro-
gram is running. If the data in the list are fixed, it is not really necessary to use
the model explicitly. An example for this can be found in Section 16.2.1. JLists
also allow the user to select one or more entries. One can display an image or
augment a text with an icon but the programmer has to specify how the display
should be drawn by implementing a ListCellRenderer. We shall use Strings
only as list entries, which can be displayed without implementing a user-defined
renderer.

We describe the constructor and some methods of JList in the following:

JList ()
JList (String[] entries)

void setListData(String[] entries)

void setSelectionMode (int selectionMode)

More Swing components

void getSelectionMode ()

void setVisibleRowCount (int rowNo)
int getSelectedIndex ()

int[] getSelectedIndices()

Object getSelectedvalue ()
Object[] getSelectedvalues()

JList () creates an empty list.

JList (String[] entries) creates a list which contains the strings of array en-
tries. The first string is the first, i.e. top-most, list entry.

setListData(String[] entries) sets the list entries to the strings in array en-
tries. The first string is the first, i.e. top-most, list entry.

setSelectionMode (int) sets the way in which the user is allowed to select list
entries. One can choose between the following: SINGLE_SELECTION — only one
list entry can be selected, if a new one is selected the old selection is dropped;
SINGLE_INTERVAL_SELECTION — one group of adjacent entries can be selected,
MULTIPLE_INTERVAL_SELECTION — arbitrary combinations of entries can be
selected. The three constants are defined in class ListSelectionModel.

getSelectionMode () determines which selection mode is currently used. The
returned integer value is one of those described for method setSelectionMode
above.

setVisibleRowCount (int rowNo) sets the number of rows visible of the list. This
adjusts the height of the graphical component such that rowNo shows how many
rows are displayed.

getSelectedIndex () returns the index of the (first) selected entry or —1 if no
entry is selected.

getSelectedIndices () returns the indices of the selected entries in an integer
array.

getSelectedvalue () returns the (first) selected entry (not the index but the
entry itself) or null if nothing is selected.

getSelectedvalues () returns the selected entries (not the indices but the entries
themselves), or null if nothing is selected.

16.2.1 [Filling a list with data

To get text entries into a list one can pass an array of strings in the constructor. The
following program ListDemo creates a list with the names of the German provinces.
The visible length of the list is set to 8. To make all entries accessible we place
the list into the viewport of a scroll pane. The scroll pane is then embedded into
the frame. We do not set the selection mode, so the list has the default selection
mode which is MULTIPLE_INTERVAL_SELECTION. The main-method is placed in
the frame class so no driver class is needed.

171

172

TS S

N o

o ®

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

More components and techniques

File: its/Lists/ListDemoFrame.java

. package its.Lists;

import its.SimpleFrame.SimpleFrame;

import java.awt.BorderLayout;

import javax.swing.JList;

import javax.swing.JScrollPane;

public class ListDemoFrame extends SimpleFrame {

private String[] entries = {"Schleswig-Holstein", "Niedersachsen",

"Hamburg", "Bremen", "Mecklenburg-Vorpommern", "Brandenburg",
"Berlin", "Nordrhein-Westfalen", "Hessen", "Sachsen-Anhalt",
"Rheinland-Pfalz", "Thiringen", "Sachsen", "Saarland", "Bayern",

"Baden-Wirttemberg"};

public ListDemoFrame () {
JList provinces = new JList (entries);
JScrollPane scrollPane = new JScrollPane(provinces) ;
this.getContentPane () .add(scrollPane, BorderLayout .CENTER) ;
this.pack() ;

public static void main(String[] args) {
ListDemoFrame 1df = new ListDemoFrame() ;
1df.showIt("List demo") ;

}

16.2.2 [Specification of a GUI with dynamic lists

We now consider lists where entries are added or removed and the user can select
entries and trigger an action as a response to that. We want to design a GUI with
two lists side by side. Initially only the left one contains some items. The user
is allowed to select single entries in the left list. Whenever an item is selected in
the left list which is not in the right list, it is copied to the right list. If the item
selected in the left list is already in the right list, it is deleted from the latter. The
left list is not changed during this process; only the right list changes. We use two
components to implement the desired functions: list models to handle the data
and listeners, which react to selecting list entries. We introduce these components
in the following sections.

16.2.3 [] List models

When lists are dynamic, i.e. when list entries are added or deleted in the course of
the program, the explicit use of a model for the list entries is recommended. The

More Swing components

user can implement the interface ListModel for this purpose. However, there is
a predefined implementation of list models in class DefaultListModel which is
sufficient for many purposes. In a list with n entries, the list entries are numbered
0,1,...,n— 1, where 0 denotes the first (topmost) entry. When a list element is
added or removed then the numbering is updated. In the following we describe
class DefaultListModel which is located in the javax.swing library.

DefaultListModel ()

int size()

boolean contains (Object entry)

Object get (int position)

void insertElementAt (Object entry, int position)
void addElement (Object entry)

void removeElementAt (int position)

boolean removeElement (Object entry)

void removeAllElements ()

DefaultListModel () is the constructor which creates a list model without any
entries.

size () returns the number of entries currently in the list model.

contains (Object entry) returns true if object entry is in the list model, and
false otherwise.

get (int position) returns the list entry at position position. Throws an ex-
ception if position is negative or greater than or equal to the current number
of list entries. As the return type is Object, an explicit cast to the correct type
might be needed.

insertElementAt (Object entry, int position) adds entry entry at position
position to the list model. Throws an exception if position is an invalid
index.

addElement (Object entry) adds an entry at the end of the list.

removeElementAt (int position) removes the entry at position position.
Throws an exception if position is an invalid index. The remaining list entries
are renumbered to maintain a consecutive indexing.

removeElement (Object entry) removes the entry entry. If successful true is
returned, otherwise false is returned.

removeAllElements () removes all entries from the list model.

Once the list model is defined, one passes it to a JList in the constructor or by
using the set-method:

JList (ListModel 1Model)
setModel (ListModel 1Model)

173

174

More components and techniques

Changes in the list model (additions or deletions of entries) are automatically
displayed by the corresponding list. No call to repaint is necessary.

16.2.4 [] List listeners and list events

As specified above, our application has to react to a list entry being selected. The
appropriate listener for this purpose is a ListSelectionListener. It is assigned
to a JList, say myjlist, by

myjlist.addListSelectionListener (listener)

Interface ListSelectionListener requires the implementation of only one
method:

public void valueChanged(ListSelectionEvent evt)

This method is automatically called by the runtime system every time the selection
is changed. It is not executed if the selection is unchanged, for example if the user
clicks in an item that is already selected. The body of this method has to contain
the code that should be executed in response to the selection.

Method valueChanged receives an object of type ListSelectionEvent as an
argument. This is automatically generated by the runtime system and contains
further information on the selection event that has occurred. We shall use the
following methods of ListSelectionEvent:

int getFirstIndex()
int getLastIndex()
boolean getIsAdjusting()

getFirstIndex () returns the position of the first (top-most) entry, the selection
mode of which might have changed (from selected to non-selected or vice
versa). ‘Might’ refers to the fact that the section state might be the same as
before. For example if entries 5 to 8 were selected and the user now selects 5 to
10 then the first selected index remains unchanged. Which entries are selected
can be found by using method getSelectedIndices of class JList.

getLastIndex () returns the position of the last (bottom-most) entry, the selection
mode of which might have changed. See also getFirstIndex ().

getIsAdjusting — changing the selection in a list triggers a series of actions, each
of which generates a list selection event. For example previously selected en-
tries become unselected before new ones become selected. Usually, one would
prefer this series of events to be completed before the application reacts to the
change. For such a rapid series of events all but the last one return true as a
result of get IsAdjusting. Only the last one returns false as a result of getI-
sAdjusting. This can be used to wait for the end of the series of adjustments
before taking further action.

At the moment, ListSelectionEvent supports only the selection modes SIN-
GLE_SELECTION and SINGLE_INTERVAL_SELECTION.

More Swing components

16.2.5 [] Implementation of the list GUI

The following program ListTransferFrame demonstrates the use of dynamic lists.
The view part consists of two lists. Both are embedded into scroll panes which are
then glued into a panel. The panel is glued centrally into a frame. The panel has
a 1 x 2 grid layout so that the lists are side by side. We do not derive classes for
these lists, because we do not add any additional functionality to them.

The list on the left contains the names of the German provinces. As mentioned
in the specification this list does not change. Therefore, do we not explicitly define
a model for it. The selection mode is set such that only a single entry can be
selected. As the right list is dynamic, we define our own list model. Entries are
inserted into or deleted from the model. The display of the right list is automatically
updated as a response to this.

For the control part we use class TransferListener which implements the in-
terface ListSelectionListener. It is implemented as an internal class of the
frame so that it has direct access to fields of the frame. When the listener’s
valueChanged-method is informed, we first make sure that we are not in the
middle of a sequence of events that change the selection. If that is not the case, we
find out which entry is selected in the left list. This is stored in the string variable
sel. We then check whether sel is already an entry in the right list and — if so —
delete it there. Otherwise sel is added as an entry to the right list.

The program is listed below. When using it, note the following. If an entry a is
selected on the left it is copied to the right list (assuming it was not already there).
If this entry a is clicked again the corresponding entry A is not removed from the
right list. One first has to select a different entry B on the left and select A again to
remove it from the right list. The reason is, as explained above, that the selection
has to change in order for valueChanged to be activated. Figure 16.2 shows the
result.

Figure 16.2 The result of ListTransferFrame

175

176

® N oo o

9
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

e

More components and techniques

F“e:its/Lists/ListTransferFrame.java

import
import
import

import

. import

public
{

. package its.Lists;

its.SimpleFrame.SimpleFrame;
java.awt.GridLayout;
java.awt.BorderLayout;
javax.swing.*;

javax.swing.event.*;

class ListTransferFrame extends SimpleFrame

private JList leftList, rightList;
private DefaultListModel rightListModel;

JButton transferButton;

String[] entries = {"Schleswig-Holstein", "Niedersachsen", "Hamburg",

"Bremen", "Mecklenburg-Vorpommern", "Brandenburg",
"Berlin", "Nordrhein-Westfalen", "Hessen",
"Sachsen-Anhalt", "Rheinland-Pfalz", "Thiringen",

"Sachsen", "Saarland", "Bayern", "Baden-Wirttemberg"};

public ListTransferFrame ()

{

this.setSize(400,300) ;

leftList = new JList(entries);

rightListModel = new DefaultListModel () ;

rightList = new JList (rightListModel) ;
leftList.setSelectionMode (ListSelectionModel .SINGLE_SELECTION) ;

TransferListener sellis = new TransferListener () ;
leftList.addListSelectionListener (sellis) ;

JPanel listPanel = new JPanel();

listPanel.setLayout (new GridLayout(1,2));

JScrollPane leftScrollPane = new JScrollPane(leftList);

JScrollPane rightScrollPane = new JScrollPane(rightList) ;
listPanel.add(leftScrollPane) ;
listPanel.add(rightScrollPane) ;
this.getContentPane () .add(listPanel, BorderLayout.CENTER) ;

public static void main(String[] args)

{

ListTransferFrame LLF = new ListTransferFrame() ;

LLF.showIt ("List Transfer Frame") ;

}

More Swing components

//Listener as internal class
class TransferListener implements ListSelectionListener(
public TransferListener () {}
public void valueChanged(ListSelectionEvent evt) {
if (!levt.getValueIsAdjusting())
{
String sel = (String)leftList.getSelectedvValue() ;
if (rightListModel.contains (sel))
{
rightListModel.removeElement (sel) ;
}
else
{
rightListModel.addElement (sel) ;
}Y//ifelse
Y//if

}//valueChanged

}//internal class

}

16.3 M Tables

Tables are used to display data with a two-dimensional structure. Examples are
price lists, distance tables on maps, address books, etc. In Swing class JTable is
used to visualize tables. As for lists, a model is internally used to handle the data.
If the data are complex or change while the program is running, it advisable to
explicitly define such a table model.

A table consists of cells arranged in a rectangular grid. It is possible to add
headings to every column. gTables are column-oriented. This means that there
is support for the manipulation of columns (for example swapping two columns
or rendering the column content) but only limited support for row manipulation.
When designing a table one should therefore try to arrange the data in such a way
that a column contains data of the same type (strings, integers, images, etc.).

In the following we show how tables can be used to display static data, how table
models work and how they can be used to dynamically or interactively change data
in a table.

16.3.1 [A simple static table

If a table displays data that do not change, then the explicit use of a table model
is not necessary. Instead the data can be passed directly to the table in the
constructor. The data are organized in a two-dimensional array content[]1[].

177

178

Ll

9]

More components and techniques

Figure 16.3 A static table

It is interpreted as an array consisting of the rows, i.e. content[i] [] is the one-
dimensional array containing the entries of the ith row of the table. In a second,
one-dimensional array columnNames the headers of the columns are passed. The
rows and the array with the column names all have to have the same length! The
constructor then looks like this:

JTable (Object[][] content,Object[] columnNames)

Note that the arrays are of type Object. If ‘non-standard’ types are used, one
has to ensure that the program knows how to render them by supplying a user-
defined renderer. This is done by implementing the interface TableCellRenderer.
By default, JTable uses a DefaultTableCellRenderer which can display the
‘standard’ types such as strings, images and boolean values. For most purposes
this is sufficient. In order to make the column names visible the table should
be embedded into a scroll pane. The heads remain visible even if the table is
vertically scrolled. By default, the widths of the columns are all the same and they
are automatically adjusted such that all columns fit into the visible area. This is
done even though a scroll pane is used to display the table. If the visible area
is small then the columns become too narrow to properly display the content of
some or all the cells. In those cells some dots (. . .) are shown instead. To switch
the automatic width adjustment off one uses the command:

setAutoResizeMode (JTable.AUTO_RESIZE_OFF)

The following listing StaticTableFrame is an example for creating and displaying
a table. The resulting display is shown in Figure 16.3.

F“e:its/Tables/StaticTableFrame.java

. package its.Tables;

import its.SimpleFrame.SimpleFrame;

import javax.swing.JScrollPane;

. import javax.swing.JTable;

More Swing components

public class StaticTableFrame extends SimpleFrame
{
private String[][] entries = {{"Cell 0.0","Cell 0.1","Cell 0.2"},
{"Cell 1.0","Cell 1.1","Cell 1.2"}};
private String[] columnNames = {"Column 0", "Column 1", "Column 2"};

public StaticTableFrame ()

{

JTable table = new JTable(entries, columnNames) ;
JScrollPane scrollpane = new JScrollPane(table) ;
this.getContentPane () .add(scrollpane) ;

}

public static void main(String[] args)

{

StaticTableFrame STF = new StaticTableFrame () ;
STF.showIt ("Static Table Frame") ;

}

16.3.2 [Table models

The method of explicitly passing the table data in the constructor is not suitable
when using tables with complex content or very large tables. So-called table models
provide an elegant method in this situation. Changing the table content at runtime
is also easy when using table models. Table models implicitly describe the content
to be rendered into a cell. The whole table does not have to exist in the form of a
two-dimensional array. The table model has to be able to provide the content of
every cell on demand. The following application is an example of this.

We construct a multiplication table. The cell in row r and column ¢ displays
the product r - ¢ of the row and column number. As rows and columns are indexed
beginning with zero, the first row and column consist entirely of zeros. The model
then just specifies the following rule: ‘The content of cell (r, ¢) isr - ¢’. The model
does not have to construct a two-dimensional array with these values'.

We derive our own table model from the class AbstractTableModel which is
defined in the library javax.swing.table. Class AbstractTableModel requires
the implementation of the following abstract methods:

int getRowCount ()
int getColumnCount ()

Object getValueAt (int r, int c)

I The current implementation of the Java runtime system seems to explicitly construct the
table as a two-dimensional array.

179

Y o N

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

180

More components and techniques

getRowCount () has to be implemented to return the number of rows in the table.

getColCount () has to be implemented to return the number of columns in the
table.

getValueAt (r,c) has to be implemented to return the content of the table cell
in column c of row r.

Besides these three abstract methods AbstractTableModel contains some non-
abstract methods one would often like to override:

String getColumnName (int c)

Class getColumnClass (int c)

boolean isCellEditable(int r, int c)
void setValueAt (Object val, int r, int c)

getColumnName (c) returns the name of column ¢ as a string. By default, an Ab-
stractTableModel assigns the names A, B,C, ..., Z, AA, AB, AC, ... to the
columns. Overriding getColumnName by your own implementation allows you
to specify other names.

getColumnClass (c) returns the class of the objects in column c. By default, an
AbstractTableModel returns class object. One should override getColumn-
Class (c) to return the correct class of the objects in column c. This way one
ensures that the correct renderer is used to display the entries. As mentioned
above, tables are column-oriented and in every column the objects should be
of the same class. To determine the appropriate class for column ¢ one can
look at the entry in the first row: getValueat (0,c) .getClass ().

isCellEditable(r, c) the return value is true if the cell is editable and false
otherwise. The default implementation returns false, i.e. the user cannot
change the content of the cell. The programmer can override this method
to make some cells editable by the user.

setValueAt (Object val, r, c) can be used to set the value of the cell in row
r and column c to val. The default implementation has an empty body, i.e.
it does not change the value of the cell. The programmer can override this
method to change the values of editable cells.

In the following listing we provide an implementation of MultiplicationTable-
Model. The numbers of rows and columns are given as an argument in the con-
structor. Method getvalueAt (r,c) is implemented to return the product of r
and c. Method getColumnName (c) is overridden to return the string col followed
by the number c as a string. In Figure 16.4 the results are shown when using
automatic resizing of the column width and without using it.

We also list the class MultiplicationTableFrame. Such a frame generates a
MultiplicationTableModel and a JTable using this model. The table is embed-
ded into a scroll pane which in turn is embedded into the frame.

More Swing components

(a) (b)

Figure 16.4 MultiplicationTableFrame. (a) The column widths are reduced to fit the
width of the display. As there is a minimum column width (15 pixels on most platforms) this
is not always possible. (b) The automatic resizing is switched off and all columns have their
default width (75 pixels on most platforms)

File: its/Tables/MultiplicationTableModel . java

package its.Tables;

import javax.swing.table.AbstractTableModel;

public class MultiplicationTableModel extends AbstractTableModel

private int noOfRows, noOfCols;
public MultiplicationTableModel (int r, int c) {
noOfRows = r;

noOfCols = c;

// Implementing the tree abstract methods:
public int getColumnCount () {
return (noOfRows) ;

public Object getValueAt (int r,int c) {
return (new Integer (r*c));

}

public int getRowCount () {

return (noOfRows) ;

181

[OSI \SI

Y 2N

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

182

26.
27.
28.
29.
30.
31.
32.
33.
34.

Vo e e

o

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

More components and techniques

// Overriding some methods:
public Class getColumnClass (int c) {
return(getValueAt (0,c) .getClass());

public String getColumnName (int c) {

return("Col "+c);

File: its/Tables/MultiplicationTableFrame.java

. package its.Tables;

import its.SimpleFrame.SimpleFrame;

import javax.swing.JScrollPane;

. import javax.swing.JTable;

. public class MultiplicationTableFrame extends SimpleFrame {

public MultiplicationTableFrame (int r, int c) {
MultiplicationTableModel multModel = new MultiplicationTableModel (r,c) ;
JTable multTable = new JTable (multModel) ;
multTable.setAutoResizeMode (JTable.AUTO_RESIZE_OFF) ;
JScrollPane scrollPane = new JScrollPane (multTable) ;
this.setSize(350,250);
this.getContentPane() .add(scrollPane) ;

public static void main(String[] args) {
MultiplicationTableFrame mtf30 =
new MultiplicationTableFrame (30,30) ;
mtf30.showIt ("Multiplication Table") ;

16.3.3 [] Editable tables

In this section we show how different objects are used in different columns and
how the content of table cells can be interactively changed by the user.

The table is an order form where the user can order some products. In our
example three products are available: circles, triangles and rectangles. The ta-
ble has five columns which contain the product’s name, a picture of the product,

More Swing components

the price per piece, the quantity ordered and the price for the ordered quan-
tity. Initially, no products are ordered, i.e. the quantities are 0. The user can
edit the quantities. As a result the price for the ordered quantity in the last col-
umn is updated. Our order form has an additional fourth row where the total
price for all ordered products is displayed and updated with every change of the
order.

The table is implemented by our table model orderTableModel. This model
is then passed to a JTable which displays it. We organize the data as follows:
the first three rows contain the product information. The first column (column
number 0) contains the product names as Strings. The next column contains
the pictures TmageIcons. The following column contains the price per piece as
double. The fourth column (number 3) contains the number of pieces ordered
as int. This column is editable: the user can change the quantities. In the last
column the total price for every item is listed as double. The values of these cells
are computed as (price per piece) times (quantity ordered). The last cell of the
fourth row contains the total amount of the order.

The values are computed in method getvalueat which determines the values
by a large case distinction (switch statement). In particular, the first three rows
containing the three products are treated differently from the last row contain-
ing the total amount. One has to make sure that a re-computation is performed
when the user changes the quantity ordered. This is achieved by using method
fireTableDataChanged () of class AbstractTableModel. It not only initiates a
re-computation but also an update of the display of the associated JTable. In Java
the so-called fire method of a class informs the listeners which are associated to
that class. We have not explicitly defined a listener in our application. However,
using a table with table model automatically implements listeners for the basic
functions. These are responsible for the re-computation of the cell values and the
update of the display.

We now list the classes orderTableModel and OrderTableFrame and show a
screen shot of the application in Figure 16.5.

Figure 16.5 OrderTableFrame after some orders have been placed

183

184 More components and techniques

File: its/Tables/OrderTableModel . java

1. package its.Tables;

2

3. import javax.swing.ImageIcon;

4. import javax.swing.table.AbstractTableModel;

5

6. public class OrderTableModel extends AbstractTableModel
7.1

8. private String[] columnNames = {"Product", "Picture", "Price",
9. "Quantity", "Total"};
10. private String[] products = {"Circle","Triangle", "Rectangle"};
11. private String[] imageName = {"circ.png","tria.png", "rect.png"};
12. private int[] guantities = {0,0,0};

13. private double[] prices = {10.00, 12.00, 12.50};
14. private static final String Path = "./its/TestData/";
15. public boolean|[] bv= {true, false, true};

16.

17. public OrderTableModel ()

18. {

19. }
20. public int getColumnCount ()
21. {
22. return (columnNames . length) ;

23. }

24.

25. public int getRowCount ()

26. {

27. return (products.length+1) ;

28. }

29.
30. public String getColumnName (int c) {
31. return (columnNames [c]) ;
32. }
33.
34. public Class getColumnClass (int c) {
35. return getValueAt (0, c¢).getClass();
36. }
37.
38. public Object getValueAt (int r, int c)
39. {
40. Object result = new Object();
41. if (r < products.length) {
42. switch (c) {

43. case 0: result = products(r]; break;

44. case 1: result = new Imagelcon(Path+imageName[r]); break;

More Swing components

case 2: result = new Double(prices([r]); break;
case 3: result = new Integer (quantities[r]); break;
case 4: int quantity = ((Integer)getValueAt(r,3)).intValue();
double price = ((Double)getValueAt (r,2)) .doubleValue() ;
result = new Double(quantity * price); break;
}//switch
}
else(
switch(c) {
case 0: result = new String("SUM"); break;
case 1: result = new Object(); break;
case 2: result = new Double(0.0); break;
case 3: result = new Integer(0); break;
case 4: double sum = 0.0;

double ee;

for (int i = 0; i < products.length; i++) {

sum += ((Double)getValueAt (i, 4)).doublevValue() ;
}
result = new Double(sum); break;

}
}

return(result) ;

//cells in column 3 can be edited
public boolean isCellEditable(int r, int c) {

return(c == 3);

public void setValueAt (Object obj, int r, int c)
{
if (c == 3){

quantities([r] = ((Integer)obj).intvValue();

this.fireTableDataChanged() ;

F“e:its/Tables/OrderTableFrame.java
package its.Tables;

import its.SimpleFrame.SimpleFrame;

import javax.swing.JScrollPane;

185

63.
64.
65.
66.
67.
68.

