PHP 8 ObjECtS
Patterns, and
Practice

Mastering 00 Enhancements, Design
Patterns, and Essential Development Tools

Sixth Edition
Matt Zandstra

Apress:

PHP 8 Objects,
Patterns, and Practice

Mastering OO Enhancements,
Design Patterns, and Essential
Development Tools

Sixth Edition

Matt Zandstra

Apress’

PHP 8 Objects, Patterns, and Practice: Mastering 00 Enhancements, Design
Patterns, and Essential Development Tools

Matt Zandstra
Brighton, UK

ISBN-13 (pbk): 978-1-4842-6790-5 ISBN-13 (electronic): 978-1-4842-6791-2
https://doi.org/10.1007/978-1-4842-6791-2

Copyright © 2021 by Matt Zandstra

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Devin Avery on Unsplash (www.unsplash.com)

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484267905. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6791-2

To Louise. Still the whole point.

Table of Contents

About the AULNOFcceiiiiieemniiiisnnrrnsess s nn s e ann s e e s snnnnnensnnns Xix
About the Technical REVIEWETccuvussseesmrssssnsnsmsssnnssssssnns XXi
AcknNoWIedgmentsccccuusemmmmmssssnnmmsssssnnssssssnssssssssnsnssssssnnnssssssnnnssssssnnnsssssnnnnssssnnns Xxiii
L0 T1 L T] | XXV
Part I: ODJectS......ccussemmmmmmmsssnnnnmmmsssssssnnnmnsssssssnnnnssssssnnnnnssssssnnnnnesssssnnnnnnssssnnnns 1
Chapter 1: PHP: Design and Managementccccccummmmmmmsssssssssssnnssssssssssssssssnssssssssnns 3
L CE 0 2 (00 T S 3
PHP and Other LANQUAGESvvevveriererrisensesessessssessessesssssssessessssessessessesssssssessessssssssssesassssssssessees 5
ADOUE THIS BOOKeeirecriricisie et e s e 8
03T £ 8
L | 9

0 [1 9
What’s New in the Sixth EAIitionccccccvvvvenininirse s reres e s e e sesssessessesnes 11
SUMIMAIY ...ttt e e b e b e e e e e Re e e R e e ee e e e e Re e R e e nrn e rnrn e 11
Chapter 2: PHP and ODbjects......ccuummmmmmmmmmmmmmmmmmsssssssssmsssmsssssssssssssssssssssssssssssssssnsnns 13
The Accidental SUCCESS Of PHP ODJECES.......covierierererrerrereresessersessessssessesessessesessessessessssessensens 13
In the Beginning: PHP/FL........ccooviiiririereresessesessesessessessessesssessessessssessessesssssssessessssssssnsessens 13
SyNtactic SUGAr: PHP 3.t 14

PHP 4 and the Quiet ReVOIULION...........ccocvrrirsrr e s 14
Change EMDraced: PHP 5. s se s ses s 17

PHP 7: ClOSING the GAPccceevreerreerinesisesessse s ss s ses s sss e ss s s e s sessessssssensnnes 18

PHP 8: The Consolidation CONTINUEScccvvrernerinisinese s ses e sssnes 19
Advocacy and Agnosticism: The Object DEDALEcccvvvrrieriernrnrerenrr s ssesesessens 19
10T 1117 SRS R 20

TABLE OF CONTENTS

Chapter 3: Object BaSICS ..uuuueerrrsssssnnmmssssnnsssssssnssssssssnnsssssssnssssssssnnsssssssnnnsssssnnnnssnss 21
ClasSes ANA ODJECLS.......cceeerrrrerirerireriris st s e a s s se st ae e se s se s be e s e e senne e 21
A FIrSt ClaSS....c.crveucreruererseerreesesesessesesssseses e e sse e ses e ses s e sse e ses e sessssessesesessesesssssssensssnssssnssnens 21