Ll

186

Noow

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

o ®»

More components and techniques

import javax.swing.JTable;

public class OrderTableFrame extends SimpleFrame

{

public OrderTableFrame ()

{
this.setSize(300,250);
OrderTableModel otmodel = new OrderTableModel () ;
JTable JTab = new JTable (otmodel) ;
JTab.setRowHeight (50) ;

JScrollPane SP = new JScrollPane (JTab) ;
this.getContentPane () .add(SP) ;

public static void main(String[] args)
{
OrderTableFrame otframe = new OrderTableFrame () ;

otframe.showIt () ;

16.4 B Trees

Hierarchical structures can often be represented by trees. Examples of hierar-
chical structures are family trees, the organization structure of a company, the
directory structure on a computer hard disk, or the embedding structure of Swing
components as explained in Section 4.5. The notion of a tree comes from the area
of combinatorics and graph theory, a field of mathematics that considers discrete
structures. A hierarchy is reflected in a tree as follows: there is a most important
component, the root. The tree then branches into (less important) subcomponents
that, in turn, branch into sub-subcomponents. The bottom-most components of
the hierarchy form the leaves of the tree, they do not branch any further. The
parts of the tree that correspond to the components are called nodes and the con-
necting links are called edges. Figure 16.6 shows an example of this concept. The
sub-nodes of a node are called its children. The children are numbered 0, 1, 2,
In graphical representations the numbering is usually from left to right or from
top to bottom. Trees are often drawn to grow downwards. The root is on top and
the leaves (lowest in hierarchy) are at the bottom. In graphical interfaces trees
are often drawn to grow from left to right. Swing offers predefined components to
represent and display trees. For the abstract representation of the tree structure
we use the non-graphical classes DefaultTreeModel and DefaultMutableTree-
Node. The classes are located in javax.swing. tree. The graphical component is

More Swing components

(b)

Figure 16.6 Two graphical representations of the same tree: (a) mathematical and (b) used
in graphical interfaces

defined in class JTree which displays the abstract information of the tree model.
The individual nodes of the tree are defined as DefaultMutableTreeNode. These
are then inserted into the tree model together with the structural information,
i.e. the information that tells you which node is a child of which other node. We
describe these three classes in the following sections and then show two examples
of applications using trees.

16.4.1 [The class DefaultMutableTreeNode

Class DefaultMutableTreeNode is a convenience implementation of the interface
TreeNode. For our applications, the following methods are sufficient:

DefaultMutableTreeNode (Object label)
add (DefaultMutableTreeNode node)

DefaultMutableTreeNode (Object label) defines a mutable tree node. The
node receives object 1abel as label. When a node is displayed one sees a sym-
bol and the label to the right of the symbol. The label is often a string. The term
‘mutable’ refers to the fact that clicking on such a node in the display makes
the subtree under this node appear or disappear. This function is automatically
supplied by DefaultMutableTreeNode.

add (DefaultMutableTreeNode node) adds node node as the right-most child to
this node. We shall not use this method in our examples but it can be helpful
in some situations.

When nodes are displayed, they receive a default symbol. For DefaultMutable-
TreeNode this is the ‘folder’ symbol of Java if the node is not a leaf. If the node is
a leaf the ‘file’ symbol of Java is displayed.

187

188

More components and techniques

16.4.2 [] Class TreeModel

Instances of this class define the abstract structure of the tree. This is done by
specifying the root and, for every node, specifying its children and their order. We
shall use the following methods.

DefaultTreeModel (TreeNode root)

int getChildCount (TreeNode parent)

boolean isLeaf (TreeNode node)

insertNodeInto (MutableTreeNode newChild, MutableTreeNode parent, int k)
Object getChild(TreeNode parent, int k)

removeNodeFromParent (TreeNode child)

DefaultTreeModel (TreeNode root) creates a tree model with root node root.
We may use a DefaultMutableTreeNode instead of TreeNode. There is no
parameterless constructor; you must always specify a root node!

int getChildCount (TreeNode parent) returns the number of children of par-
ent. If parent has n children they are numbered 0,1, ...,n— 1.

boolean isLeaf (TreeNode node) returns true if node is a leaf, i.e. has no chil-
dren, and false otherwise.

insertNodeInto (MutableTreeNode newChild, MutableTreeNode parent, int
k) makes newChild the kth child of parent. If parent has n children then
k has to be one of 0,1, 2,...,n otherwise a runtime error will occur. If k is
strictly less than n then the former children k through n — 1 become children
k+ 1 through n and newChild is squeezed in between children k— 1 and
R+ 1.

Object getChild(TreeNode parent, int k) returns the kth child of parent as
an Object and null if the parent does not have a kth child.

removeNodeFromParent (TreeNode child) removes child from its parent. Note
that the whole subtree with root child is also removed.

16.4.3 [Class JTree

The graphical component for displaying trees in Swing is defined in the class
JTree. We only need the following methods:

JTree (TreeModel treeModel)

setTreeModel (TreeModel treeModel)
putClientProperty ("JTree.lineStyle", "Angled") ;

JTree (TreeModel treeModel) receives a TreeModel (or a DefaultTreeModel)
as parameter.

setTreeModel (TreeModel treeModel) is used to set the tree model.

More Swing components

putClientProperty ("JTree.lineStyle", "Angled") is used to display the an-
gled lines corresponding to tree’s edges. Alternatives to ‘Angled’ are ‘Horizontal’,
where horizontal lines between the nodes indicate the structure, and ‘None’
where only indentation is used.

16.4.4 [] Sample applications

In the first sample application we define a tree manually. The structure is like the
one in Figure 16.6. The labels are to reflect a simple taxonomy of plants. Class
BiologyTree is derived from JTree. It contains an instance biologyTreeModel
of class DefaultTreeModel. The tree model is constructed by defining the root
node and adding other nodes as children of existing ones.

The classes TreeFrame and TreeDemoDriver are also listed.

File: its/Trees/BiologyTree.java
package its.Trees;

import javax.swing.JTree;
import javax.swing.tree.DefaultMutableTreeNode;

import javax.swing.tree.DefaultTreeModel;
public class BiologyTree extends JTree {
private DefaultTreeModel biologyTreeModel;

public BiologyTree () {
makeModel () ;
this.setModel (biologyTreeModel) ;
this.putClientProperty ("JTree.lineStyle", "Angled") ;

private void makeModel () {
DefaultMutableTreeNode root = new DefaultMutableTreeNode ("Trees") ;
DefaultMutableTreeNode leaved
= new DefaultMutableTreeNode ("Leaved Trees") ;
DefaultMutableTreeNode conifer

= new DefaultMutableTreeNode ("Conifers") ;

DefaultMutableTreeNode beech = new DefaultMutableTreeNode ("Beech") ;
DefaultMutableTreeNode oak = new DefaultMutableTreeNode ("Oak") ;
DefaultMutableTreeNode birch = new DefaultMutableTreeNode ("Birch") ;
DefaultMutableTreeNode pine = new DefaultMutableTreeNode ("Pine") ;
DefaultMutableTreeNode fir = new DefaultMutableTreeNode ("Fir");

DefaultMutableTreeNode beechR
= new DefaultMutableTreeNode ("Red Leaved") ;

189

W o=

ook

o o N

20.

190 More components and techniques

27. DefaultMutableTreeNode beechG

= new DefaultMutableTreeNode ("Green Leaved") ;
28.
29. biologyTreeModel = new DefaultTreeModel (root) ;
30. biologyTreeModel.insertNodeInto (leaved ,root ,0);
31. biologyTreeModel.insertNodeInto (conifer, root , 1) ;
32. biologyTreeModel.insertNodeInto (beech ,leaved ,0);
33. biologyTreeModel. insertNodeInto (oak ,leaved ,1);
34. biologyTreeModel.insertNodeInto (birch ,leaved ,1);
35. biologyTreeModel.insertNodeInto (pine ,conifer,0);
36. biologyTreeModel.insertNodeInto (fir ,conifer,1);
37. biologyTreeModel.insertNodeInto (beechR ,beech 0);
38. biologyTreeModel. insertNodeInto (beechG ,beech 1);
39. }
40. }

File: its/Trees/TreeFrame.java

1. package its.Trees;

2

3. import its.SimpleFrame.SimpleFrame;

4. import java.awt.*;

5

6. public class TreeFrame extends SimpleFrame {
7

8. public TreeFrame() {

9. this.setSize(300,500);

10. BiologyTree bioTree = new BiologyTree() ;
11. this.getContentPane () .add (bioTree, BorderLayout .CENTER) ;
12. }

13.

14. public static void main(String[] args) {
15. TreeFrame treeFrame = new TreeFrame() ;
16. treeFrame.showlIt ("Tree Frame") ;

17. }

18. }

In the second application we generate a directory tree. The tree is con-
structed recursively by method recursion. We only list the class Directory-
Tree. The tree displays the directory structure of the its-package. The frame
class DirectoryFrame and the driver class DirectoryDriver can be down-
loaded from the book’s home page. The results of both applications are shown in
Figure 16.7.

Figure 16.7 The two tree applications

File: its/Trees/DirectoryTree.java

package its.Trees;

import
import
import

import

javax.swing.JTree;
javax.swing.tree.DefaultMutableTreeNode;
javax.swing.tree.DefaultTreeModel;

java.io.File;

public class DirectoryTree extends JTree ({

private DefaultTreeModel directoryTreeModel;

//The following path might have to be changed.

private String startDir = "./its";

private File startFile;

public DirectoryTree() {

startFile = new File(startDir);

recursion(startFile) ;

this.setModel (directoryTreeModel) ;

More Swing components

public DefaultMutableTreeNode recursion(File currentFile)

191

“k LN

Y ®»® N

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

192

22.
23.

More components and techniques

{
DefaultMutableTreeNode curNode =
new DefaultMutableTreeNode (currentFile.getName()) ;

if (currentFile == startFile)
{

directoryTreeModel = new DefaultTreeModel (curNode) ;

}
if (currentFile.isDirectory())

{

File[] files = currentFile.listFiles();

for (int i = 0; i < files.length; i++) {

directoryTreeModel.insertNodeInto(recursion(files[i]),curNode, 0);

}Y//for i
}
return (curNode) ;

}

16.5 M Combo boxes

Combo boxes are graphical components that combine text fields and lists. Like
lists, they offer a selection of items to choose from and, like text fields, the user
can type a text. Combo boxes are used if there is a predefined set of options that
cover most cases but not all. For example, if one wants to enter a date into an
electronic appointment book, the current year and the following two will do most
of the time. Only rarely are there dates further in the future. It is then convenient
to have a list with the current year and the following two to choose from. If the
date is at least three years ahead, then one can enter the year number.

16.5.1 [Class JCcomboBox

A combo box looks like a text field with a small button attached at its right side.
The button shows an arrow pointing downwards. If the arrow is clicked, a list rolls
down out of the text field. Items can be selected from the list or text can be typed
into the text field. After selecting an item or hitting the return key the list is rolled
up again. Note that text written by the user is not permanently added to the list.
We describe some features of class JcomboBox which implements combo boxes in
Swing and then present an application using this graphic component.

JComboBox ()
JComboBox (String[] listEntries)
JComboBox (Vector[] listEntries)

additem(String listEntry)

More Swing components

insertItemAt (String listEntry, int pos)
int getSelectedIndex ()

Object getSelectedItem()

int getItemCount ()

setEditable (boolean b)

setMaximumRowCount (int rowCount)

JComboBox () generates a combo box with an empty list.

JComboBox (String[] listEntries) generatesacombo box with alist containing
the items of array 1istEntries. The first entry is the first string.

JComboBox (Vector[] listEntries) generatesacombo box with alist containing
the items of vector 1istEntries. The first list entry is the object at position 0
of the vector. If necessary, one has to implement a renderer to draw the objects.

additem(String listEntry) adds item listEntry at the end of the list.

insertItemAt (String listEntry, int pos) inserts 1istEntry at position pos
into the list. The elements previously at pos and further down the list are moved
one position down the list.

getSelectedIndex () returns the position of the selected list entry. If no item is
selected or the user typed in new text then the return value is —1.

getSelectedItem () returns either the selected list item or the text entered by
the user. As the return type is Object one might have to cast it to the desired

type.

getItemCount () returns the number of items currently in the list.

setEditable (boolean b) —if b is false then the user cannot enter a text into
the combo box but is only allowed to select an item from the list. If b is true the
user may also enter a text. The appearance of the combo box depends on this
property. Non-editable combo boxes have a grey background, editable ones are
white.

setMaximumRowCount (int rowCount) sets the length of the visible part of the list
to the current value of rowCount. If the list contains more items than rowCount,
a scroll bar automatically appears on the right.

As for lists, there is a data model available for combo boxes: interface comboBox-
Model or a class DefaultComboBoxModel which implements enough features for
most applications. We do not describe the models here; their use is similar to the
list models in Section 16.2.3.

16.5.2 [] A calendar with combo boxes

The main part of our application is a panel calendarpPanel where the user can
select a date. The panel provides only one public method getDate which returns
the selected date as a string. The date is selected using three combo boxes. One box

193

194

More components and techniques

Figure 16.8 The calendar application

contains the day numbers. It cannot be edited but its content changes depending
on the setting of month and year. The next combo box contains the month names.
It is not editable; we do not allow the user to invent new months. The third combo
box contains a list of years from 2004 to 2007. It is editable so the user can select
another year by entering its number.

The month box is filled by passing an array with the months’ names to the
box in the constructor. The day and year boxes are filled in method initBoxes
by adding the items in for-loops. Also in this method the visible length of boxes
are set. For the day box the value is 10 so that a scroll bar will appear in the
list.

A listener class CalendarListener is defined as an internal class. A calen-
darListener is associated with the combo boxes for year and month. If an entry
is selected in one of these boxes (or a new year is entered by the user) then the
listener’s actionPerformed method is engaged. It has to adjust the days displayed
in the day combo box depending on the currently selected year and month. It does
so by first determining the year and month. From this the length of the month is
computed as one of 28, 29, 30 or 31. The actual adjustment of the day combo box
is done by method setDayListTo. It compares the current length of the list of the
day combo box with the desired one. If the list is too short the appropriate entries
are added; if it is too long the last entries are removed.

The method to adjust the length of February is only correct from 1901 to 2099.
If the user enters a number outside this range, then the listener sets the year to
2000. The code for calendarPanel is listed below. The test program consists of
a frame (ComboBoxFrame) and a panel (DisplayDatePanel). A CalendarPanel is
centrally embedded into the frame and a DisplayDatePanel is embedded to the
south. The frame also has a button labelled ‘OK’ on the right (east). If clicked,
the date currently selected in the calendarpPanel is displayed in the Display-
DatePanel. We do not list the latter classes; they can be downloaded from the
book’s home page. A screen shot is shown in Figure 16.8.

File: its/ComboBox/CalendarPanel . java
package its.ComboBox;

import java.awt.GridLayout;

import java.awt.event.ActionEvent;

More Swing components

import java.awt.event.ActionListener;

import javax.swing.JComboBox;

import javax.swing.JLabel;

import javax.swing.JPanel;

public class CalendarPanel extends JPanel {

private String[] months = {"January", "February", "March", "April",

" May“ , " Jul’le " , " July“ , "AuguSt n ,
"September", "October", "November", "December"} ;

private JComboBox yearBox = new JComboBox () ;

private JComboBox monthBox = new JComboBox (months) ;

private JComboBox dayBox = new JComboBox () ;
private JLabel yearLabel = new JLabel ("Year ");
private JLabel monthLabel = new JLabel ("Month ") ;
private JLabel dayLabel = new JLabel ("Day ") ;
private JLabel dummy = new JLabel ("");

private int startyear;

private int endyear;

public CalendarPanel () {

this.setLayout (new GridLayout(4,2));
startyear = 2004;
endyear = 2007;
initBoxes () ;
this.add(dayLabel) ;
this.add (dayBox) ;
this.add (monthLabel) ;
this.add (monthBox) ;
this.add (yearLabel) ;
this.add(yearBox) ;
this.add (dummy) ;

yvearBox.setEditable (true) ;

CalenderListener cList = new CalenderListener () ;
yearBox.setActionCommand ("YearChanged") ;
yearBox.addActionListener (cList) ;
monthBox.setActionCommand ("MonthChanged") ;

monthBox.addActionListener (cList) ;

private void initBoxes ()

{

for (int y=startyear;y <= endyear;y++)
{

vearBox.addItem(Integer.toString(y)) ;
}//for
for (int d=1;d<=31 ;d++)

195

Y ® N ow

31.

38.

196 More components and techniques

52. {

53. dayBox.addItem(Integer.toString(d)) ;

54. }//for

55. monthBox . setMaximumRowCount (12) ;

56. dayBox.setMaximumRowCount (10) ;

57. yearBox.setMaximumRowCount (4) ;

58. 1}

59.

60. private void setDayListTo (int desiredLength) {
ol. int currentLength = dayBox.getItemCount () ;
62. if (currentLength < desiredLength) {

63. for (int i = currentLength+l; i <= desiredLength; i++) {
64. dayBox.addItem(Integer.toString (1)) ;

65. }Y//for i

66. }

o7. else if (currentLength > desiredLength)

68. {

69. for (int i = currentLength-1; i >= desiredLength; i--) {
70. dayBox.removeltemAt (i) ;

71. }//for i

72. }

73. }

74.

75. public String getDate() {
76. return((String)dayBox.getSelectedItem()+"."+

77. (String)monthBox.getSelectedItem()+" "+

78. (String)yearBox.getSelectedItem()) ;

79. }

80.

81. class CalenderListener implements ActionListener

82. {

83. public void actionPerformed(ActionEvent evt) {

84. String actionCommand = evt.getActionCommand () ;

85. int year = Integer.parselnt(((String)yearBox.getSelectedItem()).trim());

86. int month = monthBox.getSelectedIndex() ;

87. if ((year > 2099) || (year < 1901)){

88. year = 2000;

89. yearBox.setSelectedItem("2000") ;

90. }

91. if (actionCommand.equals ("YearChanged"))
92. {

93. if((year % 4 == 0) && (month == 1)){
94. setDayListTo (29) ;

95. }

96. }

97. else if (actionCommand.equals ("MonthChanged"))

More Swing components

{
if ((month == 0) || (month == 2) || (month == 4) || (month == 6) ||
(month == 7) || (month == 9) || (month == 11)){
setDayListTo (31);
}
else if (month == 1){
if (year % 4 == 0){
setDayListTo (29) ;
}
else
{
setDayListTo (28) ;
}Y//ifelse
}//ifelse
else{
setDayListTo (30) ;
}//ifelse
}//ifelse

}//actionPerformed
}//internal class
}

16.6 M Split panes

Split panes can be seen as a pair of panels inside a rectangular area. The pro-
grammer can embed graphical components into each of the areas. The two com-
ponents are separated by a vertical or horizontal bar, called a divider. The divider
bar can be moved by using the mouse, thus adjusting the visible area of the two
components. If the divider is moved to the left or right margin of the split pane
(in case of a vertical separation) then only the right (or left), component is
visible.

Split panes are used, for example, if information is displayed in different for-
mats. Think of stock market data which can be displayed as a chart in one com-
ponent while another contains textual information such as high/low quotes and
trading volume. The split pane then allows the user to focus on one or the other
by moving the divider.

Class JsplitPane implements these functions in Swing. We introduce some
methods of this class and show a small example application SplitPaneFrame.

JSplitPane (int division)

setLeftComponent (Component comp)
setRightComponent (Component comp)
setTopComponent (Component comp)

setBottomComponent (Component comp)

197

98.

99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.
112.
113.
114.
115.
116.
117.
118.

198

More components and techniques

setDividerSize (int width)
setDividerLocation (int pos)
setDividerLocation (double fraction)

setOneTouchExpandable (boolean b)

JSplitPane(int division) is the constructor. Parameter division specifies
whether the division is horizontal or vertical. There are predefined constants
HORIZONTAL_SPLIT and VERTICAL_SPLIT in class JSplitPane. Observe that
choosing HORIZONTAL_SPLIT determines that the two components are placed
horizontally next to each other; the divider bar is the vertical. Similarly VER-
TICAL_SPLIT results in placing one component on top of the other and a hori-
zontal divider bar.

setXXXComponent (Component comp) embeds component comp into one of the two
areas. For xxx = Left, comp becomes the left component if HORIZONTAL_SPLIT
is used. If xxx = Left is used with VERTICAL_ SPLIT then comp becomes the
top component. The other choices for xxx then have the obvious meanings.

setDividerSize (int width) determines the width of the divider bar in pixels.

setDividerLocation (int pos) determines the position of the divider bar. Pa-
rameter pos is the distance of the divider bar from the left margin of the split
pane when HORIZONTAL_SPLIT is used, and from the upper margin when VER-
TICAL_SPLIT is used.

setDividerLocation (double fraction) determines the position of the divider
bar. Parameter fraction is the fraction of the JsplitPane’s size horizontal or
vertical size, depending on the way it is split. Therefore fraction has to be in
the interval [0, 1], otherwise an I1legalArgumentException is thrown. The
fraction refers to the current width of the split-pane. If this method is called
before the component is visible then the width is zero and the divider will be
at the left (or top) margin.

setOneTouchExpandable (boolean b) — if parameter b is true then two small
arrows appear on the divider bar. They point towards the two areas. When
clicking on one arrow the divider bar jumps in that direction. If the divider
bar is not at a margin of the split pane, it jumps to that margin to which the
arrow points. If it is at the margin it jumps back to the previous position. If
parameter b is false the arrows are not shown and the described functions
are not available.

In our demonstration SplitPaneFrame we use nested split panes. At first a
split pane splitPanel with a vertical divider (HORIZONTAL_SPLIT) is centrally
embedded into a frame. The width of the divider is set to 20 pixels and it receives
an arrow to enable jumping. Into its right area another split pane splitPane? is
embedded. This has a horizontal divider. This arrangement results in three areas.
Into the left area of splitbPanel we embed a JList which lists the file names of
some directory. Into each of the two areas of splitPane2 we embed a JLabel
which displays an ImageIcon. All three aforementioned components are embed-
ded using scroll panes so that their whole content can be accessed by scrolling.

More Swing components

Figure 16.9 Demonstration of split panes in application SplitPaneFrame

The control part of the application allows the user to select an image from the
list on the left and display it in the lower right area. To this end he or she has
to select a file name in the list and press the button that is embedded into the
frame’s ‘South’ position. The control part is here implemented as an anonymous
listener. The program checks whether the selected file has an extension which
indicates an image file. Only files with extensions .jpg or .png are loaded; other
selections are ignored. One of the images, the one of the orange, is available as
an uncompressed PNG-format and a strongly compressed JPG-format. Loading
the latter into the lower right component and comparing it with the constantly
displayed PNG-image at the upper right makes the loss of quality visible. We list
the program below and a screen shot is shown in Figure 16.9.

File: its/SplitPanes/SplitPaneFrame.java
package its.SplitPanes;

import its.SimpleFrame.SimpleFrame;
import java.awt.*;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.io.File;

import javax.swing.*;

public class SplitPaneFrame extends SimpleFrame
{

private JButton okButton;

private JList list;

private JLabel picLabell, picLabel2;

private Imagelcon picturel, picture2;

199

o=

w

O ® N e

10.
11.
12.
13.

200

17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.

B
© @»

[S NS O B B) |
~

1 U
© @»

- =N
LN

[N
L=

wn

J &

> u
<

More components and techniques

private static String picturePath = "./its/TestData/";

public SplitPaneFrame ()

{

this.setSize(800,400);

JSplitPane splitPanel = new JSplitPane (JSplitPane.HORIZONTAL_SPLIT) ;
JSplitPane splitPane2 = new JSplitPane (JSplitPane.VERTICAL_SPLIT) ;
splitPanel.setOneTouchExpandable (true) ;
splitPanel.setDividerSize(20) ;

this.getContentPane () .add(splitPanel, BorderLayout.CENTER) ;
splitPanel.setRightComponent (splitPane2) ;

picturel = new ImagelIcon (picturePath+"/Orange.png");

picture2 = new Imagelcon (picturePath+"/Banana.png") ;

picLabell = new JLabel (picturel) ;

JScrollPane sp2a = new JScrollPane(picLabell) ;
splitPane2.setTopComponent (sp2a) ;

picLabel2 = new JLabel (picture2) ;

JScrollPane sp2b = new JScrollPane (picLabel2) ;
splitPane2.setBottomComponent (sp2b) ;
splitPane2.setDividerLocation (150) ;

splitPanel.setDividerLocation (100) ;

File startFile = new File(picturePath) ;
list = new JList(startFile.listFiles());
JScrollPane sp = new JScrollPane(list);
splitPanel.setLeftComponent (sp) ;

okButton = new JButton ("OK") ;
okButton.setBackground (Color.cyan) ;
this.getContentPane () .add (okButton, BorderLayout.SOUTH) ;
okButton.addActionListener (new ActionListener ()
{

public void actionPerformed (ActionEvent e)

{

String filename = ((File) (list.getSelectedvalue())) .getPath();
if ((filename.endsWith(".png")) || (filename.endsWith(".jpg")) |
(filename.endsWith(".PNG")) || (filename.endsWith(".JPG")))
{

picLabel2.setIcon(new ImagelIcon (filename)) ;

1)

More Swing components

public static void main(String[] args)

{
SplitPaneFrame spf = new SplitPaneFrame() ;
spf.showIt("Split-Panes",200,200);

16.7 M Tabbed panes

Split panes are used to display two documents and to vary the view of them. A
different Swing component should be considered if an application generates a
large number of documents. In this section we introduce tabbed panes. They can
administer a large number of documents, only one of which is visible at a time.
The user can rapidly switch between them. One can imagine a tabbed pane as a
stack of papers each of which contains some textual or pictorial information. In
addition every page has a tab. Only the topmost page is visible. Another page can
become the topmost one by grabbing its tab, pulling it out and putting it on top of
the stack. See Figure 16.10 for an example.

In Swing, this mechanism is implemented in class JTabbedPane. A tabbed pane
is initially empty, i.e. it contains no pages. Then components are added and each of
them becomes a new page. When adding a component, the text for the tab should
be provided. The tabs are arranged from left to right (or from top to bottom) in the
order in which the components are added. Selecting a component as the topmost
one does not change the order of the tabs. This order is reflected in the so-called
indices. Every page has an index (index). A tabbed pane with n pages has indices
0,1,...,n— 1. The index of the component with the left most (topmost) tab is 0.
The indices can, for example, be used to remove a component or to insert a new
one at a certain position.

Figure 16.10 The third page of the example application for tabbed panes

201

64.
65.
66.
67.
68.
69.

202

More components and techniques

TabbedPane () ;
TabbedPane (int tabPosition) ;

add (Component comp) ;

add (String tabText, Component comp) ;
add (Component comp, int index);
setTitleAt (int pos, String tabTitle);
setSelectedComponent (Component comp) ;

setSelectedIndex (int pos)

TabbedPane () — constructor. The tabs are placed on the upper edge.

TabbedPane (int tabPosition) — constructor in which one can specify the posi-
tion of the tabs. The four values for parameter tabPosition are predefined in
class gTabbedPane: TOP, BOTTOM, LEFT, RIGHT.

add (Component comp) adds comp as last page. ‘Last’ means that the tab is the
right-most (or bottom-most) one. The tab does not have any text.

add (String tabText, Component comp) adds comp aslast page. ‘Last’ means that
the tab is the right-most (or bottom-most) one. The tab is labelled by tabTitle.

add (Component comp, int index)addscompsuchthatthecon@spondh@tabis
at position index. The tab does not have any text.

setTitleAt (int pos, String tabTitle) assigns a new text tabTitle to the tab
at position pos.

setSelectedComponent (Component comp) selects the page containing compo-
nent comp, i.e. this page is made visible.

setSelectedIndex (int pos) selects the page whose tab is at position pos, i.e.
this page is made visible.

The listing TabbedPaneFrame below shows how to use a tabbed pane. As we do not
add any new functions we use a JTabbedPane and do not extend it into a new class.
The tabbed pane is glued into a frame. Then four components are added to to the
tabbed pane. At first we add two JLabels, each displaying an image. Then we add
red colorPanel. This is defined in the package its.SimpleFrameWithPanels.
Finally we add a gTextArea which contains some text describing what the four
components are. The JgTextArea is added at position 0 so that its tab is the
left-most. We then set the selected index to 1 which makes the image of the plum
visible. The result is shown in Figure 16.10.

F“e:its/TabbedPane/TabbedPaneFrame.java

. package its.TabbedPane;

. import its.SimpleFrame.SimpleFrame;
. import its.SimpleFrameWithPanels.ColorPanel;

More Swing components

import java.awt.Color;

import javax.swing.*;

public class TabbedPaneFrame extends SimpleFrame
{

private static String picturePath = "./its/TestData/";

public TabbedPaneFrame ()

{
// Create a tabbed pane and glue into the frame
JTabbedPane tabbedPane = new JTabbedPane() ;
this.getContentPane () .add (tabbedPane) ;

// Generate two labels each of which contains an image

// and add them to the tabbed pane
ImageIcon plum = new Imagelcon(picturePath+"plum.png") ;
JLabel plumLabel = new JLabel (plum) ;
ImageIcon lime = new Imagelcon (picturePath+"lime.png") ;
JLabel limeLabel = new JLabel (lime) ;

tabbedPane.add ("Plum",plumLabel) ;
tabbedPane.add ("Lime", limeLabel) ;

// Generate a red panel from its.SimpleFrameWithPanels.ColorPanel
// and add 1it.
ColorPanel redPane = new ColorPanel (Color.red) ;

tabbedPane.add ("Red Pane", redPane) ;

// Generate a text area and add it as the first (0-th)
// component.
JTextArea legend = new JTextAreal();
legend.setText ("Legend in a JTextArea\n"+
"JLabel showing a plum\n"+
"JLabel showing a lime\n"+
"A red Panel");
tabbedPane.add (legend, 0) ;
tabbedPane.setTitleAt (0, "Legend") ;
tabbedPane.setSelectedIndex (1) ;

public static void main(String[] args) {
TabbedPaneFrame tpf = new TabbedPaneFrame () ;
tpf.setSize(300,200) ;
tpf.showlIt ("Tabbed Panes",200,200);
}

203

Y ® N on

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.

38.

204

More components and techniques

Class gTabbedPane offers a large number of ways to change the appearance. One
can, for example, use icons as labels for the tabs or change the background colour
of the pages. If a tabbed pane contains a large number of pages and the tabs do
not fit into a single line then they are arranged in rows. This can have the effect
that the space for displaying the selected page is very small. Since version 1.4 of
the SDK it is possible to use scrollable tabs. The tabs are then arranged in a single
row which can be scrolled left or right.

Exercises

16.1 Implement a GUI with the same layout as ListTransferFrame and the fol-
lowing functions. When an entry in the left list is selected it is moved to the
right one, i.e. removed from the left and added to the right list. When an
entry in the right list is selected it is moved to the left one.

16.2 Implement a GUI with a similar layout as ListTransferFrame and the fol-
lowing functions. Add two buttons labelled "Move to right’ and ‘Move to left’
to the GUI and allow arbitrary selections in both lists. Selecting entries in one
of the lists does not trigger any action. Pressing one of the buttons causes the
appropriate selection to be moved to the other list.

Grid-bag layout 1 7

We present the most powerful but also the most complicated layout manager of
Java, the grid-bag layout. This layout manager allows us to design complex arrange-
ments of components without using stacks of nested intermediate components.

The grid layout described in Chapter 2 allows a component to be embedded in
one cell of the grid and all cells have the same size. The grid-bag layout discussed
here allows different widths or heights for different columns and rows. In addition,
a component can be embedded to cover more than one cell. These cells then form
a bag, i.e. a rectangular sub-grid.

When using grid-bag layout, the components are not placed according to the
order of the add commands. The placement is done by passing to the layout man-
ager information on the position of every component and on the size of the bag it
has to be embedded into.

The grid-bag layout is a bit tricky to use. Many beginners give up using this
very powerful tool after a few tries because ‘it does not do what it is told to do’.
We first discuss and analyse these problems and then show how to solve them.
Only then do we turn to describing the Java classes involved in realizing a grid bag
layout.

The example layout is specified in Figure 17.1. The layout consists of six panels
that are embedded into a parent component, e.g. the content pane of frame. As a
first step we determine the size of the grid, i.e. the number of rows and columns.
Here a 4 x 4 grid seems appropriate. The grid is indicated by dashed lines in
Figure 17.1. The columns and rows are numbered from left to right and from top
to bottom, both starting with zero. The grid structure, i.e. the number of rows and
columns, is not explicitly specified by the programmer. Instead the programmer
specifies the size and location of the embedded components. The layout manager
then computes the necessary grid structure. This computation is, however, not
always done in the way we expect, as we shall shortly see.

The size of a component is specified as the number of columns and rows it
spans. In Figure 17.1 panel a spans two columns and three rows and panel D spans
one column and two rows. The location of a component is specified by the left-
most column and top-most row it covers. In Figure 17.1 panel a is located at (0, 0)
and B is at (2,0). Table 17.1 summarizes the parameters for the six panels. In
the next section we describe how these values are passed to the layout manager.

206

More components and techniques

0 ; 1 4 2 4 3
0 :
| DSUUUSUONS SRR AOS B
1 A :
2 E
= D=
3 C F

Figure 17.1 Sketch of the desired layout. The tick marks at the upper and left margins
indicate the dimensions of the panels. For example, panels A and ¢ should be half as wide
as the parent component and panel A should be three-quarters the height of the parent
component. The underlying 4 x 4 grid is shown as dashed lines. With respect to this grid,
panel ¢ has a width of 2 (columns) and a height of 1 (row). Its position is column 0 and
row 3

Table 17.1 The size and location parameters for the six panels in the layout of
Figure 17.1

Panel Width Height Left Top
A 2 3 0 0
B 2 2 2 0
C 2 1 0 3
D 1 2 2 2
E 1 1 3 2
F 1 1 3 3

Using these values would give the result shown in Figure 17.2. The corresponding
program GridBagFrameBad is not listed here but can be downloaded from the
book’s home page. The figure shows two deficiencies: the panels A and c are only
one-third the width of the frame (not a half) and panel B is only one-third the
height of the frame, not a half. This is because when the layout manager computes
the grid size from the values in Table 17.1 it deletes unnecessary column and row
boundaries. These are boundaries that do not coincide with the boundary of some
component. In our example the boundary between columns 0 and 1 in Figure 17.1
is unnecessary. At no place does it coincide with a component boundary. On the
other hand the boundary between columns 2 and 3 is necessary; it coincides with
the right boundary of panel D and the left boundaries of panels E and F. Inspecting
the other row and column boundaries shows that the one between row 0 and row 1
is unnecessary and is thus deleted by the layout manager. All other bounds are
necessary. The layout used by the layout manager is then a 3 x 3 grid. All columns
are equally wide and all rows are equally high. This explains why the result shown
in Figure 17.2 differs from the specification in Figure 17.1.

The way to adjust the width and height of components is thus not to introduce
additional columns and rows but to assign weights to the columns and rows. We

Grid-bag layout 207

Figure 17.2 The result of application GridBagFrameBad

sketch the desired layout in Figure 17.3. Only the necessary columns and rows
are introduced. Recall that the columns and rows are not explicitly defined by the
user. They are computed by the layout manager from dimensions and locations of
the embedded components. The figure also shows the weights given to the columns
and rows. The first column gets weight 2.0, the second and third ones both have

20 1.0 1.0 4.0
0 P12
0 .
20 B
A .
1
1.0 E
A D e
2
0 C F
4.0

Figure 17.3 A sketch of the desired layout that reflects the column-row structure implicitly
used by the layout manager. The resulting 3 x 3 grid is shown by dashed lines. The weights
are shown at the top and left. The sums of the column and row weights are shown in
bold

208

More components and techniques

Table 17.2 The size, location and weight parameters for the six panels in the layout
of Figure 17.3

Panel Width Height Left Top Weightx Weighty
A 1 2 0 0 2.0 1.0
B 2 1 1 0 1.0 2.0
C 1 1 0 2 1.0 1.0
D 1 2 1 1 1.0 1.0
E 1 1 2 1 1.0 1.0
F 1 1 2 2 1.0 1.0

weight 1.0. We still have the problem that we cannot directly set the weights for
the rows or columns because rows and columns are internal concepts of the layout
manager. We can, however, assign two weights to the embedded components. The
horizontal weight (called weightx) affects the component’s width and the vertical
one (called weighty) affects the component’s height. The weight of a column is
then the maximum weight of a component in that column. Thus, by setting the
horizontal weight of panel a to 2.0 and that of panel ¢ to 1.0, column O receives
weight 2.0.

The weight of the topmost row (row 0) is set by using a vertical weight of
2.0 for panel B. Using the vertical weight of panel a for this purpose would have
side-effects on row 1 because panel A spans rows 0 and 1. All other horizontal
and vertical weights are set to 1.0. Then row 1, row 2, column 1 and column 2 all
receive weight 1. The parameters are listed in Table 17.2. These settings will result
in the desired layout.

The column widths (or row heights) are then computed as follows. Let
wo, ..., w, be the n+ 1 column weights. Let W = wg + - - - + w, be the sum of
the weights. Then the width of column i is a fraction of w;/W of the width of
the parent component. In our case wy = 2.0, w; = 1.0, w, = 1.0 and W = 4.0.
Hence column 0 gets 2.0/4.0 = 1/2 of the width of the parent component while
columns 1 and 2 each get 1.0/4.0 = 1/4. This shows that the absolute values of the
weights are irrelevant; only their ratio is important. We might have used the set
wo = 0.2, w; =0.1,wy = 0.1orwy = 6.0, w; = 3.0, w, = 3.0 without changing the
result.

17.1 M The classes GridBagLayout and
GridBagConstraints

Two classes are needed to use a grid-bag layout, both of which are defined in the
library java.awt. Class GridBagLayout defines the actual layout manager. The
other class, GridBagConstraints, is a helper class to specify the size, dimension
and weight parameters for every component. Basically, an instance of GridBag-
Constraints represents one row of Table 17.2. Every component to be embedded
into a grid-bag layout has its own GridBagConstraints object.

Grid-bag layout

A GridBagConstraints object has a number of fields to store the layout param-
eters of a component. The class does not have any set or get methods to access
these parameters. Instead the fields are public and can be directly accessed from
the outside — quite a non-object-oriented approach. In the following we list some
of the fields and their interpretation.

int gridwidth the number of columns spanned

int gridheight the number of rows spanned

int gridx the left-most column

int gridy the top-most row

double weightx the horizontal weight

double weighty the vertical weight

int fill determines whether the component is

resized to fit the bag.

The layout parameter £i11 determines whether an embedded component should
be resized such that it fills the bag. The possible values NONE, BOTH, HORIZONTAL
and VERTICAL are defined as constants in GridBagConstraints. We always use
fill = BOTH here, which resizes the component to precisely fit its bag. The reader
is encouraged to try other settings for the various components. Class GridBag-
Constraints has more fields which we do not discuss here; the user is referred
to the Java documentation.

The following code snippet shows how to set the constraints for panel a of
our application. First an instance of GridBagConstraints is generated, then the
fields are set to the desired values. The values are those of the corresponding line
in Table 17.2.

GridBagConstraints constraintsA = new GridBagConstraints();

constraintsA.gridwidth = 1; // The width of panel A.
constraintsA.gridheight = 2; // The height of panel A.
constraintsA.gridx = 0; // Left column of panel A.
constraintsA.gridy = 0; // Top row of panel A.
constraintsA.weightx = 2.0; // The horizontal weight of panel A.
constraintsA.weighty = 1.0; // The vertical weight of panel A.
constraintsA.fill = GridBagConstraints.BOTH; // resize panel A

// to fit its bag.

We still have to link the constraints to the panel. This is done by using method:
setConstraints (Component embeddedComp,GridBagConstraints constraints) ;

of class GridBagLayout. In our case the panel is called panela and the constraints
constraintsA:

setConstraints (panelA, constraintsAi) ;

209

210

More components and techniques

Summarizing, the following steps are necessary to use a grid-bag layout for
embedding components comp0, ...,compK, ...compN into parent component
parent:

B Sketch the desired layout on paper and determine how many rows and columns
are necessary. Also determine the weights you want to use.

B Create an instance gbl of GridBagLayout and assign it to parent by par-
ent.setLayout (gbl).

B For every component compK to be embedded do the following:
(a) Create an instance constraintsk of GridBagConstraints and set the pa-
rameters.
(b) Link the constraints constraintsK to compK using gbl.setConstraints-
(compK, constraintskK) .
(¢) Embed compk into parent by parent.add(compK) (or parent
.getContentPane () .add (compK) in case parent is a frame).

Creating and setting the constraints for every component would result in many
lines of nearly identical code. In the example application GridBagFrame we de-
fined a private method easyConstraints that does all this work. It receives the
constraint values, the component and the layout as arguments. It then creates an
instance of GridBagConstraints, sets the values, and links constraints and com-
ponents. The field £i11 is always set to BoTH. The GUI created by this program is
shown in Figure 17 .4.

Figure 17.4 The result of application GridBagFrame

Grid-bag layout 211

File: its/GridBag/GridBagFrame. java

package its.GridBag; 1.
2.

import its.Borders.BorderPanel; 3.
import its.SimpleFrame.SimpleFrame; 4.
import java.awt.GridBagConstraints; 5.
import java.awt.GridBagLayout; 6.
import javax.swing.JComponent; 7.
8.

public class GridBagFrame extends SimpleFrame 9.
{ 10.
private GridBagLayout gbl = new GridBagLayout () ; 11.
public GridBagFrame () 12

{ 13.
this.getContentPane () .setLayout (gbl) ; 14
BorderPanel panelA = new BorderPanel ("Panel A"); 15.
BorderPanel panelB = new BorderPanel ("Panel B"); 16.
BorderPanel panelC = new BorderPanel ("Panel C"); 17.
BorderPanel panelD = new BorderPanel ("Panel D"); 18.
BorderPanel panelE = new BorderPanel ("Panel E"); 19.
BorderPanel panelF = new BorderPanel ("Panel F"); 20.

21.

this.getContentPane () .add (paneld) ; 22.
this.getContentPane () .add (panelB) ; 23
this.getContentPane () .add (panelC) ; 24
this.getContentPane () .add(panelD) ; 25.
this.getContentPane () .add (panelE) ; 26.
this.getContentPane () .add (panelF) ; 27.

28.

easyConstraints (gbl,panela,1,2,0,0,2.0,1.0); 29
easyConstraints (gbl,panelB,2,1,1,0,1.0,2.0); 30.
easyConstraints (gbl,panelC,1,1,0,2,1.0,1.0); 31
easyConstraints (gbl,panelD,1,2,1,1,1.0,1.0); 32.
easyConstraints (gbl,panelk,1,1,2,1,1.0,1.0); 33
easyConstraints (gbl,panelF,1,1,2,2,1.0,1.0); 34.

} 35.
36.

private void easyConstraints (GridBagLayout GLB, JComponent Comp, 37.
int w, int h, int x, int y,double wx, double wy) { 38
GridBagConstraints constraints = new GridBagConstraints(); 39.
constraints.fill = GridBagConstraints.BOTH; 40.
constraints.gridwidth = w; 41.
constraints.gridheight = h; 42.
constraints.gridx = x; 43.

constraints.gridy = vy; 44.

212 More components and techniques

45. constraints.weightx = wx;
46. constraints.weighty = wy;
47. gbl.setConstraints (Comp, constraints) ;
48. }
49.
50. public static void main(String[] args) {
51. GridBagFrame gridbagFrame = new GridBagFrame () ;
52. gridbagFrame.showlIt ("Grid-Bag Layout") ;
53.
54. }
55. 1}

Exercises

17.1 Change the constraint parameters for some of the panelsin application Grid-
BagFrame. Look at the result and explain why it looks the way it does.

17.2 Change method easyConstraints so that the £i11 value can also be set.
Try different settings and explain the result.

17.3 Design a grid-bag layout for the GUI in Figure 17.5.

N

Figure 17.5 Sketch of the GUI to be designed in Exercise 17.3

PART III

Advanced topics

Styling text

When text is displayed, there is often a need to use different font styles, sizes or
colours to emphasize parts of the text. We now show how this can be done by using
a so-called document model for the text. The model allows style attributes to be
assigned to parts of the text that are automatically moved when text is inserted or
deleted.

Swing provides non-graphical classes that model text documents. They allow ma-
nipulations of the text such as insertion and deletions and the assignment of dif-
ferent styles to different parts of the text. When such a text model is displayed in a
text component, the styles become visible. By using a text model the style and for-
matting are done abstractly and are independent of the display used. Listeners can
be attributed to documents to trigger actions in response to changes in the text.

The javax.swing.text sub-library contains the interface Document and some
classes implementing this interface. We will use class DefaultStyledDocument
which supplies many methods to modify the layout of normal (ASCII) text. There
is another predefined class, HTMLDocument, which provides a method for styling
HTML formatted text. If these classes do not provide the layout features for the
text under consideration, then one has to define one’s own document class by
implementing interface Document or by extending an existing class. We proceed
by introducing a number of helper classes for formatting text documents and then
show how they are used.

18.1 M Positions

Most operations on documents rely on the concept of a position marker. These are
defined in class Position'. A text is a sequence of letters or symbols. We prefer
the word ‘symbols’ because spaces and punctuation signs are also considered.
A position designates a place between two consecutive symbols. The offset of a
position is the number of symbols between it and the beginning of the text. The
position before the first symbol (symbol number zero) has offset 0, the one after

I The name Position is misleading. An instance of Position does not specify a position
in the document that is fixed, but one that moves if text is deleted or inserted.

216 Advanced topics

2 3 4 5 6 7 8 910 11 12 13

EFIEEEEOERGEM
p P B

Figure 18.1 A text of 14 symbols. The numbering of the symbols begins with 0 and is shown
above the text. Three positions markers, P1, P, and P3, are shown. Py has offset 0 as there
is no symbol between it and the start of the text, P> has offset 6 because it is immediately
before the 6th symbol and P3 has offset 9

the first symbol has offset 1, etc. In the next section we use position markers
to specify the beginning and end of text parts that receive specific formatting.
Figure 18.1 illustrates the concept of position markers.

Let us now see what happens to position markers when the text is changed.
We begin by inserting a single symbol, an m say, between the symbols 5 and 6 of
the text in Figure 18.1. Then all symbols of the original text beginning with the
one numbered 6 are moved one place to the right and the new symbol is inserted
at place 6. Position marker P; is moved with the text; its offset is increased from
9 to 10. The new letter is inserted precisely at the position occupied by marker
P>. The convention is that the insertion happens before the marker. Hence the
offset of P; is increased to 7. The result is shown in Figure 18.2.

Let us now see what happens to position markers when text is deleted. Let us
first assume that the deleted text does not contain a position marker. In the original
text of Figure 18.1 let us delete the symbols 2 to 5 (ing_). All position markers
to the right of the deleted text will move left, i.e. their offsets are decreased. The
result is shown in Figure 18.3.

Let us now delete the symbols 4 to 10 (g_is_go) in Figure 18.1, including both
spaces. This range includes position markers P> and P3. Though the symbols are
deleted, the two markers are not. They are now at the position formerly occupied
by the deleted text. Figure 18.4 shows the result.

1 2 3 4 5 6 7 8 910 11 12 13

[EE e SN SRR
P P B

Figure 18.2 Inserting letter m at position 6 moves P, and Ps to the right

2 3 4 5 6 7 8

EvEE e ea
Pp P

Figure 18.3 The result of deleting symbols ing_ in Figure 18.1. P, and P3 move left to
offsets 2 and 5

Styling text

[EEEERER
R RR

Figure 18.4 As a result of deleting symbols g_is_go the two position markers P, and P3
now occupy the same place. Both have offset 4

Position markers are implemented in interface Position in the javax.swing
.text library. There is only one method

int getOffset ()

which returns the current offset of the position marker.

18.2 M Text attributes

In a text document, one can assign text attributes to parts of the text. These specify
the text style (bold, italics), size, colour and more.

In Swing, text attributes are provided by interface Attributeset. A predefined
implementation of this interface is class simpleAttributesSet, which we shall use
in the following. Both are found in the library javax.swing. text. In an attribute
set one can, for example, specify that the text should be bold or italic and have
size (height) 14 points (pixels). Then this attribute set can be assigned to different
text parts and all these parts are displayed in the specified way. We only need the
constructor from this class:

SimpleAttributeSet () ;

To set the attribute values of an attribute set attrSet one uses methods from
another class, namely StyleConstants. We list and explain some of them:

setForeground (SimpleAttributeSet attrSet, Color c)
setBackground (SimpleAttributeSet attrSet, Color c)
setFontSize (SimpleAttributeSet attrSet, int size)
setBold(SimpleAttributeSet attrSet, boolean b)
setItalic(SimpleAttributeSet attrSet, boolean b)
setUnderline (SimpleAttributeSet attrSet, boolean b)
setSuperscript (SimpleAttributeSet attrSet, boolean b)
setSubscript (SimpleAttributeSet attrSet, boolean b)

setForeground (SimpleAttributeSet attrSet, Color c) sets the text colour
in attrSet to c. The default is the text colour of the graphical component
which displays the text, usually black.

setBackground (SimpleAttributeSet attrSet, Color c) sets background co-
lour in attrset to c. The default is the background colour of the graphical
component that displays the text, usually white.

setFontSize (SimpleAttributeSet attrSet, int size) sets font size in
attrsSet to size points (pixels). The default is the default size of the graphical
component that displays the text, often 12 or 14 points.

217

218

Advanced topics

setBold(SimpleAttributeSet attrSet, boolean b) determines whether the
text formatted according to attrset should be bold (b = true) or not (b =
false). The default value isb = false.

setItalic(SimpleAttributeSet attrSet, boolean b) determines whether
the text formatted according to attrSet should be in italics (b = true) or
not (b = false). The default value isb = false.

setUnderline (SimpleAttributeSet attrSet, boolean Db) determines
whether the text formatted according to attrSet should be underlined
(b = true)ornot (b = false). The default value isb = false.

setSuperscript (SimpleAttributeSet attrSet, boolean b) determines
whether the text formatted according to attrset should appear as superscript
(b = true)ornot (b = false). The default value isb = false.

setSubscript (SimpleAttributeSet attrSet, boolean b) determines
whether the text formatted according to attrset should appear as sub-
script (b = true) ornot (b = false). The default value isb = false.