A First ODJECL (OF TWO) ..vveuervecreresersesesessesessesessssesessesessesessesesesesessssessssessssssssssssssensssnssssssenens 22
Setting Properties in @ Class........cuuervsrnesrnssessss s ssssesssssssssssesesssssssssssssssssssssssssnens 24
Working With Methodscccvcrieriininir e e nae s 27
Creating a Constructor Method...........cocvvrereirsniere e sae s 29
Constructor Property Promotionc.ccoevvvervrienienensinsenesssessessessesessessessesssssssessessessssessessens 31
Default Arguments and Named Arguments.........cccvvvnrnnnensnsn s s snes 33
Arguments aN0 TYPES.....ceeeerrrererereree s s res e s e e se s se s sen e ssssesse e sessssessssessnnes 34
PrIMItIVE TYPES .eveeeerreerisesirese s e nr s 35
Some Other Type-Checking FUNCHIONS.........cccveeerineinesinesens s ses s 39
Type Declarations: ODJECT TYPESevvevvrreriererirrerieresre s seses e s ss e e sse s e sresessessesaesessessesaes 40
Type Declarations: Primitive TYPEScvcvvriereniinsin s se s s s se s s ssesneas 43
=T B 70T O 45
L0100 5] 3 47
NUIADIE TYPES .o n e ne e 50
Return Type DecClarationscccvueernesrnenesese s sesse s ssssessssssesssssssssesssssssssnsssns 50
INNEIITANCE e 51
The INNeritance ProbIBM ... 52
Working With INNEHTANCEcoereree e 59
Public, Private, and Protected: Managing Access to Your ClasSes........cccvvererverrerseereerserens 67
TYPEA PrOPEITIES...cvetiircr ettt s s 71
SUMIMANY ...ttt e s Re e e e e e e R e e e e e e nenae e e Re e pe e e e e e e nrnnnns 77

Chapter 4: Advanced Features.......eesrmmmmmmmmmmsssssssssmss 19

Static Methods and PrOPEIIES......ccvevererrerereserserese s sesse e seesessessessesassessessessssassessessesssssssesseses 79
CONSTANT PrOPEITIES ...veeivecrirerire sttt 85
ADSITACE CIASSESceeueeerreereeereresesree e s e se e e se e e s e e sesae e re e se e e e nae e nnnnis 86
10102 2 T LS 89

TABLE OF CONTENTS

L L N 92
A Problem for Traits 10 SOIVE ... 93
Defining and Using @ Trail.........c.ccooeviinininnnnsr e 94
Using More Than One Tralif..........cccooerernennnenneserese s s 95
Combining Traits and INTErfaCES........ccuvrrrereresrese s e 97
Managing Method Name Conflicts with insteadof...........c.ccovvvririrnnnininnn e 98
Aliasing Overridden Trait MEthOUS........ccvceviverrrierere s se e saesnes 99
Using Static Methods in TrailSccccvrerrererrrrerieresessere s s sesessesss s e ssesessessessesssssssessees 100
Accessing Host Class Properties ... sessesesss e s sssssssessesnes 101
Defining Abstract Methods in TrailS.........ccoverrienrnsnnese s 102
Changing Access Rights to Trait MEthodsccoueeerermrnsnnesere s 104

Late Static Bindings: The static KEYWOId..........cccocviiernennisensse s sessesens 105

0 L0103 (0] OO 109
EXCEPTIONS «..eiiecte ettt e e e 112

Final Classes and Methods ... snnaes 122

The INTErNal EFTOr CIASScccoveeeerrenereeerenesessesesseesesese s e seesessesessesesse e sessesessssessssesessssssssnens 124

Working With INterCePIOrS.....c.cccvvecer e 125

Defining Destructor Methodsccvvcerncnnesenis e 134

Copying Objects With _ ClIONE().....civvrrrieriernrirrere e s se s s snes 136

Defining String Values for YOUr ODJECES.......ccouvrrerreriernnensesseresessessessessssessessesssssssessessesssssssensens 140

Callbacks, Anonymous FUNCtions, and ClOSUIESccerevrerrerersersersessesessersessessssessessessessssessenses 142

ANONYMOUS CIASSEScoviriiriririesissise s se st s s s e s s s b e s b e e e s be e e e e nne s 150