Once an attribute set is defined, it can be assigned to parts of the text. The assign-
ment is done using the following method from class Document:

setCharacterAttributes (int offset, int length,
AttributeSet attrSet, boolean replace)

This formats the text part consisting of as many symbols as the current value of
length and beginning with the symbol at place of fset as specified by the attribute
values in attrSet. The parameter replace determines whether the attributes
previously assigned to that text part should be removed first.

In the following example we define an attribute set ugly for formatting a text
part in yellow, italic font on red background. Then the text in the document doc
from symbols 203 to 234 (32 symbols) is formatted in this way. Another attribute
set greenText just defines the font colour to be green. This is then used to format
symbols 200 to 214. By setting the parameter replace to false the attributes of
ugly other than the colour are maintained where the ranges overlap (symbols 203
to 214). In this range we have green, italic text on a red background. The reader
is encouraged to try this and other examples of overlapping text attributes.

// Define attribute set ”ugly” and ...
SimpleAttributeSet ugly = new SimpleAttributeSet () ;

// ... set its attributes to yellow italics

on red StyleConstants.setForeground(ugly, Color.yellow) ;
StyleConstants.setBackground (ugly, Color.red);
StyleConstants.setItalic(ugly, true);

// Format 32 symbols beginning with 203 using “ugly”.
// Any previously assigned attributes are erased.
styledDoc.setCharacterAttributes (203,32,ugly, true) ;

Styling text

// Define attribute set ”“greenText” and

SimpleAttributeSet greenText = new SimpleAttributeSet();

// ... set its attributes to green font

StyleConstants.setForeground (greenText, Color.green) ;

// Format 15 symbols beginning with 200 using ”“greenText”.
// Any previously assigned attributes except the text colour
// are maintained.

styledDoc.setCharacterAttributes (203,15, greenText, false) ;

When a text range is formatted, position markers are automatically assigned to its
beginning and end. These markers — not the values for offset and length specified
in setCharacterAttributes — determine the range of the formatting henceforth.
Thus, the formatted range will move left or right when text is deleted or inserted
before it. Symbols inserted into the formatted range receive the same formatting,
thus extending the range.

18.3 M Document listeners

When documents are not merely displayed but edited by the user, the application
might want to react to changes in the document. One might, for example, want
to change the formatting of certain text ranges or protocol the changes made to
be able to undo them or to document the development process. In order to
react to modifications in the document, one uses a listener, in this case a
DocumentListener.

Whenever changes are made to a Document, which has a DocumentListener
assigned to it, the listener is informed. The changes include deletions and inser-
tions of text or modifications in the layout. The runtime system then generates an
instance of DocumentEvent that contains information on the kind and location of
the change. This event is passed to the listener.

To implement the interface DocumentListener, one has to implement the fol-
lowing three methods. They are called by the runtime system when text is inserted,
deleted or formatting attributes are changed:

public void insertUpdate(DocumentEvent devt)
public void removeUpdate(DocumentEvent devt)

public void changedUpdate (DocumentEvent devt)

The instance devt of class DocumentEvent contains information on the event. The
class provides the following methods to access this information:

Document getDocument ()

int getLength()

int getOffset ()

DocumentEvent .EventType getType ()

DocumentEvent.Element getChange (Element elem)

219

220

Advanced topics

getDocument () returns a reference to the Document that triggered the event. This
is useful if the listener monitors more than one document.

getLength () returns the number of symbols affected by the event.
getOffset () returns the offset (position) of the first symbol affected by the event.

getType () returns the type of the event. Using method tostring of class Event-
Type this can be turned into text; the possible results are CHANGE, INSERT or
REMOVE.

getChange (Element elem) — instances of class Element allow access to the text
attributes that changed. A number of further classes are involved in this. We
do not discuss the mechanism here; refer to the Java documentation.

18.4 M C(lass DefaultStyledDocument

As already mentioned in the beginning of the chapter, class DefaultStyled-
Document is an implementation of interface Document. Both are found in the
javax.swing.text package. We present only a few methods of this powerful class.

DefaultStyledDocument ()

Position createPosition(int offset)
addDocumentListener (DocumentListener docList)
setCharacterAttributes (int offset, int length,

AttributeSet attribSet, boolean replace)

String getText (int offset,int length)
insertString(int offset, Stringtext, AttributeSet attrSet)

remove (int offset,int length)

DefaultStyledDocument () is the constructor.

createPosition(int offset) generates a position marker, i.e. an instance of
Position, before the symbol currently is at position offset. If the parameters
are outside the current size of the document then a BadLocationException
will occur.

addDocumentListener (DocumentListener docList) assigns docList as docu-
ment listener to this document.

setCharacterAttributes — see the discussion in Section 18.2.

String getText (int offset, int length) returns a string consisting of as
many symbols as the current value of length, starting at position offset in
the document. If the parameters are outside the current size of the document
then a BadLocationException will occur.

Styling text

insertString (int offset, String text, AttributeSet attrSet) inserts
the symbols in string text before the symbol currently at position offset
in the document. The new text is formatted as specified in attrset. If
the parameters are outside the current size of the document then a Bad-
LocationException will occur.

remove (int offset,int length) deletes as many symbols as the current value
of length, starting with the one currently at position offset. If the parameters
are outside the current size of the document then a BadLocationException
will occur.

The text of a document is often read from some file. This is easily done using the
utility class EditorKit, which is also found in the javax.swing.text package.
Every Swing component textComp that can display documents has an editor kit.
It can be accessed by textComp.getEditorKit (). We need the following method
from EditorKit:

read (FileReader fReader,Document doc, int offset);

The file reader should be assigned to the file whose content we want to insert
into the document doc. Parameter offset specifies that position in the document
before which the file content is inserted. For a new document offset = 0 is used.
The following code snippet demonstrates the use. We want to read a file filename
into DefaultStyledbDocument called doc and then display it in a Swing component
textComp:

DefaultStyledDocument doc = mew DefaultStyledDocument () ;
textComp.setDocument (doc) ;

EditorKit ediKit = textComp.getEditorKit() ;

FileReader fReader = new FileReader (filename) ;
ediKit.read(fReader,doc,0);

18.5 M An example of using documents

Program DocumentFrame demonstrates the features described in the previous sec-
tions. The text is administered by an instance styledDoc of DefaultStyled-
Document. We then use a gJTextPane to display the document. The document con-
tent is read from the ASCII file DocText . txt. A number of attribute sets is defined
in class Docatt. These are then used by DocumentFrame to format parts of the
document. Also two position markers are placed in the text.

An anonymous document listener is defined in DocumentFrame and assigned to
styledDoc. It monitors the changes made to the document and displays them in
a DocumentStatusPanel below the document. Every insertion or deletion of text
results in a line in the status panel describing what happened. The listener also
monitors the two position markers and displays their current positions. We list
only class DocumentFrame; the other class is on the book’s home page. Figure 18.5
shows an example.

221

222 Advanced topics

Figure 18.5 The formatting achieved by program DocumentFrame. The text ‘NEW!" has
been added. The status panel displays a protocol of the operations that have been performed

File: its/Document /DocumentFrame . java

package its.Document;

L=

=

import its.SimpleFrame.SimpleFrame;
import java.io.FileReader;

import javax.swing.JScrollPane;
import javax.swing.JTextPane;

import java.awt.BorderLayout;

© ® N w;

import javax.swing.text.DefaultStyledDocument;
10. import javax.swing.text.EditorKit;

11. import javax.swing.text.Position;

Styling text

public class DocumentFrame extends SimpleFrame

{

private JTextPane textPane;

private DocumentStatusPanel statusBar;

private DefaultStyledDocument styledDoc;

private EditorKit ediKit;

private Position pl,p2;

private final String filename = "./its/TestData/DocTest.txt";

public DocumentFrame ()

{

textPane = new JTextPane();
statusBar = new DocumentStatusPanel () ;
styledDoc = new DefaultStyledDocument () ;
textPane.setDocument (styledDoc) ;
ediKit = textPane.getEditorKit();
JScrollPane sp = new JScrollPane (textPane) ;
this.getContentPane () .add(sp, BorderLayout.CENTER) ;
this.getContentPane () .add(statusBar, BorderLayout.SOUTH) ;
this.setSize(500,500);
readFile (filename) ;
DocAtt.createAttributes() ;
formatText () ;
try
{
pl = styledDoc.createPosition(228);
p2 = styledDoc.createPosition(248);
}
catch (Exception ex)
{
System.out.println("Problem creating Positions.");
}
styledDoc.addDocumentListener (new DocListener (statusBar,pl,p2));
statusBar.update("",pl.getOffset(),p2.getOffset());

private void readFile(String filename) {

try
{
ediKit.read (new FileReader (filename), styledDoc,0) ;

}

catch (Exception ex)

223

29.
30.

40.

'S
=

e
N

o
©

S
b

'S
o

S
o

S
~

e
@

S
A

(S B Y|
o=

e

o
©

[O B B B
9]

o ¢

b

~

9]
®

224

65.
606.

67.
68.
69.
70.

80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.

Advanced topics

System.out.println("Problem reading file "+filename) ;

ex.printStackTrace() ;

// Formats some text ranges using attribute sets defined in
// class DocAtt

private void formatText () {

styledDoc.setCharacterAttributes

(73,10,DocAtt.underlinedText, false) ;
85, 3,DocAtt.bigText, false) ;
90, 4,DocAtt.boldText, false) ;
98, 7,DocAtt.italicText, false) ;
styledDoc.setCharacterAttributes (110, 7,DocAtt.greenText, false);

styledDoc.setCharacterAttributes (
styledDoc.setCharacterAttributes (
styledDoc.setCharacterAttributes (
(
styledDoc.setCharacterAttributes
(131,13,DocAtt.superscriptText, false) ;
styledDoc.setCharacterAttributes
(147,11,DocAtt.subscriptText, false) ;
styledDoc.setCharacterAttributes
(171,14,DocAtt.whiteOnBlackText, false) ;
styledDoc.setCharacterAttributes (190,18, DocAtt.ugly, true) ;
styledDoc.setCharacterAttributes (228,20, DocAtt.redText, false) ;

public static void main(String[] args)

{

DocumentFrame df = new DocumentFrame () ;

df.showIt ("Document-Frame") ;

18.1

Exercises

Use program DocumentFrame to check the results of inserting or delet-
ing text before, in and after formatted text ranges. Also check what hap-
pens to the position markers when text is inserted or deleted at different
places.

Styling text

18.2 Add a menu bar similar to the one in class Editor of Chapter 12. Implement

18.3

the functions for the menu items. Modify the ‘Search’ function such that all
occurrences of the search text are highlighted. Make sure that this also works
if the search text is right at the beginning or the end of the text.

Add a menu item ‘Show positions’. When selecting it, all user-added position

markers are shown by inserting a blue letter ‘M’ on yellow background at the
marker’s position. Selecting the menu entry again makes them disappear.

225

Printing in Java 1 9

In this chapter we briefly discuss the printing mechanism of Java. We present an
easy way to print graphical components. Finally we implement a generic class that
can be used to add print capabilities to other applications.

We shall use classes from the library java.awt.print, which we embed by
import java.awt.print.*;

This library provides classes and methods for adding printing capabilities to graph-
ical interfaces. We do not present all classes nor do we consider all methods. We
focus on those necessary to implement an easy way to access a printer. More can
be found in Java documentation.

Our example application consists of a frame PrintFrame with a menu. The
menu has only one item: Print’. We define a panel printpPanel with preferred
size 300 x 200. It shows a rectangle, a filled oval and a text. Another rectangle is
drawn at the edge of the panel to indicate its margin. This panel is then glued into
the content pane of the frame. Figure 19.1 shows how the application looks. The
functions of the application are simple: when the menu item ‘Print’ is selected,
the content of the embedded PrintPanel is printed.

The general approach to printing a graphical component printableComp is as
follows:

B The component printableComp has to implement the interface Printable by
defining the method print.

B One has to create an instance printJob of class PrinterJob and pass com-
ponent printableComp to it. This is done by calling the method print-
Job.setPrintable (printableComp).

B The PrinterJob is then started by printJob.print ().

One can specify that a print dialogue appears before the printing is started. This
dialogue is the standard print dialogue of the operating system. It normally allows
you to select the printer and the pages to be printed and possibly more. The
programmer does not have to bother how the graphics is converted into data that
the printer understands or how the data are sent to the printer.

Printing in Java

Figure 19.1 A picture of the print application. Note the rectangle at the margins of the
panel. This is added to control whether the whole panel is printed

19.1 M Interface Printable

As mentioned above, a component has to implement the interface Printable to
become printable. Interface Printable demands the implementation of a single
method:

public int print (Graphics graphics, PageFormat pageFormat,

int pageIndex) throws PrinterException

This method is called by the runtime system when the component has to be
printed. The runtime system also supplies the parameters graphics, pageFormat
and pageIndex. This method plays the same role for printing as paintComponent
does for drawing. In fact, one can think of printing as drawing to another device.
The actual printing is started by calling paint inside method print of the compo-
nent to be printed. As with paintComponent we should not call print ourselves.
The parameters have the following meaning:

Graphics graphics links the application to the platform-specific printer drivers.
This is similar to the Graphics object in the method paintComponent which
links to the rendering routines of the operating system. The Graphics object
is created by the runtime system.

PageFormat pageFormat is also created by the runtime system. It contains in-
formation on the page size and layout of the selected printer (or the default
printer). The class provides get-methods to access these parameters.

int pageIndex is the number of the page to be printed. The runtime system
calls print with varying values of pageIndex, namely 0,1, 2,3,.... If the
print command is successful it returns the integer constant PAGE_EXISTS
(defined in interface Printable). Otherwise print returns NO_SUCH_PAGE and

227

228

Advanced topics

the runtime system will not call print again. The programmer has to make
sure that the correct value is returned. This way multi-page documents can be
printed.

Let us now look at a simple implementation of the interface Printable. We
implement method print such that it prints only one page; our panel is a one-page
document. We first check whether the parameter pageIndex is O (the first page). If
so we call the paint-method of the panel and return PAGE_EXISTS. If pageIndex is
greater than O we return NO_SUCH_PAGE. The runtime system will then stop calling
print.

Let us analyse what is happening in the first case, i.e. when pageIndex is 0.
By calling the paint-method of the panel, a repainting is initiated. The painting is
done on some device. Which device this is (the screen or the printer) is determined
by the Graphics object. In our example we pass the Graphics object g which we
receive as an argument of print on to the paint method. This object is generated
by the runtime system and refers to some printer. As a result, paint draws to
the printer and not to the screen. We cannot use repaint here because it does
not allow a Graphics object to be passed as an argument; repaint initiates a
redrawing of the screen. The skeleton of the implementation then looks like this:

public int print (Graphics g, PageFormat pageFormat, int pageIndex) {
if (pageIndex > 0)
{
return (NO_SUCH_PAGE) ;
}
else
{
this.paint (g);
return (PAGE_EXISTS) ;

}

There are, however, some technical precautions to be taken. First of all one should
switch off the double buffering of the graphics. This feature is important for a nice
display when the screen is redrawn but might spoil the printing. After the printing,
the double buffering should be switched on again. We therefore surround the paint
command by some commands as shown below. We do not elaborate on the class
RepaintManager used here:

RepaintManager currentManager = RepaintManager.currentManager (this) ;
currentManager.setDoubleBufferingEnabled (false) ;
paint(g) ;

currentManager.setDoubleBufferingEnabled (true) ;

Another topic to consider when printing is the placement and scaling of the printed
image. The origin of the printer coordinate system is normally the upper left
corner of the paper. Most printers, however, cannot print on some small margin
of the paper for technical reasons. Therefore the upper left corner of the printable
area of the paper is below and to the right of its upper left corner. The Graphics

Printing in Java

object of the print-method identifies the upper left corner of the component to be
printed with the upper left corner of the paper. Without any correction the image
of the component would not show parts outside the printable area. We therefore
have to shift the image such that it lies completely in the printable area. Class
Graphics provides the method translate for this purpose. The command

g.translate(int xNew, int yNew)

moves the origin of the coordinate system of the Graphics object g to the point
(Xnews Ynew) (in the coordinates before the translation). If xey > 0 and yhew > 0
then the image is shifted to the right and downwards. It remains to determine
the amount of the translation. This information is contained in the PageFormat-
object. The commands

double pageFormat.getImageableX()
double pageFormat.getImageableY ()

return the x- and y-coordinates of the upper left corner of the printable area in
the printer coordinates. As these are double values, they should be rounded to
the next larger integer. Altogether we have the following implementation of the
interface Printable:

public int print (Graphics g, PageFormat pageFormat, int pagelIndex) {
if (pageIndex > 0)
{
return (NO_SUCH_PAGE) ;
}

else

{
int x = (int)pageFormat.getImageableX() + 1;
int vy = (int)pageFormat.getImageableY () + 1;

g.translate(x,y);

RepaintManager currentManager =
RepaintManager.currentManager (this) ;

currentManager.setDoubleBufferingEnabled (false) ;

this.paint(g);

currentManager.setDoubleBufferingEnabled (true) ;

return (PAGE_EXISTS) ;

19.2 M Class PrinterJob

Class PrinterJob is the Java equivalent of — surprisingly — a printer job, i.e. a
request to print the provided data. Class PrinterJob has a constructor, which,
however, is not used. Instead method getPrinterJob is applied. A print job is
created like this:

PrinterJob printJob = PrinterJob.getPrinterJob() ;

229

230

Advanced topics

The print job is started by calling method print of PrinterJob:
printJob.print () ;

This method throws a PrinterException and is therefore embedded into a try-
catch block.

To tell the print job which component it has to print we use setPrintable.
The argument of this method has to be a Printable object, i.e. an object that
implements the Printable interface:

setPrintable (Printable printableObject)

The print job is sent to the ‘default printer’ specified on the computer. If one wishes
to select another printer, one calls method

boolean printDialog()

Then a printer selection dialogue similar to the one shown in Figure 19.2 appears.
There one can select a number of options, e.g. the printer, the number of copies to
print or the paper orientation. On closing the dialogue a boolean value is returned.
If the value is true, then the print job is processed, otherwise it is cancelled.
The following code snippet shows the application of class PrinterJob to print
printableComp:

PrinterJob printJob = PrinterJob.getPrinterJob() ;
printJob.setPrintable (printableComp) ;
if (printJdob.printDialog()) {
try {
printJob.print () ;

Figure 19.2 A printer selection dialogue

Printing in Java

} catch(PrinterException pex) {
pex.printStackTrace () ;

}

19.3 W An example application

The two classes listed below form an application that allows a panel to be printed.
Class PrintPanel is specified in Figure 19.1. To make PrintPanel printable, we
have to implement interface Printable by defining the print method as described
in Section 19.1.

File: its/Printing/PrintPanel.java
package its.Printing;

import java.awt.Color;

import java.awt.Dimension;

import java.awt.Graphics;

import java.awt.print.PageFormat;
import java.awt.print.Printable;
import javax.swing.JPanel;

import javax.swing.RepaintManager;
public class PrintPanel extends JPanel implements Printable {

public PrintPanel () {
this.setBackground (Color.white) ;

this.setPreferredSize (new Dimension (300, 200));

public void paintComponent (Graphics g) {
super .paintComponent (g) ;
g.setColor (Color.black) ;
.drawRect (20,20,100,50) ;
.filloval (80,80,60,30);
.drawString ("Printing in JAVA is easy!",100,150);
.setColor (Color.red) ;
.drawRect (0,0,299,199) ;

Q Q @ Q9 Q9

public int print (Graphics g, PageFormat pageFormat, int pageIndex) {
if (pageIndex > 0) {
return (NO_SUCH_PAGE) ;
} else {
int x = (int)pageFormat.getImageableX() + 1;

231

W o=

e R A

13.

23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

232

40.
41.
42.
43.

e e

~ O U

©

17.
18.
19.
20.
21.
22.

24.
25.
26.

Advanced topics

int vy = (int)pageFormat.getImageableY () + 1;

g.translate(x,y);

RepaintManager currentManager = RepaintManager.currentManager (this);
currentManager.setDoubleBufferingEnabled (false) ;

this.paint(g);

currentManager.setDoubleBufferingEnabled (true) ;

return (PAGE_EXISTS) ;

Class PrintFrame generates a frame that has a PrintPanel embedded into its
content pane. The frame has a menu with only one item ‘Print’. The listener
for this item is implemented by defining actionPerformed. When the item is
selected, a print job for the embedded panel is generated and started as described
in Section 19.2. The frame also has main method which launches the application.

File: its/Printing/PrintFrame.java

. package its.Printing;

import its.SimpleFrame.SimpleFrame;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.print.PrinterException;
import java.awt.print.PrinterJob;

import java.awt.BorderLayout;

. import javax.swing.*;

10.

. public class PrintFrame extends SimpleFrame
12.
13.
14.
15.

implements ActionListener{

private PrintPanel pp;

public PrintFrame () {
this.setTitle("Printing Application");
pp = new PrintPanel();
this.getContentPane () .add (pp, BorderLayout .CENTER) ;

JMenuBar menuBar = new JMenuBar() ;

JMenu menu = new JMenu("File");

JMenulItem druckItem = new JMenultem("Print");
menuBar .add (menu) ;

menu.add (druckItem) ;
druckItem.addActionListener (this) ;

Printing in Java

this.setJMenuBar (menuBar) ;

pack () ;

public void actionPerformed (ActionEvent evt) {

String command = evt.getActionCommand () ;
if (command.equals ("Print"))
{
PrinterJob printJob = PrinterJob.getPrinterJob() ;
printJob.setPrintable (pp) ;
if (printJob.printDialog()) {

try {

printJob.print () ;
} catch(PrinterException pe) {

System.out.println("Error printing: " + pe);

}
public static void main(String[] args)
{
PrintFrame prfr = new PrintFrame() ;

prfr.showIt();

19.4 M A generic class for printing

To make a component printable as described above needs the Printable interface
for that component to be implemented. In our example, we derived a PrintPanel
from Jpanel. Driving a class from another one just in order to print it is quite a
lot of work. We therefore introduce a generic class Printsuit which allows you
to print any component without implementing the Printable interface for that
component. In this class we define our own method, called printComponent, by

public static void printComponent (Component comp)

The argument comp is a graphical component which does not necessarily imple-
ment Printable. This component is printed as a result of this call. Components
embedded into comp are also printed. There is one special case when printing
frames: Only the embedded components of a frame are printed, not the frame it-
self. The code of Printsuit combines the implementation of interface Printable
and the generation of the PrinterJob object. Application PrintSuitTestFrame

233

39.
40.
41.
42.
43.
44.
45.

234 Advanced topics

demonstrates the use of PrintsSuit. As a result the embedded text area and button
are printed; the frame itself however, is, not printed.

File: its/Printing/PrintSuit.java

1. package its.Printing;

2

3. import java.awt.Component;

4. import java.awt.Graphics;

5. import java.awt.print.PageFormat;

6. import java.awt.print.Printable;

7. import java.awt.print.PrinterException;
8. import java.awt.print.PrinterJob;

9. import javax.swing.RepaintManager;

10.

11. public class PrintSuit implements Printable {
12. private Component compToPrint;

13.

14. public static void printComponent (Component comp) {
15. new PrintSuit (comp).print();

16. }

17.

18. private PrintSuit (Component comp) {
19. this.compToPrint = comp;

20. }

21.

22. public void print () {

23. PrinterJob printJob = PrinterJob.getPrinterJob() ;
24. printJob.setPrintable (this) ;

25. if (printJob.printDialog()) {

26. try {

27. printJob.print () ;

28. } catch(PrinterException pex) {
29. pex.printStackTrace () ;
30. }

31. }

32. }

34. public int print (Graphics g, PageFormat pageFormat, int pageIndex) {

35. if (pageIndex > 0) {

36. return (NO_SUCH_PAGE) ;

37. } else {

38. int x = (int)pageFormat.getImageableX() + 1;
39. int vy = (int)pageFormat.getImageableY () + 1;
40. g.translate(x,vy);

41. RepaintManager currentManager =

RepaintManager.currentManager (compToPrint)

Printing in Java

currentManager.setDoubleBufferingEnabled (false) ;
compToPrint.paint (g) ;
currentManager .setDoubleBufferingEnabled (true) ;
return (PAGE_EXISTS) ;

235

File: its/Printing/PrintSuitTestFrame.java

packag

import
import
import
import
import

import

public

{
publ
JBu
but
thi
JTe

e its.Printing;

its.SimpleFrame.SimpleFrame;
java.awt.event.ActionEvent;
java.awt.event.ActionListener;
javax.swing.JButton;
javax.swing.JTextArea;

java.awt.BorderLayout;

class PrintSuitTestFrame extends SimpleFrame

implements ActionListener

ic PrintSuitTestFrame () {

tton button = new JButton("Print");
ton.addActionListener (this) ;
s.getContentPane () .add (button, BorderLayout.SOUTH) ;

xtArea textPane = new JTextAreal();

textPane.setText ("Test test\n test test\n test test\n test test");

thi

publi

Pri

stati
Pri

pst

s.getContentPane () .add(textPane, BorderLayout.CENTER) ;

c void actionPerformed(ActionEvent evt) {

ntSuit.printComponent (this) ;

¢ public void main(String[] args) {
ntSuitTestFrame pstf = new PrintSuitTestFrame () ;
f.showIt();

S e

o » N

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

Swing and threads 20

Threads are parts of an application which run in parallel. Although most applications
in this book seem to be single-threaded, they are not. Any application involving a
graphical surface is automatically multi-threaded. A number of threads are gen-
erated by the runtime system, and these run in parallel to the program code of
the actual application. These threads usually run unnoticed by the user. In some
cases, however, this concurrency can cause problems. We want to address the most
frequent of these problems in this chapter.

To understand the role of threads in Java applications with graphical user inter-
faces, let us remember the life cycle of such applications. As mentioned in the
introduction, the GUI for the application is created in the start-up phase. Once
the GUI is made visible the application is event driven. That is, it is steered by
events triggered by the user (or by other applications). Such an event is, for exam-
ple, pressing a button. Events are detected by the runtime system, which informs
the appropriate listener of the application. For a button it would be an action lis-
tener. This listener then executes a method that contains the code for reacting to
the event. For action listeners this is method actionPerformed.

The administration of the events is done by a thread that is started unknown
to the user, the so-called event thread, sometimes also called event dispatching
thread. We describe this mechanism in the following and then address some prob-
lems it might cause. We would like to emphasize that this chapter is not meant as
an introduction to concurrent programming with threads in Java. The reader is as-
sumed to know the basics on threads or to look them up in the Java documentation
or in tutorials on the web.

20.1 M Event thread and event queue

Every Java application starts at least one thread, the main thread. Almost all
code that the programmer writes is executed in this thread. For an application
with a GUI the event thread is created and runs in parallel to the main thread.
It administers the incoming events. If the events come at a high rate or it takes
too long to process them, then a new event might occur before the previous one
has been entirely processed. Therefore the event thread uses an event queue to

Swing and threads

temporarily store the events. This is a data structure that handles the events in a
first-in-first-out manner.

Any newly incoming event is added at the end of the queue and then gradually
moves to the head where older events are taken out and processed. Processing an
event means to call a method (e.g. actionPerformed) of the appropriate listener.
This method then carries out some code as a reaction to the event. The latter hap-
pens in the event thread, not the main thread. Besides events that are processed
by those listeners defined by the programmer, the queue contains events coming
from listeners that are automatically assigned to Swing components. These in-
clude requests to repaint a component as a reaction to resizing it or clicking on a
menu.

20.2 W Blocking a user interface

20.2.1 [How blocking occurs

Our example application BlockingFrame shows how a lengthy operation can lead
to undesired effects. A BlockingFrame has a menu and a label which is glued cen-
trally into the frame’s content pane. The label initially contains the text ‘Nothing
happened’. The menu bar has one menu which contains the single item ‘Start’.
A listener of type MenuListener monitors the menu item. This listener class is
defined as an internal class.

When the menu item is selected, the listener’s actionPerformed method is
called. This method performs a lengthy job. We simulate the lengthy job by a
for-loop which is executed ten times. Inside the loop, the application waits half
a second (500 ms) using the sleep command from the class Thread. In order to
document the work, the text of the label is updated in every execution of the loop.
The texts reads ‘Working’ followed by the number of the loop variable. The same
text is also printed to console using System.out.println. In addition we print
the name of the thread that is currently running. After the last execution of the
loop the text is set to ‘Done’. We expect that, after selecting ‘Start’ in the menu,
the label will display ‘Nothing happened’, ‘Working 0, ..., ‘Working 9’, ‘Done’.

What we observe is different. After selecting the menu item ‘Start’ the menu
does not retract but remains visible for the duration of a lengthy job — five sec-
onds. The text of the label remains ‘Nothing happened’. Clicking on the menu or
elsewhere on the frame has no effect. Resizing it will make the text of the label
and menu disappear. The GUI is said to be blocked as long as the lengthy job is
running. After five seconds the menu retracts and the label displays ‘Done’. The
GUI reacts to the mouse again. On the console we can, however, see the messages
‘Working i’ to be printed every half second. We can also see that the code for the
lengthy work is not performed in the main thread but in the event thread. The
output is listed below. AWT-EventQueue-0 is the name given to the event thread
by the runtime system!. The first line is printed from inside the main method of
BlockingFrame, which is executed in the thread named main.

! The internal names given to threads by the runtime system might be different on different
platforms or in different versions of the SDK.

237

238

Advanced topics

Running in thread main

Working 0

Running in thread AWT-EventQueue-0
Working 1

Running in thread AWT-EventQueue-0
Working 2

Running in thread AWT-EventQueue-0
Working 3

Running in thread AWT-EventQueue-0
Working 4

Running in thread AWT-EventQueue-0
Working 5

Running in thread AWT-EventQueue-0
Working 6

Running in thread AWT-EventQueue-0
Working 7

Running in thread AWT-EventQueue-0
Working 8

Running in thread AWT-EventQueue-0
Working 9

Running in thread AWT-EventQueue-0

Let us analyse the observed behaviour. The following list shows what happens in
chronological order.

1. When the menu is clicked, a command to repaint the GUI with the rolled-out
menu is added at the end of the event queue. Some time after the command has
been executed the menu becomes visible. The repaint command is removed
from the queue.

2. When the menu item ‘Start’ is selected, a call to the method actionPerformed
is added to the event queue.

3. A command to redraw the GUI with the retracted menu is added to the queue,
behind the call to actionPerformed.

4. In every iteration of the for loop a command to redraw the label with the
updated text is added to the queue, behind the repaint command.

By the first-in-first-out property of the queue the events in 3 and 4 can be processed
only after the event in 2 by the event thread. In particular, the lengthy action-
Performed method is run in the event thread and hinders it from processing the
following events. Until actionPerformed terminates, the GUI is not updated and
shows the rolled-out menu. Also the label and menu bar are not repainted when
the frame is resized. The repaint requests are added at the end of the event queue
where they wait to come to the head. Further events from the GUI occurring during
this time, such as mouse clicks, are added to the event queue. They all have to wait
until the previously added requests have been processed, especially the lengthy
actionPerformed in 2. As no reaction to these events happens during that time,

Figure 20.1 The results of applications (a) BlockingFrame and (b) NonBlockingFrame

the GUI appears to be blocked. The console output commands are operations that
do not require any graphical components and are not put into the event queue.
Therefore they are performed right away and appear as expected. The code for
BlockingFrame is listed below and the resulting display is shown in Figure 20.1.

(@)

File: its/Blocking/BlockingFrame.java

package its.Blocking;

import
import
import
import
import
import

import

public
{

its.SimpleFrame.SimpleFrame;
java.awt.event.ActionEvent;
java.awt.event.ActionListener;
javax.swing.JLabel;
javax.swing.JMenu;
javax.swing.JMenuBar;

javax.swing.JMenultem;

class BlockingFrame extends SimpleFrame

private JLabel display;

public

BlockingFrame () {

display = new JLabel ("Nothing happened") ;

this.getContentPane () .add(display) ;

JMenuBar menuBar = new JMenuBar () ;

this.setJMenuBar (menuBar) ;

JMenu menu = new JMenu("Menul") ;

menuBar .add (menu) ;

JMenultem startItem = new JMenultem("Start");

(b)

Swing and threads

239

10.

240

26.
27.
28.
29.
30.
31.

42.
43.
44.
45.
46.

(OB B B B |
wn

(SN |
L

NS

Advanced topics

menu.add(startItem) ;
MenuListener mListener = new MenuListener () ;

startItem.addActionListener (mListener) ;

public static void main(String[] args) {
System.out.println("Running in thread "+

Thread.currentThread () .getName ()) ;

BlockingFrame bf = new BlockingFrame() ;
bf.showIt ("BlockingFrame") ;

private void lengthyWork () {
//This is the lengthy work
for(int i = 0; 1 < 10; 1i++){
System.out.println("Working "+i);

System.out.println("Running in thread "+

Thread.currentThread() .getName ()) ;

display.setText ("Working "+1);

try{
Thread.sleep(500) ;

}catch (Exception ex) {
ex.printStackTrace () ;

}

}Y//for i
display.setText ("Done") ;

//Internal class

}

class MenulListener implements ActionListener(

public void actionPerformed (ActionEvent evt) {

String command = evt.getActionCommand() ;
if (command.equals ("Start")) {
lengthyWork () ;
}
else
{
System.out.println ("Unknown ActionCommand") ;
System.exit (0) ;
}
}

}//internal class

Swing and threads

20.2.2 [Avoiding the blocking

The solution to the above problem is not to run the lengthy 1engthyWork method
in the event thread but in a separate thread. The event thread merely starts this
other thread. It then immediately processes the next event in the queue, while
the lengthy job is running in the other thread in parallel.

In our example we define an internal class WorkerThread which is derived from
Thread. When a thread is started then its method run is executed. Therefore, all
the instructions the thread should execute should be placed here?. In our example
the lengthy job is placed there.

Now, method actionPerfomed does not call lengthyWork but it creates an
instance worker of WorkerThread and starts it by Oalling worker.start (). After
this, actionPerfomed finishes. Even though actionPerfomed is run in the event
thread, it does so only for the time needed to start the worker thread. It does not
block the processing of further events. The menu rolls back immediately after we
selected the menu item ‘Start’. Also the text of the label changes every half second.

On the console we can now see that the lengthy job is performed in neither
the main nor the event thread. Instead it runs in a thread called ‘Thread-1’ which
is the internal name for our worker thread. As the lengthy operation now runs
in a separate thread, the event thread can process the requests to repaint the
frame or label as soon as they come in. Below, a listing of the console output is
shown:

Running in thread main
WorkerThreadl: started as Thread-1
Working 0

Running in thread Thread-1
Working 1

Running in thread Thread-1
Working 2

Running in thread Thread-1
Working 3

Running in thread Thread-1
Working 4

Running in thread Thread-1
Working 5

Running in thread Thread-1
Working 6

Running in thread Thread-1
Working 7

Running in thread Thread-1
Working 8

Running in thread Thread-1

Working 9

2 As for listener methods such as act ionPer formed, this formulation has to be taken with
a grain of salt. Some of the code might actually be in other methods, in 1engthyWork in
our case, which are then called from inside run.

241

242

I

-

NeRN RN N9

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

Advanced topics

Running in thread Thread-1

WorkerThreadl: Done

The code for NonBlockingFrame is listed below and the resulting display is shown
in Figure 20.1.

File: its/Blocking/NonBlockingFrame.java

import
import
import

import

. import

import

. import

public
{

. package its.Blocking;

its.SimpleFrame.SimpleFrame;
java.awt.event.ActionEvent;
java.awt.event.ActionListener;
javax.swing.JLabel;
javax.swing.JMenu;
javax.swing.JMenuBar;

javax.swing.JMenultem;

class NonBlockingFrame extends SimpleFrame

private JLabel display;

private int nummer;

public NonBlockingFrame () {

nummer = 0;

this.setTitle("Non blocking frame") ;

display = new JLabel ("Nothing happened") ;

this.getContentPane () .add(display) ;

JMenuBar menuBar = new JMenuBar();

this.setJMenuBar (menuBar) ;

JMenu menu = new JMenu("Menul");

menuBar .add (menu) ;

JMenulItem startItem = new JMenultem("Start");

menu.add (startItem) ;

MenuListener mListener = new MenulListener();

startItem.addActionListener (mListener) ;

private void lengthyWork () {

//This is the lengthy work
for(int 1 = 0; 1 < 10; i++){
System.out.println("Working "+i) ;
System.out.println("Running in thread "+

Thread.currentThread () .getName()) ;

Swing and threads

display.setText ("Working "+i) ;

try(
Thread.sleep(500) ;

}ecatch (Exception ex) {
ex.printStackTrace () ;

}

}Y//for i
display.setText ("Done") ;

public static void main(String[] args) {
System.out.println("Running in thread "+
Thread.currentThread () .getName ()) ;
NonBlockingFrame nbf = new NonBlockingFrame () ;
nbf.showIt();

//Internal class
class MenuListener implements ActionListener({
public void actionPerformed (ActionEvent evt) {

String command = evt.getActionCommand () ;

if (command.equals ("Start")) {
// The worker thread is created and started
Thread worker = new WorkerThread() ;
worker.start () ;

}

else

{
System.out.println ("Unknown ActionCommand") ;

System.exit (0) ;

}//internal class
//Internal class

class WorkerThread extends Thread{
int num;
public WorkerThread () {
nummer++;
num = nummer;

}

243

38.
39.
40.

N T NS
e A o

S NRT BT WY NI BT BT BT R}
® NNk = o

[e e N Je e NiNe NN o N Nie NKe NNJ) |
DX S I E 0SS0

70.

244

84.
85.
86.
87.
88.
89.
90.
91.
92.
93.

Advanced topics

public void run() {
System.out.println ("WorkerThread"+num+": started as "+
Thread.currentThread () .getName ()) ;
lengthyWork () ;
System.out.println ("WorkerThread"+num+": Done") ;

}

20.3 M Side-effects

There are some side-effects to be aware of:

B As the GUI is not blocked after selecting the menu item ‘Start’, we can immedi-

ately select it again, and again. ... Every time a new WorkerThread is created
and started all these threads run in parallel. What happens can best be seen
in the console’s output. If this is unwanted, one has to check whether there
already is a worker thread running before starting the next one. This can be
done by setting a ‘flag’ (e.g. a boolean variable) before starting the thread and
have the thread reset it just before it exits (last command in the run method).
There are other ways of achieving this which require a deeper knowledge of
threads.

Sometimes the blocking of the GUI is not that unwanted. If, for example, a large
file is read, then one might not want further user commands to be processed
before the whole file has been loaded. Here, so-called progress meters might
be a more elegant way of solving the problem.

If, in our example, a number of threads for the lengthy work are started, all of
them are slowed down. They do not finish after five seconds each. The reason
is that on one-processor systems — and most computers just have one main
processor — the different threads do not really run concurrently. Instead, they
have to share the single processor. Each one runs only for a short time and is
then interrupted while another thread continues to run for a short time, etc.
The different threads receive time slices.

20.4 W Updating a display at runtime

20.4.1 [The problem

Consider the situation where a complex drawing is displayed and has to be peri-
odically updated. This is a typical setting when data are continuously received,

Swing and threads

analysed and displayed. One might experience the problem that the drawing is in-
completely displayed. We use a simple example to demonstrate this phenomenon.

We define a class Drawing as an abstract representation of the drawing. The
drawing shows three parallel lines. Initially the lines are horizontal. Method £1ip-
Lines will change the drawing to three vertical lines. Calling f1ipLines again will
make the lines horizontal again. To simulate a complex modification of a drawing,
the lines are flipped one after the other with a one second pause after each flip.
Class UpdatePanel is defined to display a drawing. To this end it has access to an
instance of class brawing. We do not list these classes; they can be downloaded
from the book’s home page.

Class BadUpdateFrame is the main class of the application. It has a variable
drawing of class Drawing. It also has an UpdatePanel to display this drawing.
Initially the lines are horizontal. Then the BadUpdateFrame calls the flipLines
method of the drawing, which flips the lines one after the other in roughly three
seconds. This cannot be seen in the display because no event is created to trigger
a repaint. Therefore we add a repaint command for the panel after the lines have
been flipped. Then flipLines and repaint are called again to flip the lines to
horizontal and display this. We only list the program BadupdateFrame; the actual
demonstration is placed in method badbemo.

File: its/GraphicsUpdate/BadUpdateFrame. java
package its.GraphicsUpdate;

import javax.swing.JFrame;

import its.SimpleFrame.SimpleFrame;

public class BadUpdateFrame extends SimpleFrame({

private UpdatePanel uppane;

private Drawing drawing;

public BadUpdateFrame () {
drawing = new Drawing() ;
uppane = new UpdatePanel (drawing) ;

getContentPane () .add (uppane) ;

pack () ;

}

public void badDemo () {
uppane.repaint () ; // paint the horizontal lines
drawing.flipLines(); // flip them to vertical
uppane.repaint () ; // paint the vertical lines
drawing.flipLines(); // flip them back to horizontal

uppane.repaint () ; // paint the horizontal lines

245

W o=

ook

246

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

Advanced topics

drawing.flipLines(); // flip them to vertical

public static void main(String[] args) {
BadUpdateFrame badFrame = new BadUpdateFrame () ;
badFrame.showIt ("Bad Update") ;
badFrame.badDemo () ;
}

This should display a sequence of three drawings. The first has three horizontal
lines, the second one three vertical ones and the third one again consists of three
horizontal lines:

What is really displayed depends on many things: the operation system, the version
of the SDK, the current load (number of processes) on the machine and many more
things. Also the behaviour might vary from one execution of the application to the
next. Most of the time one observes the following sequence of images:

For an explanation let us look at the following three lines of code in Badupdate-
Frame:

drawing.flipLines(); // flip them to vertical
uppane.repaint () ; // paint the vertical lines
drawing.flipLines(); // flip them back to horizontal

Their order suggests that after all three lines are flipped, the new drawing is dis-
played and only then are they flipped again. The problem comes from the fact that

Swing and threads

Main thread Event thread

0}
£
= Drawing
completed
Call to repaint () repaint added to
event queue
Drawing is .
modified repaint is taken out
of the event queue
______ > The panel is repainted
Data used using the modified data
to repaint
v v

Figure 20.2 The main thread, on the left, modifies the drawing while the repaint event
proceeds to the head of the event queue. When the repainting is finally performed, the
modified drawing is shown

the flipLine instructions run in the main thread, while the repaint instruction
is performed in the event thread. The main thread just adds repaint to the event
queue to indicate that the GUI should be repainted at some time.

In this case, the order of the code lines in the listing does no longer reflect the
order of their execution. It might take some time for the event thread to process the
request to repaint. By that time, the main thread has already flipped the first line.
The display then shows part of the old and part of the new picture. The temporal
order in which things happen is listed below and is also shown in Figure 20.2:

1. All lines are horizontal.

2. The repaint command is added to the event queue.
3. The first line is flipped to vertical.
4

. The repaint command reaches the head of the queue and the panel is re-
painted to show the current drawing with the first line already vertical.

5. The other two lines are flipped but the display is not updated.

20.4.2 [A solution by buffering

One way of solving the problem is to use a buffer for the drawing. This means that
we have two abstract drawings, one of which is displayed and not changed and the
other one that is not displayed and modified. When the modifications of the second
one are completed, the drawings change their role. To this end the reference to the
drawing is changed in the panel. Class UpdatePanel provides a method for this
purpose (setDrawing). Then the new drawing is displayed by calling the repaint
method of the panel. The content of the currently displayed drawing is copied to

247

248

e e

© ® N o;

10.

12.
13.
14.
15.
16.
17.
18.

Advanced topics

the other one. It is important to copy the drawing and not to use an assignment of
references such as drawingl = drawing2.In that case the two drawings would be
identified; only one drawing would exist with two references to it. See Section B.1
for a more detailed explanation.

File: its/GraphicsUpdate/GoodUpdateFrame. java

. package its.GraphicsUpdate;

import javax.swing.JFrame;

import its.SimpleFrame.SimpleFrame;

. public class GoodUpdateFrame extends SimpleFrame({

private UpdatePanel uppane;

private Drawing drawingl, drawing2;

public GoodUpdateFrame () {
drawingl = new Drawing() ;
drawing2 = new Drawing () ;
uppane = new UpdatePanel (drawingl) ;
getContentPane () .add (uppane) ;
pack() ;

19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

public void goodDemo () {
uppane.repaint () ;
drawing?2.flipLines () ;
uppane.setDrawing (drawing2) ;
uppane.repaint () ;
drawingl.copy (drawing?2) ;
drawingl.flipLines() ;
uppane.setDrawing (drawingl) ;

uppane.repaint ();

30.

31.
32.
33.
34.
35.

public static void main(String[] args) {
GoodUpdateFrame goodFrame = new GoodUpdateFrame () ;
goodFrame.showIt ("Good Update"); // The drawing contains

goodFrame .goodDemo () ;

36.
37.

38

-}

A generic graphics 2 1
package

In this chapter we combine many techniques from the previous parts of the book
to design a generic graphics package for displaying and manipulating drawings.
The graphical objects to be displayed are specified in an abstract way and the pack-
age may be extended by the user. The package also supports adding and deleting
graphical objects through user interaction.

21.1 M Specification of the package

The package provides a panel to display a drawing. The panel can be embedded
into any GUI that needs to display drawings. The drawing can be changed by
an application or by user interaction. The programmer can easily add further
graphical objects to the package according to his or her needs. We describe this
in more detail below.

B The drawing is composed of graphical objects. These can be simple shapes
such as lines, circles or triangles but may include much more complex shapes
such as polygons or curves. Some of them are defined in the package.

The programmer can add new graphical objects.

The graphical objects are specified by coordinates that are real numbers. No
knowledge about the display area has to be known.

B The drawing is automatically fitted to the display area such that all of it is
visible.

B The programmer can choose whether the scaling is proportional (both x- and
y-axes have the same scale) or not (the drawing is extended horizontally and
vertically to fill the panel).

The colour of every graphical object can be set and changed.
The display automatically scales when the panel is re-scaled.

The package provides methods to add or delete graphical objects from the
drawing.

250

Advanced topics

21.2 M Structuring the package

The package is an extension of the interactive application in Chapter 7. It is com-
posed of a number of classes. We now describe the class structure we have selected
and explain our choices. From the specification above there are two concepts that
obviously play a role in the project: ‘graphical objects’ and ‘drawing’. We shall
define two classes to implement these concepts: GraphicalObject and Drawing.
We shall see that it makes sense to define some more helper classes on the way.

21.2.1 [Class brawing

A drawing is composed of graphical objects. Therefore we choose Drawing to do
the administrative work. This class maintains a data structure that contains all
graphical objects currently in the drawing. The data structure allows new graphical
objects to be added or existing ones deleted. The class provides a method draw
which displays the whole drawing. To this end it asks all graphical objects to draw
themselves. Some more administrative features will be described later on.

21.2.2 [Class GraphicalObject

A graphical object is an abstract description of a geometrical shape. As there are
infinitely many kinds of such objects, one cannot define one single class to cover
all the possibilities. We therefore define Graphicalobject to be an abstract class.
All features that are common to all graphical objects (and that are relevant for our
project) are specified in this class. If the programmer needs a new specific shape,
then he or she has to derive a class from GraphicalObject. In this class those
features are implemented that are specific to the shape.

Let us think which features are common to all graphical objects and are also
relevant for the task we have in mind. First of all we should know the place and sige
of a graphical object. These are specified by the left-most, right-most, top-most,
and bottom-most points of the object. This information is important for the project
because we have to scale the drawing. Another feature that all graphical objects
have is colour.

While these features of a graphical object are quite obvious, there are some
more that will prove useful. Each graphical object has to be uniquely identifiable.
Even if two circles have the same centre, radius and colour they are two different
objects. To make graphical objects unique, each one has an integer field called uid
for ‘unique identification number’. If we think of interactively changing a drawing
with the mouse, another concept proves useful. Think of a drawing with many
graphical objects and suppose we want to select one of them with the mouse. Then
one has to link the current mouse position to one of the objects according to some
rule. There are many ways to specify which object is closest to the mouse. The
methods for finding out which object that is can be quite involved. We therefore
define an anchor point for every graphical object. Then one can select an object
by clicking on its anchor point. Even so, two objects might have the same anchor
point, in which case we select one at random. The anchor points are shown in the
drawing as little dots.

A generic graphics package

Another thing we have to consider is the rendering of the graphical objects.
As the programmer can add new kinds of shapes, one cannot set up a drawing
method in advance that works for all of them. Only the programmer knows what
the graphical object has to look like. Therefore, we require that a graphical shape
knows how to draw itself. This concept is implemented by an abstract method
draw in class GraphicalObject. Every (concrete) class derived from it has to
implement this method.

There is, however, a problem here. To actually render the shape, the graphical
object has to know the pixel coordinates in the panel where the drawing is dis-
played. These depend on the panel’s current size and the size of the drawing which,
in turn, depend on other graphical objects in the drawing. The necessary infor-
mation is provided by instances of classes DimensionObject and ScaleObject.
These classes are discussed later.

As an example, the package has three graphical objects that are implemented,
Circle, Line and OpenPolygon. The listing of openPolygon is shown below. The
constructor receives the corner points of the polygon as an array. It is checked
whether the array contains at least two points. If this is the case, the array is
traversed to find the extremal coordinates. A DimensionObject with these coor-
dinates is created. The reference point for the object — the anchor — is defined to
be the first point.