£ 1117 ST 152

Chapter 5: Object TOOIS........cccerssemmssnsmssmsssssssnssssssssssssnssssnssssssssnssssnsssnssssnsnnnsnsnns 153

PHP and PACKAQEScocerierrieriririssie s re st st sse s s sa e s st nn e s s s s sne s s 153
PHP Packages and NameSPACES.......c.ccucererimrienninnesiessessse s ssessesssessessessssssessessesssssaessessenns 154
(0] (072 T o TSR 167

The Class and Object FUNCLIONS..........ccciiinninc e 172
LOOKING TOF CIASSEScoveeererueerreeresesesesessese s e ses e se s e s e ses s e snssessenis 174
Learning About an ODJect OF Classccccverernsmsrnesenesessssssss s sessssssssssssass 175

TABLE OF CONTENTS

Getting a Fully Qualified String Reference t0 @ Class..........couvevrvvrnvennnennnsevnsesesesesennes 177
Learning About Methods.........cccoincninnnsrsne e 178
Learning ADOUL PrOPEItIES......ccccviirinerenn st 181
Learning About INNEHTANCEccoecerrierercrerr e 181
Method INVOCALIONcceveeerirerr e e 182
The ReflECtion AP..........cccoiiiii s 185
[T 1T TS = (o O 185
Time t0 ROI UP YOUF SIBEVEScecrerrereerererersesessessessessessssessessesssssssessessesssssssessesssssssessesses 186
EXAMINiNg @ ClASSccccevirriiirire st s e 189
EXamining METNOUScoveerrrcrerererese s s 191
Examining Method ArgUMENTS..........cccvveerneienese s nennis 194
Using the REfleCtion AP ... 197
ALIFIDULES ... 202
£ 11134 7R 208
Chapter 6: Objects and DeSignccccusmrmsssnsmsssnsssssnsesssnsesssnsesssnsesssnnssssnnssssansessas 209
Defining COUE DESIGN......cococrererererereere e se s ne e 209
Object-Oriented and Procedural Programming...........cooeeerssesesenessssesessessssssssssssssssesssssssssssssenns 210
RESPONSIDIIILYcvieerrreerreerinessnese s pa e nr s 216
L0031 N 217
0] 170 3 O 217

05 (100 10T = L 217
ChoOoSING YOUP CIASSEScoveiriiririsiisis st s ss s s ss s st st s st st s sae st nnas 218
POIYMOIPRISM ... 219
ENCAPSUIALION ...t e e 221
FOrget HOW t0 DO I ...ttt 223
FOUP SIgNPOSES . ccuerueriirirserer et a e s a e e s e se e s ae s ae e e e saeene e e e naenae e 224
0T (= D70 0% L] 4 224
The Class Who Knew TO0 MUCKH ... s 224
The JACK OF All TrAUES......coeeeeeereecrerererree s s se s e nnenens 225
Conditional STAteMENTSccvveerrrrrerr s 225

viii

TABLE OF CONTENTS

TRE UML ...t bbb e e e 225
L T T D T 2 TP 226
SequenCe DIAgrams ... e e ene s 235

£ 10T 1117 238

Part 1l: Patternsceeccimmmemssmnmsssssmmmsssssmssssssssnssssssnssnsssssnsnssssnsnnsssnnnnnnssnnnnns 299

Chapter 7: What Are Design Patterns? Why Use Them?ccccccmmmmnrssssssssssssnnsnnnas 241
What Are Design PatternS? ... ss s s sssssssssssssessessssenens 241
A Design Pattern OVEIVIEWccoevririerersserseres e ssssesessessesessessessesssssssessessesssssssessesssssssessessens 244