The draw method receives a reference to a Graphics object and a ScaleOb-
ject. The latter contains the information on the current size of the display. This
information is used to transfer the abstract real coordinates of the polygon into
screen (pixel) coordinates. Conversion routines are provided by methods of the
utility class Conversions. The pixel coordinates are then used to draw the polygon
as a sequence of line segments. Class OpenPolygon provides a method textString
which returns a textual description of the polygon.

File: its/GenericDraw/OpenPolygon. java

package its.GenericDraw;

import java.awt.Graphics;

public class OpenPolygon extends GraphicalObject {
private RealPoint[] points;

public OpenPolygon (RealPoint[] pts) {
points = pts;
if (points.length < 2){
System.out.println ("ERROR in OpenPolygon: less than two points.");
}
else
{
double xmin = points[0].getX();
double xmax = points[0].getX();

251

VPN LD

—
e

11.

252

18.
19.
20.
21.
22.
23.
24.
25.

37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

Advanced topics

double ymin = points[0].getY();

double ymax = points[0].getY();
for (int i1 = 1; i < points.length; i++) {
xmin = Math.min(xmin,points[i].getX());
xmax = Math.max (xmax,points[i].getX());
ymin = Math.min(ymin,points[i].getY());
ymax = Math.max (ymax,points[i].getY());
}
dimObj = new DimensionObject (xmin,xmax,ymin,ymax) ;

anchor = points[0];

public void draw(Graphics g, ScaleObject scale) {
PixelPoint startPix = Conversions.realToPixelPoint (points([0], scale);
g.setColor (color) ;
for (int i = 0; i < points.length; i++) {
PixelPoint endPix = Conversions.realToPixelPoint (points[i], scale);
g.drawLine (startPix.getX(),startPix.get¥Y (),
endPix.getX(),endPix.getY()) ;

startPix = endPix;
}
}
public String textString () {
String result = "Open Polygon: "+points[0].toString();
for (int i = 1; i < points.length; i++) {
result += ";"+points[i].toString();

}
return (result) ;
}
}

21.2.3 [] Class GenericDrawPanel

Class GenericDrawPanel is derived from Jpanel and displays the drawing. A pro-
grammer who wants to use the GenericDrawing package has to know about this
class. GenericDrawPanel keeps the abstract representation of the drawing in an
instance of class Drawing. GenericDrawPanel also provides methods to add and
delete graphical objects. These methods only call the corresponding methods of
class Drawing. The paintComponent method of GenericbrawPanel calls the draw
method of class Drawing.

A mouse adapter is implemented as internal class GenericDrawMouseAdapter.
It supports two operations: if the right mouse button is clicked inside the panel,
then the graphical object whose anchor is closest to the mouse position is removed
from the drawing. If the left mouse button is clicked once, the mouse position is

A generic graphics package

remembered. If it is clicked a second time, a line between the mouse positions
of the two clicks is added to the drawing. The functions of the adapter can be
changed or extended by the programmer.

21.3 M Helper classes

The helper classes provide data types that support the operations of our project.
At first we define two classes for points in the two-dimensional plane. One defines
points in coordinates that are real numbers. The other class defines points in pixel
coordinates. There are methods to convert real coordinates into pixel coordinates
based on the size of the drawing and the panel to display it.

21.3.1 [l Constants

We define a class constants which contains the definition of some fixed values
that are used by one or more classes of the package. These include the width of
the margins around the drawing. The class also defines some boolean variables
which determine the appearance of the drawing, e.g. whether the anchor points
are drawn or whether the drawing is displayed in proportional model.

21.3.2 [Real and pixel points

The classes RealPoint and PixelPoint each store fields x and y. These are the
x- and y-coordinates of the point. The first class uses double and second one int.
The constructor of the pixel points checks that the coordinates are non-negative.
Both classes provide get-methods to access the fields.

File: its/GenericDraw/PixelPoint. java
package its.GenericDraw;

public class PixelPoint{

private int x, y;

public PixelPoint (int xx, int yvy) {
if ((xx >= 0) && (yy >= 0)){

X = XX;
Y = YYi
}

else

{
System.out.println("ERROR: Illegal pixel coordinates.");
}

253

VPN

—
N o= o

13.

254 Advanced topics

17. public int getX(){

18. return (x) ;

19. }

20.

21. public int getY () {

22. return(y) ;

23. }

24.

25. public String toString() {
26. return (" ["+x+";"+y+"]");
27. }

28. }//class

File: its/GenericDraw/RealPoint.java

1. package its.GenericDraw;

2

3. public class RealPoint{

4. private double x, y;

5

6. public RealPoint (double xx, double vvy) {
7. X = XX;

8. Y = VY

9. }
10.

11. public double getX() {

12. return (x) ;
13. }

14.

15. public double getY () {

16. return(y) ;

17. }

18.

19. public double distanceTo(RealPoint p) {
20. return (Math.sgrt (Math.pow((this.x-p.x),2)+Math.pow((this.y-p.v),2)));
21. }
22.
23. public String toString() {
24. return (" ("+x+";"+y+")");
25. }

26. }//class

We shall use real points for the abstract specification of geometric objects. When-
ever such an object has to be rendered, the real points are converted into pixel
coordinates. The pixel coordinates are computed in such a way that the whole

A generic graphics package

drawing fits into the panel. Actually we want to have a small margin around the
drawing in the panel. We allow the margin to be different at the four edges. The
following data are needed to compute this conversion:

KXpnin minimal x-coordinate of the drawing double
Xnax maximal a-coordinate of the drawing double
Vmin minimal y-coordinate of the drawing double
Vmax maximal y-coordinate of the drawing double
w width of the panel in pixels int
h height of the panel in pixels int
l width of the left margin around the drawing in pixels int
r width of the right margin around the drawing in pixels int
t width of the top margin around the drawing in pixels int
b width of the bottom margin around the drawing in pixels int

Then the usable width and height of the panel without the margins are w, =
w —1 —rand h, = h —t —b. We now compute the factors f, and f, by which the
drawing has to be scaled horizontally and vertically to fit into the margins.

fro = wu/(Xax — Xoin) factor for horizontal scaling double
Sy = Wi/ (Vmax — Ymin) factor for vertical scaling double
S =min{f,, f,} factor for proportional scaling double

Then, to convert a real point Prew = (Xveal, Yrew) into the pixel point Py =
(%pixs Vpix), One uses the following formulas. Note that we have to reflect the y-
coordinate because the screen coordinate system is upside down. The L-shaped
brackets stand for downward rounding to the nearest integer.

Xpix = I_(xreal - xmin) : fx +1]
Ypix = [= ((Vreat — Ymin) - fy +1t)]

In case of a proportional scaling, f is used instead of both f, and f).

21.3.3 [Dimension objects

Every GraphicalObject contains an instance of a DimensionObject. The dimen-
sion object contains the extremal coordinates of the graphical object. These are the
minimal and maximal x- and y-coordinates of the object. For every class derived
from GraphicalObject, the programmer has to make sure that these values are
correctly set. See the listing of class openPolygon for an example.

The instances of Drawing also contain a DimensionObject called
extremalDimensions. It contains the extremal dimension of the whole drawing,
e.g. the minimum x-coordinate of any graphical object in the drawing. The values
of extremalDimensions have to be updated when a new graphical object is added
or deleted. When a new shape is added, one only has to check whether one of its
dimensions gives a new extremum. Class DimensionObject provides a method,

255

256

Advanced topics

combinewith, for doing this. This method compares the minima of this and the
DimensionObject given as an argument, and sets the minima to the smaller of
the values. The update of the maxima is done in an analogous way. If a graphical
object is deleted from the drawing the update of extremalDimensions is more dif-
ficult. If one of the values of extremalDimensions, say the minimal x-coordinate,
comes from the deleted object, then one has to find that object of the drawing
that now has minimal x-coordinate. We do this by re-computing the values of ex-
tremalDimensions from scratch. That is, we screen all graphical objects in the
drawing to determine the new extremal values. There are more efficient ways of
updating the values after a deletion but they require elaborate data structures, the
implementation of which would occult the structure of the package.

(@

(b)

Figure 21.1 The test application GenericDrawingDemo. (a) In proportional mode, i.e. both
coordinate axes have the same scale — circles appear as circles. (b) In non-proportional mode,
i.e. sized to fill the panel — circles might appear as ellipses

A generic graphics package

21.3.4 [Conversions and scale objects

The class conversions provides methods to convert between pixel and real coor-
dinates. To this end the methods have to know the relevant parameters, e.g. the
dimensions of the drawing and the size of the panel. These values are supplied in
an object of class Scaleobject. The conversion methods expect a pixel or real
point and a scale object as arguments. They compute the coordinates of the real
or pixel point, respectively, from the point they received and return this.

Whenever a re-drawing of the panel is initiated, the parameters of the scale
object are set to the current values by class Drawing. The draw-methods of the
classes derived from GraphicalObject receive the scale object as a parameter.
The coordinates of the graphical objects are real coordinates. With the scale object
at hand, the conversions can be used to convert those to the pixel coordinates
needed for drawing into the panel.

Two screen shots of a test application GenericDrawingDemo are shown in
Figure 21.1.

257

Displaying HTML 22
documents and
accessing the web

We now discuss how HTML-formatted text is displayed in Swing components. \We
shall first show how files containing HTML text can be displayed. Then we show how
to make a simple browser which can access and display HTML-formatted web pages.

In Chapters 12 and 18 we saw how ASCII texts can be displayed and edited. An-
other commonly used text type is HTML (HyperText Mark-up Language). Prac-
tically all web pages are HTML-formatted and so are many software manuals that
are supplied on a CD. Files with HTML-formatted text are ASCII files that contain
the text to be displayed and additional formatting instructions. These instructions,
called HTML-tags, are enclosed in less-than and greater-than signs. For example,
the sequence

<center>HTML and Swing</center>

means that the text ‘HTML and Swing’ is displayed in a horizontally centred fash-
ion. When loading an HTML file into a Swing component for ASCII text, no format-
ting is done; the HTML-tags are shown as they appear in the text. The programs
that display HTML text in a formatted fashion have to interpret the HTML-tags,
and display the remaining text as required by these formatting instructions. Such
programs are, for example, web browsers.

We do not have to write an HTML interpreter ourselves to format HTML text.
The Swing library contains components with a built-in HTML interpreter, e.g. JEd-
itorPane. These components can display most HTML documents in a formatted
fashion. One has to be aware that the HTML specification has changed a number
of times, in particular new HTML-tags were added which allow more sophisticated
formatting. The HTML interpreter of Java knows the tags of a specific version of
HTML; newer or non-standardized formatting instructions are ignored. Thus the
Swing components might display some new, ‘stylish’ web pages somewhat differ-
ently from a standard web browser.

22.1 M Displaying an HTML page

We present a program SimpleHTMLFrame which uses a JEditorPane to display
HTML text. The editor pane receives a URL (uniform resource locator) in the

Displaying HTML documents and accessing the web

constructor. A URL is a web address. One can use class URL for this purpose, or
one can just pass on the URL as a string. The constructors have the following
form:

JEditorPane (URL webAddress)
JEditorPane (String webAddressAsString)

These constructors have to be embedded into a try-catch block, because gener-
ating a URL can throw an exception. To access a local file, the URL has to start
with file:/// instead of http://. We use a local file in our example because
then the program works without a connection to the Internet. If the computer is
connected to the Internet, one can use the following URL:

http://www.imm.dtu.dk/swingbook/HTMLTest/testl.html

We are only interested in displaying HTML and do not allow the text to be edited
using method setEditable (false) of JEditorPane.

File: its/HTML/SimpleHTMLFrame. java
package its.HTML;

import its.SimpleFrame.SimpleFrame;

import javax.swing.JEditorPane;

public class SimpleHTMLFrame extends SimpleFrame

{
private JEditorPane ediPane;
private static String htmlSource = "/its/TestData/testl.html";
private static String workingDir;

public SimpleHTMLFrame (String URLname)
{
this.setSize(400,400);
workingDir = System.getProperty("user.dir");
// in the following we assume that the program
// 1s run from the parent directory of its.
// Use an absolute path if necessary:
try{
ediPane = new JEditorPane("file:///"+workingDir+htmlSource) ;
// ediPane = new JEditorPane
("file:///C:/absolute/path//its/TestData/
ediPane.setEditable (false) ;
} catch(Exception e) {}
// Later, the code for the link listener will be added here.
this.getContentPane () .add(ediPane) ;

259

I N

o @

e O et
R B e

20.
21.

22.
23.
24.
25.
26.

260

28.
29.
30.
31.
32.
33.

Advanced topics

public static void main(String[] args) {
SimpleHTMLFrame shf = new SimpleHTMLFrame (htmlSource) ;
shf.showIt ("Simple HTML-Display") ;
}

// Later, the link listener class will be defined here.

Program simpleHTMLFrame displays a single HTML document but it does not use
the most important HTML feature: links (HTML hyperlinks). When clicking on a
link, nothing happens. In the next section we see how links can be followed.

22.2 M Using HTML links

In order to trigger a reaction when clicking on a link we need a listener. In Java the
interface HyperlinkListener is responsible for monitoring HTML hyperlinks. It
is found in the javax.swing.event library and requires the implementation of a
single method:

void hyperlinkUpdate (HyperlinkEvent hylevt)

The listener is assigned to that component which displays the HTML document, in
our case the JEditorPanel ediPane. The listener is assigned using the following
command:

ediPane.addHyperlinkListener (HyperlinkListener hyLis)

After the listener is assigned to the panel, it is notified by the runtime system if a
link is clicked on, i.e. its hyperlinkUpdate method is called. The runtime system
also generates a HyperlinkEvent object and passes it to hyperlinkUpdate as an
argument.

The programmer has to insert the code into hyperlinkUpdate which is to be
executed as a reaction to selecting the link. In our example we want to display that
page to which the link refers. We first check whether the event type is ACTIVATED,
i.e. whether the link has been selected. Other event types are ENTERED and EXITED.
This test is done by inspecting the hyperlink event object hylevt

if (hylevt.getEventType () == HyperlinkEvent.EventType.ACTIVATED)
Next, we extract the URL to which the link is pointing:

URL newPage = hylevt.getURL()
Then this URL is passed to the editor pane by:

ediPanel .setPage (newPage)

The new web page is displayed in the editor pane. Methods that access web
pages can throw exceptions, therefore calls of such methods have to be embedded
into try-catch blocks. In our example, we write a message to the console if an

Displaying HTML documents and accessing the web

exception occurs. In a serious application, an error diagnosis should be performed
and a repair should be started.

To enable links, we augment class SimpleHTMLFrame to HTMLViewer by adding
code at two positions indicated by comments in SimpleHTMLFrame. At the first
position we add

LinkLis 1ili = new LinkLis();

ediPane.addHyperlinkListener (1ili) ;

At the second position we add the implementation of the hyperlink listener as an
internal class:

private class LinkLis implements HyperlinkListener
{
public void hyperlinkUpdate (HyperlinkEvent hylevt)
{
try
{
if (hylevt.getEventType() == HyperlinkEvent.EventType.ACTIVATED)
{
URL newPage = hylevt.getURL() ;
ediPane.setPage (newPage) ;
}
}
catch (Exception ex)
{
System.out.println("Problems with hyperlink-listener");
}
}// method

}// internal class

We do not list the resulting program HTMLViewer; it can be downloaded from the
book’s home page. It can, for example, be used to display HTML-formatted help or
manual pages. Still, we miss some features when using the viewer. One of them is
a ‘Back’-function which re-displays the previous HTML page. In the next section
we shall extend the viewer to a simple web browser which contains this feature.

22.3 W A simple web browser

We now extend the application of the previous section to a simple web browser.
Recall that HTML-formatted web pages can be displayed only in the way that is
supported by the HTML interpreter of the current Java system. The application
lacks a number of security checks that should be added when used for other
purposes.

Our application ITSBrowser uses a JEditorPane to display the web pages. The
pane is embedded into a scroll pane, so that large pages can also be displayed. The
scroll pane is centrally embedded into a frame. Our browser has some control

261

262

17.
18.
19.

Advanced topics

elements which are arranged in a panel called ToolPanel. There is a text field for
entering a URL and two buttons labelled ‘GO!’ and ‘Back’. When pressing the first
one, the browser loads the web page specified in the text field. One can navigate
through the web following links. The browser keeps a record of the previous pages.
Pressing the ‘Back’-button makes the browser return to the web page from which
the currently displayed page had been reached. Going back stops when we get
back to the page whose URL had been directly entered into the text field.

The history of recently visited web pages is stored in a stack, a data structure
which stores data like a stack of paper. New data can be placed on the top of the
stack and only the topmost data can be taken from the stack. Assume we first look
at web page Wy which contains a link to page W>. We use this link to get to W-.
Then the address (URL) of W7 is put on top of the stack. If W5 contains a link to
page W3 and we use this link, then the address W5 is put on the stack. Using the
‘Back’-button of our browser will cause the application to remove the top-most
address (W>) from the stack and display the corresponding page. After that, W,
is the top-most address on the stack. Using the ‘Back’-button again will therefore
cause the application to remove the address of W; from the stack and display it.

The ‘GO!’- and ‘Back’-buttons of our application are monitored by a Button-
Listener which implements the interface ActionListener and performs the de-
sired actions if one of the buttons is pressed. The hyperlinks are monitored by class
LinkLis which implements a HyperlinkListener like in the previous section.

The application is listed below. It can be tested by using the following URL:

http://www.imm.dtu.dk/swingbook/HTMLTest/testl.html

File: its/HTML/Browser.java
package its.HTML;

import its.SimpleFrame.SimpleFrame;
import java.awt.*;

import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.net.URL;

import java.util.Stack;

import javax.swing.*;

import javax.swing.event.HyperlinkEvent;

import javax.swing.event.HyperlinkListener;

public class Browser extends SimpleFrame
{
private JEditorPane ediPane;
private static String startURL =
"http://www.imm.dtu.dk/swingbook/HTMLTest/testl.html";
private ToolPanel tools;
private Stack urlStack;

Displaying HTML documents and accessing the web

public Browser (String URLname)

{
this.setSize(600,600);
urlStack = new Stack();
ediPane = new JEditorPane() ;
ediPane.setEditable (false) ;

ediPane.setMinimumSize (new Dimension(600,600)) ;

LinkLis 1ili = new LinkLis();
tools = new ToolPanel (URLname) ;
ediPane.addHyperlinkListener (1ili) ;
this.getContentPane () .add(tools, BorderLayout .NORTH) ;
this.getContentPane() .
add (new JScrollPane (ediPane) ,BorderLayout.CENTER) ;
}
public static void main(String[] args)
{
Browser brow = new Browser (startURL) ;

brow.showIt ("ITS-Browser") ;

private class LinkLis implements HyperlinkListener
{
public void hyperlinkUpdate (HyperlinkEvent hyevt)

{
try
{
if (hyevt.getEventType() == HyperlinkEvent.EventType.ACTIVATED)
{
URL t = ediPane.getPage() ;
urlStack.push(t) ;
ediPane.setPage (hyevt.getURL()) ;
}
}
catch (Exception ex)
{
System.out.println("Problems with hyperlink listener");
}
}// method

}// internal class

private class ToolPanel extends JPanel{
private JTextField urlField;
private JButton backButton, goButton;

public ToolPanel (String URLname) {
this.setLayout (new FlowLayout()) ;

263

32

264

66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
7.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.
110.
111.

Advanced topics

urlField = new JTextField() ;
urlField.setText (URLname) ;

backButton = new JButton("Back");
goButton = new JButton ("GO!") ;
JLabel ulab = new JLabel (" URL:") ;

urlField.setPreferredSize (new Dimension (300,30));
this.add (backButton) ;
this.add (ulab) ;

this.add

(
(
(urlField) ;
(

this.add (goButton) ;

ButtonListener buli = new ButtonListener();

backButton.addActionListener (buli) ;

goButton.addActionListener (buli) ;

}//constructor

public String getURL() {
return (urlField.getText () .trim()) ;

}

}// internal class

private class ButtonListener implements ActionListener{

public void actionPerformed (ActionEvent actevt) {

String command = actevt.getActionCommand() ;

if (command.equals ("Back"))

{

}

if (urlStack.size() > 0)
{
URL url = (URL)urlStack.pop() ;
try
{
ediPane.setPage (url) ;
}
catch (Exception ex)

{

System.out.println("Problem in Back:

else if (command.equals("GO!"))

{

try

{
URL url = new URL(tools.getURL()) ;
urlStack.removeAllElements () ;

ediPane.setPage (url) ;

URL not found.");

Displaying HTML documents and accessing the web

catch (Exception ex)
{
System.out.println("Problem in GO!: URL not found.");
}
}Y//ifelse
}//method
}// internal class

}

22.4 M Reading a web page

In the previous section we saw how HTML pages can displayed in a formatted way.
Now we show how the source code of a web page can be read. This is useful if the
application has to read and process information from the page. An example for
extracting information from the web is given in the next section.

Our non-graphical program ReadURL accesses a web page and writes its source
code to the console. We use one of the test pages for this book, namely:

http://www.imm.dtu.dk/swingbook/HTMLTest/testl.html

In our application we create a URL-object with this address. Then an InputStream
for reading from that URL is created. This is done by using method openStream()
of class URL. We then use method read () of class InputStream to read the source
of the HTML page character by character. Each character is immediately written
to the console. The code of ReadURL and the resulting console output are listed
below.

File: its/onlineMonitor/ReadURL. java
package its.OnlineMonitor;

import java.io.InputStream;

import java.net.URL;
public class ReadURL {

private static String immURL =
"http://www.imm.dtu.dk/swingbook/HTMLTest/testl.html";

public static void main(String[] args) {

readAndPrintTheURL (immURL) ;

public static void readAndPrintTheURL (String urlName) {
// Create a URL

265

112.
113.
114.
115.
116.
117.
118.
119.

B

10.
11.
12.
13.
14.

266 Advanced topics

16. URL urlToRead = null;

17. try {

18. urlToRead = new URL(urlName) ;
19. }

20. catch (Exception ex) {

21. ex.printStackTrace () ;

22. }

23. // Read and the URL characterwise
24. // and print it to the console.
25. if (urlToRead != null) {

26. try { // Open the streams

27. InputStream inputStream = urlToRead.openStream() ;
28. int ¢ = inputStream.read() ;

29. while (¢ != -1) {

30. System.out.print ((char)c) ;
31. c = inputStream.read() ;

32. }

33. inputStream.close() ;

34. }catch (Exception e) {System.out.println("Problem reading from URL");}
35. }

36. }

37. 1}

The source code of the web page that appears on the console looks like this

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<HTML>

<HEAD>

<TITLE></TITLE>

<META NAME="Generator" CONTENT="Winedit 2000">
<META NAME="Author" CONTENT="Paul Fischer">

</HEAD>

<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#FF0000" VLINK="#800000"
ALINK="#FFOOFF" BACKGROUND="?">

<H1> TEST HTML-Document</H1>

This is the first page.

<p>

Link to the next page.
</BODY>

</HTML>

Displaying HTML documents and accessing the web

22.5 MW Harvesting information from the web

Let us now extend the application from the previous section to continuously har-
vest information from the web. In our example application we want to display
stock market information, the German stock index DAX. Such information can
be found on many web pages. We use a web page provided by Yahoo. At the time
the book was prepared the address was:

http://de.finance.yahoo.com/d/quotes.csv

It contains the quotes of the DAX and the 30 stocks included in this index. The web
address might change, so one has to check this and change it if necessary. The page
is formatted as so-called comma-separated values (csv). The actual separator,
however, is a semicolon. This format is suited to be imported into spreadsheet
programs. We use this page because it is easier to analyse than HTML. Every line
contains the information on one stock. A line on this page looks like this:

"GDAXI;4016,52;1/13/2004;15:58;+20,61;4006,85;4033,67;4003,19;78199616

It contains — separated by semicolons — the name of the index, its recent value,
date and time of the value and information on the change, highest and lowest
values, ete. The page is regularly updated, approximately every 30 seconds. Our
application extracts the recent value from the line; in the above example this is
4016.52. In our application we use a so-called web query which allows the line
containing the DAX information to be extracted.! We do not discuss the HTTP
protocol or web queries here. The reader is referred to corresponding manuals
and tutorials which are available on the web.

The application reads this web page every five seconds, extracts the current
DAX value and updates the display. The quotes are displayed as a graph that
is extended to the right. We do not want the display to be blocked while the
application waits five seconds before fetching the next value. Therefore, we define
a thread for accessing the web. This runs in parallel to the main thread which
handles the GUI. Only the thread class MonitorThread is listed below.

The run-method of MonitorThread consists of a while-loop. The condition
for the while-loop is a boolean variable goon. This can be set to false by call-
ing method stopThread. Then, the next time the while condition is checked
the loop is terminated, which also terminates the thread. In the loop, the
method getoneQuote is called and then the thread pauses five seconds. Method
getOneQuote is a modification of readandPrintTheURL from the previous section.
It uses a BufferedrReader to read the line with the information on the DAX.
The private method getQuoteFromString parses this line and extracts the re-
cent value of the DAX index as a double. This value is then passed to the display
panel.

The application consists of three more classes MonitorData, MonitorPanel
and onlineMonitor. The first one implements the data model. It provides methods

1 If the information is contained in an HTML page, we would have to analyse the page and
write an appropriate parser to extract the desired information.

267

268

14.
15.

Advanced topics

Figure 22.1 The online monitor for the DAX stock index

to add new data, access the present data, and to get information necessary for
scaling the data so it fits into the display. The display is implemented in class
MonitorPanel which is derived from Jranel. Class OnlineMonitor is derived
from JFrame. It has a MonitorPanel embedded and also contains the main-method

for starting the application. A screen shot is shown in Figure 22.1.

File: its/onlineMonitor/MonitorThread.java

package its.OnlineMonitor;

import
import
import

import

java.
java.
java.

java.

io.BufferedReader;
io.InputStreamReader;
net.URL;

util.StringTokenizer;

public class MonitorThread extends Thread({

private static final long delay = 5000;

private String yahooDax =

"http://de.finance.yahoo.com/d/quotes.csv?s=@"GDAXI&"+
"f=slldltlclohgv&e=.csv";

private MonitorPanel moniPane;

private boolean goOn;

16.

17.
18.
19.
20.

public MonitorThread (MonitorPanel mp) {

moniPane

goOn

21.

= mp;

= true;

Displaying HTML documents and accessing the web

public wvoid run() {
while (goOn) {
getOneQuote (yahooDax) ;
try {
Thread.sleep (delay) ;
}
catch (Exception ex) {
ex.printStackTrace () ;
Y/ /try
}//while
System.out.println("Thread stopped") ;

public void stopThread() {

goOn = false;

private double getOneQuote (String urlName)
{
URL urlToRead = null;
try {
urlToRead = new URL (urlName) ;
}
catch (Exception ex) {
ex.printStackTrace() ;
}
try { // Open the streams
InputStreamReader inputReader =
new InputStreamReader (urlToRead.openStream()) ;
BufferedReader urlReader = new BufferedReader (inputReader) ;
String line = urlReader.readLine();
System.out.println(">"+line+"<");
double guote = getQuoteFromString(line) ;
moniPane.addData (quote) ;
}catch (Exception e) {System.out.println("Problem in URLReader") ;}
return(1.0);
}

private static double getQuoteFromString(String str) {
String quoteString;
String euro,cent;

StringTokenizer stok = new StringTokenizer (str,";");

stok.nextToken(); // skip 7 "GDAXI”
quoteString = stok.nextToken(); // get quote as “"eeee,cc”
StringTokenizer stok2 = mew StringTokenizer (quoteString,",\"");

euro = stok2.nextToken() ;

269

32.
33.
34.
35.
36.
37.
38.

40.

S
=

S
N

S
©

S
AN

=
~

S
@

S
0

oy
e

=

™

b

o oul Ul Ul Ul
©

w

o

®

[0 BNV Y|
-~

R

o
=

o)
=

o
o

o
©

A
o G

270 Advanced topics

67. cent = stok2.nextToken() ;

68. int e = Integer.parselnt (euro) ;

69. int ¢ = Integer.parselnt (cent);

70.

71. return ((double) e+ (double)c/Math.pow (10, ((double) (cent.length()))));
72.

73.)

Applets

Applets are used when a program is designed to run in a browser. Applets replace
frames in web applications. The applet is linked to an HTML page. Whenever this
HTML page is made visible in a browser, the applet is loaded over the net and runs
in the browser.

All the examples we have looked at so far have been based on frames, which are
shown on the screen. These programs, running on the local machine, are called
applications. Applets allow programs to run in a browser. Users everywhere on
the web can fetch the applet and run it on their machines. Applets are like frames
in that one can embed other graphical components into them. On the other hand
one cannot make them visible and run by themselves. They need to be linked to
an HTML page. Then if that page is displayed in a browser, the applet is started and
can be seen in the browser. Another difference between applications and applets
is that applets are not allowed to do certain things. For example an applet may
not write or read files on the machine it is running on. This is to protect users
who run an applet found on some web page on their computers. We only present
a very simple way to use applets. There are more issues the programmer should
consider when writing an applet for a serious application.

23.1 MW Applets in Swing

Class Japplet implements the applet concept in Swing. As mentioned above,
applets are similar to frames, because they have a content pane into which other
components can be embedded. Thus one uses the following command to embed
a component comp into an applet:

getContentPane () .add (comp)

There is a difference between frames and applets. While the embedding is usually
done in the constructor of a frame, it is done in method init of the applet. Also,
an applet is not directly started by the user. Instead it is externally started by the
browser, when the corresponding web page is loaded. An applet has to be linked
to the HTML page that displays it. We shall call this page the master page of the

272

1

Advanced topics

applet. When the master page is loaded, the browser fetches the code of the applet
(its class file) and starts the Java runtime system to execute the code.

Applets are driven by four methods, which we explain below. Even though
applets can have a constructor, it should not be used.

public void init()
public void start()
public void stop()
public void destroy ()

init () is automatically called by the browser when the master page is loaded
into the browser for the first time after the browser has started. This method
replaces the constructor. All the code for embedding other components initial-
izing variables, etc., should go here. This method is only executed once in the
applet’s life.

start () is automatically called by the browser after the init has finished. It is
also called when the user returns to the master page after having looked at other
pages without shutting the browser down. The code for resuming interrupted
work should go here.

stop () is automatically called by the browser when the user leaves the master
page without shutting the browser down. As the applet is paused, all code for
interrupting the computations should go here. Some browsers also call destroy
at this point. Then the applet is terminated. It is restarted using init when the
user returns to this page.

destroy () is automatically called by the browser just before the applet is termi-
nated. All code for the final clean-up should go here.

In our examples we only put real code into the init method. The other three
methods contain only print commands. The result of these commands will appear
on the Java console. The Java console is a program that comes with the Java plug-
ins for browsers. How it is activated depends on the browser and the operating
system. In recent versions of Windows one can find it in Start -> Settings ->
Java Plug-in.

23.1.1 [A counter applet

In our first example we reuse the CounterpPanel from Chapter 3. Such a panel is
glued centrally into the applet. No further code is needed, because a CounterPanel
supplies all functions of a counter. We list the program below.

File: its/Applet/Counterapplet.java

. package its.Applet;

2

3

. import javax.swing.JApplet;

Applets 273

import its.CounterGUI.CounterPanel; 4.
import java.awt.BorderLayout; 5.
6.

public class CounterApplet extends JApplet { 7.
8.

public void init () { 9.
CounterPanel cPane = new CounterPanel () ; 10
this.getContentPane () .add (cPane, BorderLayout .CENTER) ; 11.

} 12.
13.

public void start () { 14
System.out.println("Start"); 15.

} 16.
17.

public void stop () { 18
System.out.println("Stop") ; 19.

} 20.
21.

public void destroy () { 22
System.out.println("Destroy") ; 23

} 24.
25.

26.

} 27.

To make the applet run, it must be embedded in an HTML page. This is done by
inserting an applet tag (<APPLET>) into the page. In the tag one has to specify where
the applet’s class files are found (CODE), its width (wIDTH) and height (HEIGHT). The
value of the CODE parameter is the path to the class files. If packages are used the
path has to reflect their structure. Also all classes used by the applet have to
be there in our example; this includes some classes from the its.CounterGul
package. Here is the directory structure needed for the example:

its/Applet/CounterApplet.class
its/CounterGUI/CounterModel.class
its/CounterGUI/CounterPanel.class

its/CounterGUI/CounterListener.class

Our HTML page has the minimum structure; HTML-tags have many more for-
matting capabilities. The page looks like this:

<html>

<head>

<title>
Counter Applet
</title>
</head>

274

1

Advanced topics

Figure 23.1 The counter applet as it appears in a browser

<body>

<h2>This is the counter applet.</h2>

<APPLET CODE="its.Applet.CounterApplet.class" WIDTH="200" HEIGHT="100">
</APPLET>

</body>

</html>

The page is placed in the directory right above the its directory which contains
the class files. This page can also be reached from the book’s home page. You can
follow the link to the applet from there or type the following line in your browser
to load the page and run the applet. The result is shown in Figure 23.1.

http://www.imm.dtu.dk/swingbook/AppletTest/CounterDemo.html

23.1.2 [An applet running a thread

The second example is an applet displaying a timer which is incremented every
half second. The timer is run in a thread of type TimerThread in order to avoid
blocking the applet. A panel (TimerpPanel) is used to display the current value
of the timer. The thread updates the panel every half second. The applet class is
called Timerapplet. The listings are shown below.

File: its/Applet/TimerThread. java

. package its.Applet;

2

3

. public class TimerThread extends Thread {

4

Applets 275

private int time; 5.

private TimerPanel timerPane; 6.

7.

public TimerThread (TimerPanel tp) { 8.

time = 0; 9.

timerPane = tp; 10.

} 11.

12.

public void run() { 13.

while (true) { 14.

try { 15.

Thread.sleep (500L) ; 16.

time += 500; 17.

System.out.println("Running "+time) ; 18.

timerPane.setTime (time) ; 19.

} 20.

catch (InterruptedException ex) { 21.

} 22.

} 23.

} 24.

} 25.
File: its/Applet/TimerPanel . java

package its.Applet; 1.

2.

import javax.swing.JPanel; 3.

import java.awt.Color; 4.

import java.awt.Graphics; 5.

6.

public class TimerPanel extends JPanel ({ 7.

8.

private int time; 9.

10.

public TimerPanel () { 11.

this.setBackground(Color.yellow) ; 12.

time = 0; 13.

} 14.

15.

public void paintComponent (Graphics g) { 16.

super .paintComponent (g) ; 17.

g.drawString (Integer.toString (time), 50,50); 18.

} 19.

20.

21.

276 Advanced topics

22. public void setTime (int t) {
23. time = t;

24. this.repaint () ;

25. }

26.

27.

28.

29. }

File: its/Applet/TimerApplet.java
. package its.Applet;

1
2
3. import javax.swing.JApplet;
4

. import java.awt.BorderLayout;

6. public class TimerApplet extends JApplet {
7

8. private TimerThread timer;

9

10. public void init () {

11. TimerPanel timerPane = new TimerPanel () ;
12. timer = new TimerThread(timerPane) ;
13. this.getContentPane () .add(timerPane, BorderLayout .CENTER) ;
14. timer.start();

15. }

16.

17. public void start () {

18. System.out.println("Start");

19. }

20.

21. public void stop () {

22. System.out.println("Stop") ;

23. }

24.

25. public void destroy () {

26. System.out.println("Destroy") ;

27. }

28. }

23.1.3 [l Remarks

The Java SDK contains an applet viewer, a program that can display an applet
without using a browser. This is helpful when developing and testing an applet.

Applets

Sometimes one is making a project which should be used both as an application
and as an applet. It is then advisable to use a panel into which all components of
the GUI are embedded. One just has to embed this single panel into a frame or

an applet to get the desired type of program. The CounterPanel is an example of
such a modular design.

277

Solutions to

selected exercises

A.1 B Chapter 2

A1.1 [

Both windows close. The reason is that clicking the close button of a SimpleFrame
results in the command System.exit (0). This terminates the application, i.e. the
program that contains the main-method. In our case this is SimpleFrameDriver.
As both frames are constructed there, both are terminated.

A1.2 [

The present border components extend to fill the whole area.

2.1

2.2

A.2 B Chapter4

A21 [

The following listings of the package its.Light contain a traffic light simulation

4.2

in a model-view implementation.

File: its/Light/Constants.java

package its.Light;

public class Constants {

public
public
public
public

static final
static final
static final
static final

int
int
int

int

LIGHT_RED
LIGHT_RED_ORANGE
LIGHT_GREEN
LIGHT_ORANGE

s W N

Nk LN

o @

280 Appendices

File: its/Light/LightModel . java
. package its.Light;

1
2
3. public class LightModel {
4

private int currentColors;

6

7. public LightModel () {

8. currentColors = Constants.LIGHT_ RED;

9. }

10.

11. public void nextColor () {

12. switch (currentColors) {

13. case Constants.LIGHT_ RED:

14. currentColors = Constants.LIGHT_RED_ORANGE;
15. break;

16. case Constants.LIGHT_ RED_ORANGE:

17. currentColors = Constants.LIGHT GREEN;
18. break;

19. case Constants.LIGHT GREEN:

20. currentColors = Constants.LIGHT_ ORANGE;
21. break;

22. case Constants.LIGHT_ORANGE:

23. currentColors = Constants.LIGHT_RED;
24. break;

25. default:

26. System.out.println ("ERROR: ILLEGAL COLOR COMBINATION!") ;
27. break;

28. }

29. 1}
30.
31. public int getCurrentColors () {
32. return (currentColors) ;
33. }

34.

35.

36. public void printColor () {

37. switch (currentColors) {

38. case Constants.LIGHT RED:

39. System.out.println ("RED") ;

40. break;

41. case Constants.LIGHT_RED_ORANGE:

42. System.out.println ("RED&ORANGE") ;

43. break;

44. case Constants.LIGHT GREEN:

Solutions to selected exercises

System.out.println ("GREEN") ;
break;
case Constants.LIGHT_ORANGE:

System.out.println ("ORANGE") ;

break;
default:

System.out.println ("ERROR: ILLEGAL COLOR COMBINATION!") ;
break;

|90 O B]
98] —

U

File: its/Light/LightTest.java
package its.Light;

public class LightTest {
public static void main(String[] args) {
LightModel light = new LightModel () ;
for (int 1 = 0;1 < 10 ;i++) {
light.printColor () ;
light.nextColor () ;
}//for

File: its/Light/LightFrame.java
package its.Light;

import its.SimpleFrame.SimpleFrame;
import java.awt.Color;

import java.awt.GridLayout;

import javax.swing.JButton;

import javax.swing.JPanel;
public class LightFrame extends SimpleFrame {

private JPanel redPanel, orangePanel, greenPanel;

private LightModel light;

public LightFrame (LightModel 1m) {
light = 1m;

D

281

=

b

O

W o=

ook

Y o N

11.
12.

©uk N

Y o N

10.

12.
13.
14.

282 Appendices

16. this.getContentPane () .setLayout (new GridLayout (4,1));
17. redPanel = new JPanel () ;

18. orangePanel = new JPanel () ;

19. greenPanel = new JPanel () ;

20. JButton nextButton = new JButton ("Next") ;

21. LightListener lightList = new LightListener (this) ;
22. nextButton.addActionListener (lightList) ;

23.

24.

25. this.getContentPane () .add(redPanel) ;

26. this.getContentPane () .add (orangePanel) ;

27. this.getContentPane () .add (greenPanel) ;

28. this.getContentPane () .add (nextButton) ;

29. System.out.println("c="+light.getCurrentColors());
30. setColor (light.getCurrentColors());

31. this.repaint();

32. }

33.

34.

35. private void setColor (int color) {

36. switch (color) ({

37. case Constants.LIGHT RED:

38. redPanel . setBackground (Color.red) ;

39. orangePanel .setBackground (Color.lightGray) ;
40. greenPanel .setBackground (Color.lightGray) ;
41. break;

42. case Constants.LIGHT_RED_ORANGE:

43. redPanel . setBackground (Color.red) ;

44. orangePanel . setBackground (Color.orange) ;
45. greenPanel .setBackground (Color.lightGray) ;
46. break;

47. case Constants.LIGHT GREEN:

48. redPanel . setBackground (Color.lightGray) ;
49. orangePanel . setBackground (Color.lightGray) ;

N
=

greenPanel . setBackground (Color.green) ;

51. break;

52. case Constants.LIGHT ORANGE:

53. redPanel .setBackground (Color.lightGray) ;

54. orangePanel .setBackground (Color.orange) ;

55. greenPanel .setBackground (Color.lightGray) ;

56. break;

57. default:

58. System.out.println ("ERROR: ILLEGAL COLOR COMBINATION!") ;
59. break;

60 }Y//Switch

o
=S
-

Solutions to selected exercises 283

62.
63.
public void showNextColors() { 64
light.nextColor () ; 65.
this.setColor (light.getCurrentColors()) ; 606.
} 67.
} 68.
File: its/Light/LightListener.java
package its.Light; 1.
2.
import java.awt.event.ActionEvent; 3.
import java.awt.event.ActionListener; 4.
5.
public class LightListener implements ActionListener ({ 6.
7.
private LightFrame parentFrame; 8.
public LightListener (LightFrame pf) { 9.
parentFrame = pf; 10.
} 11.
12.
13.
public void actionPerformed(ActionEvent evt) { 14
String actComm = evt.getActionCommand () ; 15.
if (actComm.equals ("Next")) { 16.
parentFrame.showNextColors () ; 17.
} 18.
else 19.
{ 20.
System.out.println ("ILLEGAL COMMAND SOURCE") ; 21.
} 22.
} 23.
24.
25
} 26.
File: its/Light/LightDriver.java
package its.Light; 1.
2
public class LightDriver { 3.
public static void main(String[] args) { 4.
LightModel 1lm = new LightModel () ; 5.

284 Appendices

o

LightFrame 1f = new LightFrame (lm) ;
1f.showIt();
}

-~

o ®

A22 L[] 43

Here is the code in a non-model-view implementation. It is also in one file and
not documented. It works, but one should not program Java like this.

File: its/ColorSelection/ColorSelectionFrame.java

1. package its.ColorSelection;

2

3. import javax.swing.*;

4. import java.awt.Color;

5. import java.awt.GridLayout;

6. import its.SimpleFrame.SimpleFrame;

7. import java.awt.event.*;

8

9

10.

11.

12. public class ColorSelectionFrame extends SimpleFrame {
13.

14. private JPanel colPanel;

15. private JButton redBut, blueBut, yellowBut;
16.

17.

18. public ColorSelectionFrame () {

19. blueBut = new JButton("blue");

20. redBut = new JButton("red");

21. yvellowBut = new JButton("yellow");

22.

23. ColorListener cList = new ColorListener();
24. blueBut.addActionListener (cList) ;

25. redBut.addActionListener (cList) ;

26. yellowBut.addActionListener (cList) ;

27.

28. colPanel = new JPanel();

29. colPanel.setBackground (Color.gray) ;

30.

31. GridLayout gLayout = mnew GridLayout (2,2);
32. this.getContentPane () .setLayout (gLayout) ;

33.

Solutions to selected exercises 285

this.getContentPane () .add (blueBut) ; 34.
this.getContentPane () .add(redBut) ; 35.
this.getContentPane () .add(yellowBut) ; 36.
this.getContentPane () .add(colPanel) ; 37.
38.
39.
this.setVisible (true) ; 40.
41.
42.
} 43.
44.
// internal class 45.
class ColorListener implements ActionListener{ 46.
public void actionPerformed (ActionEvent evt) 47
{ 48.
49.
String actComm = evt.getActionCommand () ; 50.
System.out.println(""+actComm) ; 51.
if (actComm.equals ("blue")) { 52
colPanel.setBackground (Color.blue) ; 53.
} else if (actComm.equals("red")) { 54.
colPanel.setBackground(Color.red) ; 55.
} else if (actComm.equals("yellow")) { 56.
colPanel.setBackground (Color.yellow) ; 57.
} 58.
}//method 59.
} 60.
public static void main(String[] args) { 61.
ColorSelectionFrame colorSelectionFramel = new ColorSelectionFrame(); 62.
} 63.
} 64.
A.3 MW Chapter 13
A3.1 [131
The following listings of the package its.ResizeJumpDisplay contain the code
of a model-view implementation.
File: its/ResizeJumpDisplay/PositionModel . java
package its.ResizeJumpDisplay; 1.
2.
3.
public class PositionModel { 4.
// We allow the positions for the upper 5.

286

N o

o ®

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

38.
39.
40.
41.
42.
43.
44.
45.

Appendices

//
//
/7
//
//
//

private static final int stepNo =9
private static final int allowedMax = 6;

//
//
//

left corner of the black rectangle to

be only at:

0/stepNo, 1/stepNo, ...,allowedMax/stepNo

of the current width or height of the panel.
with the choice below this is

0/9, 1/9, 2/9, 3/9, 4/9, 5/9, and 6/9.

7

The next variable specifies the length and
height of the black rectangle as a number

of steps. Here we take 3.

private static final int blackRectSteps = 3;

//
//
//
//

The next two variables contain the

current position of the black rectangle

(in fractions of the current width and height
of the panel).

private int upperLeftX, upperLeftY;

public PositionModel (int x, int y) {

upperLeftX = x;

upperLeftY = vy;

public int getXInSteps() {

return (upperLeftX) ;

}

public int getYInSteps () {

return (upperLeftY) ;

}

public int getNoOfSteps () {

return (stepNo) ;

}

public int getBlackSizeInSteps() {

return (blackRectSteps) ;

}

Solutions to selected exercises 287

52.

53.

public void moveDown () { 54

if (upperLeftY < allowedMax) { 55.

upperLeftY++; 56.

} 57.

} 58.

59.

public void moveUP () { 60

if (upperLeftY > 0){ 61.

upperLeftY--; 62.

} 63.

} 64.

65.

public void moveRight () { 66

if (upperLeftX < allowedMax) { 67.

upperLeftX++; 68.

} 69.

} public void moveLeft () { 70

if (upperLeftX > 0){ 71.

upperLeftX--; 72.

} 73.

} 74.

75.

76.

77.

} 78.
F“e:its/ResizeJumpDisplay/ResizeJumpFrame.java

package its.ResizeJumpDisplay; 1.

2.

import its.SimpleFrame.SimpleFrame; 3.

import java.awt.BorderLayout; 4.

5.

public class ResizeJumpFrame extends SimpleFrame{ 6.

7.

public ResizeJumpFrame () { 8.

PositionModel posModel = new PositionModel (3,5); 9.

ResizeJumpPanel resizePanel = new ResizeJumpPanel (posModel) ; 10.

this.setSize(500,300); 11.

12.

this.getContentPane () .add(resizePanel, BorderLayout .CENTER) ; 13

14.

288

16.
17.
18.
19.

I

-

© ® N w;

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

Appendices

DirectionPanel dirPanel = new DirectionPanel (posModel, this) ;

this.getContentPane () .add(dirPanel, BorderLayout.SOUTH) ;

File:

its/ResizeJumpDisplay/ResizeJumpPanel.java

. package its.ResizeJumpDisplay;

import java.awt.Color;

import java.awt.Graphics;

import javax.swing.JPanel;

. public class ResizeJumpPanel extends JPanel({

private PositionModel posModel;

public ResizedJumpPanel (PositionModel pm) {

posModel = pm;
this.setBackground (Color.yellow) ;

public void paintComponent (Graphics g)

{

super.paintComponent (g) ;

// get the current dimensions of the panel in pixels
int currentWidth = this.getWidth();

int currentHeight = this.getHeight();

// compute the current size of a step in pixels
int hStepInPixels = currentWidth/posModel.getNoOfSteps() ;
int vStepInPixels = currentHeight/posModel.getNoOfSteps/() ;

// compute the pixel positions of the

// upper left corner of the black rectangle

// and its width and height.

int upperLeftX = posModel.getXInSteps() * hStepInPixels;

int upperLeftY = posModel.getYInSteps() * vStepInPixels;

int blackWidth = hStepInPixels * posModel.getBlackSizeInSteps/();
int blackHeight= vStepInPixels * posModel.getBlackSizeInSteps/() ;

//set colour to black
g.setColor (Color.black) ;

//

and draw the rectangle

Solutions to selected exercises

g.fillRect (upperLeftX,upperLeftY,blackWidth,blackHeight) ;

289

39.
40.

File: its/ResizeJumpDisplay/DirectionPanel . java

package its.ResizeJumpDisplay;

import java.awt.GridLayout;

import javax.swing.JButton;

import javax.swing.JPanel;

public class DirectionPanel extends JPanel {

public DirectionPanel (PositionModel posMod, ResizeJumpFrame parent) {

GridLayout gLayout

= new GridLayout(1,4);

this.setLayout (gLayout) ;
JButton upBut
JButton downBut

JButton rightBut
JButton leftBut
.add (upBut) ;
.add(leftBut) ;

this
this
this
this

.add
.add

(
(
(
(

rightBut) ;

new

new

new

new

JButton ("Up") ;

JButton ("Down") ;
JButton ("Right") ;
JButton ("Left");

DirectionListener dirList = new DirectionListener (posMod, parent) ;

upBut.addActionListener (dirList) ;

downBut .addActionListener (dirList) ;

rightBut.addActionListener (dirList) ;

leftBut.addActionListener (dirList) ;

S S

o o N

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

290

e

~ N U

o ®

10.