T T N 244
LT3R5 0] <] 1 R 245
LT3R50 11T TR 245
CONSEBAUEBINCESveureuerueriesiesisses e sse e s e s s e st s st st sesae e st b b e s e b b e e et Re s ae b e e e R et e e e ae e 246
The Gang of FOUr FOrMALccoveiiinennesnnesessse e s ss s se s s ssssssnssssesesssssssenens 246
Why Use DeSIgn PAttErNS?.......cccvvirrrierinnninsese s sesse s ses e s st ssssesaesssssssessesaesessessessenes 247
A Design Pattern Defines a Problemcccevvvrirveniennnensensese s ses s ssssessessessssssessesees 247
A Design Pattern Defines @ SOIULION........cccvveverrsrrerre s enes 248
Design Patterns Are Language Independent ... 248
Patterns Define @ VOCADUIAIYccovrecrrierereeresc s 248
Patterns Are Tried and TESTEAcoovervrernrererene s 249
Patterns Are Designed for Collaboration.............cccveveevnennesnnssnsessse s 249
Design Patterns Promote GOOU DESIgN........cccvrererrrrersereresersesesesessessessessssessessesasssssessesses 250
Design Patterns Are Used by Popular Frameworkscccocvvrrnneniensensensessessessesssesensenns 250
PHP and Design Patterns ... s s e s sssssssessesnens 250
SUMIMANY ...ttt b E e e e b e e e e e e Re e A e e e e e Re e Re b e e e e e Re R e e e e e Rennn 251

Chapter 8: Some Pattern PrincCiples.........ccciimnnmmmmmmmssnmnmmssssssnmmsssssssssssssssssssssssnns 253
The Pattern ReVEItioN..........c.uceeveceiicensesnesens e s sneens 253
Composition and INNEHTANCEcceeverrriererererere e e nnes 254

THE PrODIBIM ... s e 254
USiNG COMPOSITION......cciiierircirn e e e e 258

ix

TABLE OF CONTENTS

DT 0100 T S 262
LT3R5 (0]] 1 PR 262
Loosening YOUr COUPIINGcccveriiniie st se s sne s 264

Code to an Interface, Not to an Implementation............ccccvrvnvninnnnc e 267

The Concept TNAt VAIIES.......cccvvreririniirie s st se s s sas e s sae s e s sne s 269

PaLtErNITIS. ... ————————————————— 270

THE PAIBIMS......occeccerce s e 270
Patterns for Generating ODJECESccvcvvererrrrrere e 271
Patterns for Organizing Objects and ClIassesccccuvvrrnnnrnnnennsnse s 271
Task-0riented PAIEINS.........cccoeerreerereerese s s 27
Enterprise Patterns........coivi i 271
Database PatlBrNSccccovcicrierirsr e 271

£ 11134 R 271

Chapter 9: Generating ObJectS........ccccrrnsnmmmmmsssnnnmmsssnnnmsssssnnsesssssnnsssssssnnsessssnnnnss 273

Problems and Solutions in Generating ObJECES......c.ccvverrirrncrrrcrr e 273

The Singleton PALtEIN ..o e 280
THE PrODIBIM ...t nr e s nne s 280
IMPIEMENTALION ... ———————— 281
CONSEAUEINCESveueruerserserseserersessesssessessessesessessesssssssessesssssssessessessessssessesassssnessessessensssesseses 284

Factory Method Pattern ... s s 285
LT3N 5 010 <] 1 R 285
IMPIEMENTALION ..o —————— 289
CONSEBAUEBICESveureueruersesieisses e sse e s e s s e sts e s b sae e st e b e e e b b e e et Re s he b e e e e e R e b e e e e R es 292

Abstract FAactory Patlern ... s 293
L LN (0] o] (=] SRR 293
10T 01 L=T R TCT 1) LA 0] O 295
CONSEQUEINCES ..vvereeuersersessesersersersesssersessessessssessesssssssessesssssessssessessessssessssassssssssessessensssesseses 298

PrOTOTYPE. ..t ————————————— 300
LT3R5 (0] 1 PSR 301
IMPIEMENTALIONoceeeri e ———————— 302