12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

I

-

Appendices

File: its/ResizeJumpbDisplay/DirectionListener.java

. package its.ResizeJumpDisplay;

import java.awt.event.ActionListener;

import java.awt.event.ActionEvent;

public class DirectionListener implements ActionListener{

private PositionModel posModel;

private ResizeJumpFrame parentFrame;

public DirectionListener (PositionModel pm,ResizedJumpFrame rjf)
posModel = pm;
parentFrame = rjf;
}
public void actionPerformed(ActionEvent evt) {
String actionComm = evt.getActionCommand() ;
if (actionComm.equals ("Up")) {
posModel .moveUP () ;
}
else if (actionComm.equals ("Down")) {
posModel .moveDown () ;
}
else if (actionComm.equals ("Left")) {
posModel .moveLeft () ;
}
else if (actionComm.equals ("Right")) {

posModel .moveRight () ;

parentFrame.repaint () ;
}

{

© ® N w;

File: its/ResizeJumpDisplay/ResizeJumpDriver.java
package its.ResizeJumpDisplay;

public class ResizeJumpDriver
{
public static void main(String[] args) {
ResizeJumpFrame rf = new ResizeJumpFrame () ;

rf.showIt ("ResizeJumpFrame") ;

Some general
remarks on Java

This appendix addresses some problems that frequently appear when one begins to
program larger applications in Java.

B.1 M Objects, non-objects and references

Java is an object-oriented language. This does not mean that every entity defined
in Java is an object. Some basic entities such as integers (int), doubles (double)
or characters (char) are not objects. Most of the time it does not matter whether
we deal with an object or a basic entity. There are, however, situations where a
seemingly equal treatment of objects and non-objects results in essentially differ-
ent results. These situations occur especially when fields inside an object can be
changed.

The fundamental difference between objects and non-objects is that the vari-
able (name) for a non-object is always linked to the fixed memory position where
this object is created (using the new-statement). The name stands for a value. The
variable name given to an object is a reference to some memory position. At cre-
ation (using the new-statement) it refers to the memory position where the object
is created. Later the memory position to which the variable refers can be changed
by an assignment to the variable.

Let us look at an example: We create two integers a and b (non-objects) and
assign values to them (a = 3andb = 4). We then assignb toa (a = b) and finally
assign a new value to b. After every assignment we print the current values. Below
is a listing of the code and output.

Code snippet:

int a = 3;
int b = 4;
a = b;
b =17;

Listing of output:

Value a = 3
Value b

1}
IS

292

Appendices

b executed.

Statement a
Value a = 4
Value b = 4
Statement b = 7 executed (new value for b).
Value a = 4
Value b = 7

Let us now look at what happens if we use objects. The following code snippet
uses arrays of integers instead of integers. Arrays are objects in Java. We use
arrays of length two and apply the same operations as above to the elements at
array position 1. Below is a listing of the code and output.

Code snippet:

int[] A = {1,3};
int[] B = {1,4};
A = B;

B[1] = 7;

Listing of output:

Value A[1l] = 3

Value B[1l] = 4

Statement A = B executed.

Value A[1l] = 4

Value B[1l] = 4

Statement B[1l] = 7 executed (new value for B[1l]).
Value A[1l] = 7

Value B[1l] = 7

The behaviour is not as one might have expected. After we set the entry at position
1 in array B to 7, the entry at position 1 in array 2 is also 7. We would expect A[1]
to be 4. The reason for this is that the statements a = b in the first code snippet
and A = Bin the second one have different semantics and thus different results.

Figure B.1 shows what happens if we use integers. The names a and b always
refer to the integer value. Therefore the statement a = b means ‘a is assigned the
value of b’

int b=4 |a 3 | [b 4 |
a=b a2 4 | [b 4 |
b =7 l2 4 | [b 7 |

Figure B.1 A visualization of the first code snippet. The Java statements are listed on the
left and the results are on the right. A rectangle symbolizes a memory location and the letter
inside is the variable name

Some general remarks on Java

0 1

int[] A={1,3} a—[1] 3]
0 1 0 1
int[] B={1,4} a—[1]3] B—[1]4]
0 1 0 1
A =B A\ B_'/v

0

1 0 1
BI1] = 7 a[1]3] Bx[1]7]

Figure B.2 A visualization of the second code snippet. The Java statements are listed on the
left and the results are displayed on the right. A rectangle symbolizes the memory area of an
array of length 2. The array indices 0 and 1 are shown above. The arrow from the variable
name to the rectangle indicates which array is referenced by the variable name. Here the
statement A = B means that A refers to the same array as B. The array to which a originally
pointed cannot be accessed any more and is therefore shown in grey

Let us now look at the second program snippet. The statement int[] A = {1,3}
creates an integer array of length 2. The variable name a is now a reference to the
memory location where the array is stored. It does not refer to any integer value.
It cannot refer to a value because the array holds two values. Thus the statement
A = B means ‘A now references the same memory location as B". Now, changing
B[1] to 7 has the effect that also a[1] is 7. The originally created array with
entries 1 and 3 is lost. It cannot be accessed any more because there is no reference
pointing to it. Java’s automatic garbage collection detects such objects and removes
them from the memory. See also Figure B.2.
The full listing of the program can be found in package its.ReferenceDemo.

B.2 M Declarations and definitions

Consider the following class FlexArray. It implements an array of integers
where the index isnot 0,1,...,n—1buta,a+1,...,bfora,b € Z, a <b. Class
FlexArrayDriver shows how to use the class. It is located in package
its.General.

File: its/General/FlexArray.java

package its.General;

public class FlexArray {
// Here the variable ”data” 1is DECLARED
// NO array is created! Thus data are null
// at this point. We cannot DEFINE ”“data”

// here because we do not know how long the

vk LN

)}

293

294

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

43.
44.
45.

T NRT BT BT BT AT
U e

e

Appendices

// array should be.
// Variable ”data”
data;

stores the data.

private int[]

// these variables store the start and end index and the

// length of the array

private int startindex, endindex, length;

public FlexArray(int s, int e) {

if(s > e){

System.out.println ("ERROR in FlexArray:

Start index > end index");

}

else

{
startindex = s;
endindex = e;
length = endindex - startindex + 1;
// In the next command the variable ”“data”
// is defined. We now know how long the
// array has to be. Then ”“data” is no longer
// null but it references an Integer array.
data = new int[length];
Y//if

}//constructor

private int indexingFunction(int c) {
_1;

if ((c < startindex) ||

int result =

(c > endindex)) {

System.out.println("ERROR in FlexArray: Illegal index: "+c
+" not in ["+startindex+", "+endindex+"1") ;

}
else
{

result = ¢ - startindex;
Y//1if
return(result) ;
}
public void setValue(int c, int wval)
{

if (indexOK (c)) {
data[indexingFunction(c)] = val;

Some general remarks on Java 295

}//method 56
57.

58.

public int getValue(int c) { 59.
if (indexOK (c)) { 60
return (data[indexingFunction(c)]); 61.

} 62
else{ 63.
return(0) ; 64

} 65
}//method 66
67.

68.

public int size(){ 69.
return (length) ; 70

} 71.
72.

private boolean indexOK (int 1) { 73.
if ((1i >= startindex) && (1 <= endindex)) { 74
return (true) ; 75

} 76
else{ 77.
System.out.println ("ERROR in FlexArray: Index out of bounds."); 78
return (false) ; 79

} 80

} 81.
} 82.

File: its/General /FlexArrayDriver.java

package its.General; 1.
2.

import javax.swing.JFrame; 3.
public class FlexArrayDriver { 4.
public static void main(String[] args) { 5.
6.

// Define a FlexArray with indexing -3,-2,..,2. 7.

// and fill it with i"3 at position 1. 8.
FlexArray myArray = new FlexArray(-3,2); 9.

for (int i=-3; i <= 2; i++){ 10.
myArray.setValue(i,i*i*1i); 11.

} 12.
//Read a certain value 13
System.out.println("Value at -2 is "+myArray.getValue(-2)); 14
//Read a certain value 15.

System.out.println("Value at 2 is "+myArray.getValue(2)); 16

296

17.
18.
19.
20.
21.

Appendices

//Read an illegal position

System.out.println("Value at -4 is "+myArray.getValue(-4));

Here is the result of the test run of FlexArrayDriver:

Value at -2 is -8

Value at 2 is 8

ERROR in FlexArray: Index out of bounds.
Value at -4 is 0

Now let us look at a frequently made mistake. We only add one word in the con-
structor of FlexArray. We replace the line

data = new int[length];
by
int[] data = new int[length];

The resulting class is called WwrongFlexarray and the driver is WrongFlexArray-
Driver. We do not print the listing, as it differs only in that one line and the fact
that FlexaArray is replaced by wrongFlexArray everywhere. Here is the result of
the test run:

java.lang.NullPointerException
at its.General.WrongFlexArray.setValue (WrongFlexArray.java:70)
at its.General.WrongFlexArrayDriver.main (WrongFlexArrayDriver.java:18

Exception in thread "main"

What has happened? Why is there a Nul1lPointerException when we want to set
avalue in the data array? Well, the data array is not defined. At least not the data
array we want to use in method setvalue. The problem lies in the constructor of
WrongFlexArray. In the line

int[] data = new int[length];

another local integer array by the name ‘data’ is defined. This has nothing to do
with the integer array by the name ‘data’ which is declared before the construc-
tor. The local array ceases to exist when the constructor is finished. Then the
‘data’ array which is declared before the constructor is still there, but not created
by using new and thus null. When method setvalue tries to access it a Null-
PointerException is triggered.

Some general remarks on Java

B.3 M Accessing variables with get and set

All variables and methods declared and defined in a class are accessible from within
that class. The modifiers private, public and protected control the access from
outside the class to variables and methods of the class. Sometimes one talks about
the visibility of variables and methods instead of access.

A variable or method that is declared private cannot be accessed from outside
the class. It is not visible outside of the class where it is defined. The private
modifier is the main tool to implement data encapsulation. Private variables are
encapsulated in their class and protected against misuse from the outside. Only
methods of their class can modify them. Private variables are also not visible in
derived classes.

A variable that is declared public can be accessed from outside the class. It
is visible outside of the class where it is defined. Public variables can be modified
by methods of other classes. This bears the risk that the modifications are illegal
and corrupt the data. The use of public variables should therefore be avoided as
much as possible.

A variable that is declared protected can be accessed from the class where it
is defined and all classes derived from it. One might say that it is private to those
classes and is invisible outside them.

In order to access private variables, the classes can provide set- and get-
methods. The get-methods are used to return the variable. The set-methods are
used to set the variable to a specific value. They can in addition check that the
new value is legal. For an example, assume that we defined a class for a geometric
component. The component has a width and a height which can be set from the
outside. We would like to make sure that the component does not become too
small. With an appropriate set-method we can guarantee this. In the listing below
we assume that the width is stored in an integer variable width. The method only
changes the value if it is at least 50. In addition, the method returns a boolean
value indicating whether the value has been changed.

public boolean setWidth (int w) {
if ((w < 50){
return (false) ;
}
else(
width = w;

return (true) ;

B.4 M Passing references

A frequently occurring problem is that one class wants to use methods from an-
other class. To do this it needs a reference to an instance of the other class. We
saw examples of this when a listener wanted to update a panel. In the following
we describe the mechanism used in this case.

297

298 Appendices

Three classes are defined, AClass, BClass and CClass. AClass has (non-static)
method methodal. Now BClass wants to use that method. cclass is the ‘master’
class which uses both Aclass and Bclass. The structure is listed below.

. class AClass{

1
2.
3. public AClass () {
4 }

5.

0. public int methodal () {
7. // commands

10.

11, — =
12.

13. class BClass{

14.

15. public BClass () {

16. }

18. public void methodBl1 () {
19. int n = methodAl();
20. //methodAl unknown

29. class CClass{

31. public CClass () {
32. }

34. public static void main(Stringl[] a){
35. AClass a = new AClass();

36. BClass b = new BClass();

37. }

This will result in a compile-time error at the line

int n = methodAl () ;

Some general remarks on Java

because inside BClass, the methods of Aclass are unknown. In order to access the
non-static methods of AClass, BClass has to have an instance of Aclass. In the
listing below we change the constructor of BClass to have an instance of AClass
as an argument. Then that can be used to call the methods of AClass. In cClass
an instance of AClass is created and then given to BClass.

class AClass({

public AClass () {
}

public int methodAl (){){

// commands

}

class BClass{
private AClass aClass;
public BClass (AClass ac){
aClass = ac;
// now an AClass is known
public void methodBl1 () {
int n = aClass.methodAl () ;

//methodAl () known as a
//method of aClass

class CClass({

public CClass{
}

public static void main(String[] a){
AClass ac = new AClass();

// ac 1is instance of AClass

299

[OSI \SI

0 P NN

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.

40.
41.

300

42.
43.
44.
45.
46.
47.

Appendices

AClass b = new BClass(ac);
// ac 1is given to BClass in the

// constructor.

In the its-programs, there are examples of this. AClass is like StatusPanel
which provides a method to set the mouse coordinates. BClass is like the listener
that knows the coordinates and wants to set them in the status panel. The listener
gets a reference to a status panel in the constructor, so it can access the method
to set the coordinates.

B.5 M The classpath

In Java, the classpath points to all directories containing class files to be used by
the javac and java commands. To specify a classpath one uses the -classpath
option of these commands. For an example, suppose our class files are located in
the directories ‘D:\Java\Project’, in ‘C:\Stuff\Java’, and in the current working di-
rectory, which is denoted by a dot (.). Suppose the main file is called mymain. java.
In order that the compile command finds the files one uses

javac -classpath .;D:\Java\Project;C:\Stuff\Java mymain.java

The paths are separated by semicolons and backslashes are used inside the
paths. This is correct for Windows systems. On UNIX/Linux systems, colons and
slashes are used instead. As a general remark, one should always include the
current working directory (dot) in the classpath. When using packages one should
include the directory one above the package in the classpath.

As mentioned in the introduction, Chapter 1, one should always run the javac
and java commands from the directory immediately above the root of the package
structure used. For the programs of this book that means the directory containing
the directory its. The syntax then is (for Windows):

javac its\[packageName]\[sourceFileName] .java

java 1its. [packageName] . [sourceFileName]

Still it might happen that the compiler complains that it cannot find some class
files. This usually happens if an environment variable is set for the classpath.
These are variables that determine the classpath for the whole computer. They
might point to directories not containing the classes of the project. Then the
compiler looks in the wrong places. One can solve this problem either by including
the correct dictionaries into the environment variable or by specifying an explicit
class path in the javac and java commands. For the latter try

javac -classpath . its)\[packageName])\[sourceFileName] .java

java -classpath . its.[packageName].[sourceFileName]

Some general remarks on Java 301

To set the environment variable one uses commands of the operating system,
not of the Java development system. Setting these variables differs from one op-
erating system to the next and even from one version to the next of the same
operating system. We therefore refer to the manual or online help of the operating
system.

Index

GIF, 150
JPEG, 150
JPG, 150
15-puzzle, 127

AbstractTableModel, 179
access, 297

action command, 33
ActionEvent, 32
ActionListener, 32
actionPerformed, 32
anonymous listener, 87
applet, 271

applet tag, 273

applet viewer, 276

ASCIIL, 93

asynchronous loading, 150
AttributesSet, 217

BadLocationException, 220, 221
blocking

of a GUI, 237
Border, 168
border, 168
BorderFactory, 168
BorderLayout, 16
buffer, 247
BufferedReader, 98
ButtonGroup, 114
Buttons, 28
buttons, 24, 27

canvas, 15

cell, 177

cells, 19

characters, 93

children, 186

Color, 15

combo box, 192
comma-separated-values, 267
compression, 149

container, 18

containers, 15

content pane, 9
cycle-free, 45

cycle-free embedding, 45

data encapsulation, 297

data stream, 93
DefaultMutableTreeNode, 186, 187
DefaultStyledDocument, 215, 220
DefaultTableCellRenderer, 178
DefaultTreeModel, 186
Dimension, 15

divider, 197

Document, 215

DocumentEvent, 219
DocumentListener, 90, 219

double buffering, 228

double clicks, 55

drawLine, 49

drawOval, 49

drawRect, 49

driver program, 13

dummy components, 20

edges, 186

EditorKit, 221

embedding
cycle-free, 45
hierarchical, 44

empirical tests, 25

encapsulation, 297

event dispatching thread, 236

event driven, 3, 236

event queue, 236

event thread, 236

events, 3, 28, 31

example programs
BadUpdateFrame, 245
BiologyTree, 189
BlockingFrame, 237, 239
BlockPuzzle, 143
BlockPuzzleFrame, 140

Index

example programs (Continued)

BlockPuzzleListener, 141
BlockPuzzlePanel, 135, 136
BlockPuzzleTest, 127, 133
BoardModel, 127, 129
BorderFrame, 169

BorderPanel, 168

Browser, 262

CalendarListener, 194
CalendarPanel, 193, 194

Circle, 65
CircleAdministration, 65-67
CleanUpAdapter, 90
CleanUpFrame, 90, 91

ColorPanel, 15
ColorSelectionFrame, 284
ConfigurationModel, 127, 132
Constants, 127, 133, 279
CounterAnonymousPanel, 88
CounterApplet, 272
CounterDriver, 29, 31
CounterFrame, 29, 30
CounterInterfacePanel, 86
CounterInternalPanel, 83
CounterListener, 32
CounterModel, 24
CounterModelTest, 25
CounterPanel, 28, 29
DataTransferObject, 115, 116, 119
DirectionListener, 290
DirectionPanel, 138, 289
DirectoryTree, 191

DocAtt, 221

DocumentFrame, 221, 222

Drawing, 245
DrawingDisplayScrollDriver, 105
DrawingDisplayScrollFrame, 105
DrawingDisplayScrollPanel, 105
EditorFrame, 112
EditorListener, 108, 109
EditorSkeletonFrame, 107, 108
FileReadWrite, 96

FlexArray, 293
FlexArrayDriver, 293, 295
GenericDrawMouseAdapter, 252
GenericDrawPanel, 252
GoodUpdateFrame, 248
GridBagFrame, 210, 211
ImageCutAndMirrorFrame, 161, 163
ImageFrame, 151

ImagePanel, 154, 156

ImagePanelFrame, 157
ImagePanelTrackerFrame, 159
ImageScaleFrame, 165
InteractiveFrame, 68
InteractivePanel, 68, 69
ITSBrowser, 261
LayoutDriver, 20, 21
LayoutFrame, 20
LightDriver, 283
LightFrame, 281
LightListener, 283
LightModel, 280
LightTest, 281
LineRead, 98, 99
ListDemo, 171
ListDemoFrame, 172
ListTransferFrame, 175, 176
MenuDriver, 77, 79
MenuFrame, 77
MenuListener, 79, 80
MonitorThread, 267, 268
MouseEventDriver, 60, 63
MouseEventFrame, 56, 58
MouseEventPanel, 56, 58
MoveModel, 127, 131
MultiplicationTableFrame, 180,
182
MultiplicationTableModel, 180,
181
MyMouseListener, 60, 62, 71
MyMousePositionsListener, 60, 61
NonBlockingFrame, 242
OpenPolygon, 251
OrderTableFrame, 185
OrderTableModel, 183, 184
PixelPoint, 253
PositionModel, 285
PrintFrame, 226, 232
PrintPanel, 226, 231
PrintSuit, 233, 234
PrintSuitTestFrame, 233, 235
ReadURL, 265
RealPoint, 253, 254
ResizeDriver, 126
ResizeFrame, 125
ResizeJumpDriver, 290
ResizeJumpFrame, 287
ResizeJumpPanel, 288
ResizePanel, 125
SearchDialog, 113, 117
SearchListener, 116

SimpleFrame, 12
SimpleFrameDriver, 13, 14
SimpleGraphicsDriver, 50, 51
SimpleGraphicsFrame, 50, 51
SimpleGraphicsPanel, 49, 50
SimpleHTMLFrame, 259
SimplePanelFrame, 16, 17
SimplePanelFrameDriver, 17, 18
SplitPaneFrame, 197, 199
StaticTableFrame, 178
StatusPanel, 56, 59, 70
TabbedPaneFrame, 202
TextAnalysisDriver, 44
TextAnalysisFrame, 40, 41
TextAnalysisListener, 43, 44
TextAnalysisModel, 38
TextAnalysisPanel, 40, 41
TextDisplayDriver, 100, 101
TextDisplayFrame, 100
TextDisplayScrollDriver, 103
TextDisplayScrollFrame, 103, 104
TimerApplet, 274, 276
TimerPanel, 274, 275
TimerThread, 274

ToolPanel, 262
TransferListener, 175
TreeDemoDriver, 189
TreeFrame, 189, 190
UpdatePanel, 245
WebImageFrame, 153
WorkerThread, 241
WrongFlexArray, 296
WrongFlexArrayDriver, 296

File, 94

file selection dialog, 110
FileReader, 95
FileWriter, 95
fillOval, 49

fillRect, 49

filters, 93

fire method, 183

flow layout manager, 18
FlowLayout, 18
frame, 9

getContentPane, 16

graphical user interface, 23
Graphics, 47

Graphics Interchange Format, 150
Graphics2D, 122

Index

grid layout manager, 18
grid-bag layout, 205
GridBagConstraints, 208
GridBagLayout, 208
GridLayout, 18, 19
grouping, 114

GUI, 3, 23

hierarchical embedding, 44
HTML, 258
HTML-hyperlinks, 260
HTML-tags, 258
HyperlinkListener, 260

Image, 150, 154
ImageIcon, 150
ImageObserver, 154
images
loading asynchronously, 150
loading synchronously, 150
input stream, 93
interface, 85
internal class, 83

JApplet, 271
JButton, 28
JComboBox, 192
JDhialog, 113
JEditorPane, 99
JFileChooser, 110
JFrame, 9, 11
JLabel, 27

JList, 170
JMenuBar, 76
JMenultem, 76
Joint Photographic Experts Group, 150
JOptionPane, 120
JPanel, 15
JRadioButton, 114
JScrollPane, 102
JSplitPane, 197
JTabbedPane, 201
JTable, 177
JTextArea, 99
JTextField, 39
JTextPane, 99
JTree, 187, 188

KeyListener, 90

label, 27
labels, 27

305

306

Index

Layout-Manager, 16
leafs, 186
listener, 28

anonymous, 87
listeners, 3, 31
ListModel, 170, 173
ListSelectionEvent, 174
ListSelectionListener, 174
ListSelectionModel, 171

main-thread, 236
marker
text position, 215
media tracker, 159
menu, 75
menu bar, 75
menu item, 75
disabled, 75
enabled, 75
modal, 110, 113
model-view-control, 23
modifier, 297
modular design, 277
MouseEvent, 55
MouseListener, 53
MouseMotionListener, 53, 54

nodes, 186

offset, 215

of a position, 215
on-the-fly, 87
output stream, 93
override, 47

paintComponent, 47
panel, 14

pixel, 149

PNG, 150

Portable Network Graphic, 150
Position, 215, 217
position marker, 215
Printable, 227
printable area, 228
private, 297
protected, 297
public, 297

radio button, 114
radio buttons, 113
Reader, 93

reference, 291
reference point, 48, 49

repaint, 68
repaint (), 47

scroll bars, 102
Scrolling, 102
separators, 76
setColor, 49
setVisible, 10
showConfirmDialog, 120
showMessageDialog, 120
showOptionDialog, 120
SimpleAttributeSet, 217
sliders, 102
split pane, 197
stack, 262
stream

data, 93

input, 93

output, 93
stroke, 122
StyleConstants, 217
super, 48
SwingConstants, 27
SwingUtilities, 55
synchronous loading, 150

tab, 201
tabbed panes, 201
table, 177

cell, 177
TableCellRenderer, 178
test, 25
test plan, 25
text, 93, 215
Text fields, 39
title bar, 9
Toolkit, 123, 154
tree, 186
TreeModel, 188

UML, 33

Unicode, 93

Uniform Resource Locator, 258
URL, 152, 258

URL, 153

viewport, 102

visibility, 297

WindowListener, 90
windows, 9
Writer, 93

Want more on Java?

Walter Savitch
0321330242

£42.99

Pub May 2005

JDK 5.0 compliant
Fully comprehensive

Great reference for life

Harvey Deitel
Paul Deitel
0131290142
£43.99

Pub Jan 2005

Accompanied by a wide range of interactive online

resources for students and lecturers

Student-friendly, full-colour, easy to follow design and

layout

Hundreds of lines of real code and examples to show

you how it’s done

Visit www.pearsoned.co.uk/bookshop/

for more information

Want more on graphics?

Edward Angel
0321321375
£44.99

Pub Apr 2005

« Bestselling, application-oriented,
introductory graphics book with OpenGL -
revised for 2005!

» Uses a proven ‘top-down’, programming-
oriented approach to teach core concepts
» Covers all topics required for a

fundamental course, including shading,
modelling and texture mapping

» Additional student resources include
online Source Code

» Lecturer resources include online
Solutions, PowerPoint figures, and
PowerPoint lecture notes

Visit www.pearsoned.co.uk/bookshop/
for more information