TABLE OF CONTENTS

Pushing to the Edge: SErvice LOCALONcccrvvrererrerierensensereressssessessessssessessessessssessessesssssnsensens 307
Splendid Isolation: Dependency INJECLIONcccvrerrirrninn e 309
LT3R5 (0] 1 PR 309
IMPIEMENTALIONccoeeii e ————————— 310
CONSEAUEINCES ...vveueruersersessesersessessssessessessesss st s e ssessesessesaesaessssessesaesas e s e saesae st s e ssessesssnssnesseses 328
BT 11134 R 330

Chapter 10: Patterns for Flexible Object Programming........ccccusssennsrsssssnnssssssnnnns 331

Structuring Classes to Allow FIeXible ODJECES......cccvivrirrrrerererrerseresesessere s s sesse e ssesessessesses 331
The CoOmMPOSIte PALLBIN.........ccovieiireccrccrr st e s e e sesne e 332
LT3R5 (0] 1 PP RTR 332
IMPIEMENTALIONcceveie e —————————— 336
CONSEAUEINCESveveruersersessesessessessesessessessesse e s e ssesasses e saesaestsse s e saesae st s e saesae st e e saesaeseenennesaeses 342
COMPOSItE IN SUMMAIYccovierereierire e a e sae e s s ae e ne e nae s 347
The Decorator Pattern...........coiiine s 347
LT3R5 0] <] 1 R 347
IMPIEMENTALION ..o ————————— 350
CONSEAUEBINCESveueeuerserresieissesessssessessessesss st s s s sss st st s sae s e s e s s b b e e et e R s ae b e e e e Re b e e n e naens 356
The Facade Pattern..........coucvreerneserese s sr e se s nsenens 357
L LN 2 (0] o[SRR 357
L]0 [=T R T=T 1) LA 0] | O 360
CONSEAUEINCES ..evveueerersersersesersersersessssessessessessssessessessssessessessessssessessessssesssssesssssssessesssssnsesseres 361

£ 011117 OO 362
Chapter 11: Performing and Representing Tasksccccermsssssssmssnssmmssssssssssssnnsnnnas 363
The Interpreter PAtern..........cn e s 363
L LN 2 (0] o1 1= SR 364
IMPIEMENTALIONoceeeriee e s e s e e e ae e 365
INTEIPIETEE ISSUBSevereeiec st s e e s r e s n e s ae e 377
The Strategy Pattern ... s 377
LT3R5 (0] PP RTR 377
IMPIEMENTALION ..o —————————— 379

TABLE OF CONTENTS

The ODSEIVEr PALLEINcccoerereicciriri s 383
IMPIEMENTALION ... ———————— 387
THe VISITOr PAIEIN........cceeeeeec e 395
LT3N (0] TS RTR 395
IMPIEMENTALIONccevere e ——————— 398
VISITOF ISSUBS ...cvvvecscesisissse s e 405
The Command PatIErn ... s 405
LT3R5 (0] <] 1 TR 406
IMPIEMENTALIONceeeiecr e ———————— 406
The NUIl ODJECE PALIEINccceveeeeeeeecc e s nne e 413
THE PrODIBIM ...ttt s r e e nne s 414
IMPIEMENTALIONccveveeeec e 417

£ 11134 R 419
Chapter 12: Enterprise Patternscccccusemrrmsssssnnmmsssssssmsssssssnssssssssssssssssssssssssnnns 421
ArChiteCIUIE DVEIVIBW.......ceeeeereecereere e nr s 422
THE PAHEINS ... ne e e nne s 422
Applications and LAYEISccvvririeririnsiriene s sse s s sas st s e s s sasses e snes 423
Cheating Before We Start..........ccccvvvnnnnmnnsncsseses s s ss s sssssssssssssessesenns 426
32T 0] O 426
IMPIEMENTALIONceeeriree e 428
The Presentation LAYEr ...t rse e re s s s s e s s sa e s s s ssa e sne s s 434
L 00100 0] T 435
Application CONTrOIIEr ..o s 450

Lo 1o T I 0] 0L 0] ST 468
Template View and View HEIPETcccvecerecernesnesinnse e e s sss e sessessssenens 475
The BUSINESS LOGIC LAYEEccevvereerrerirrereressesessessessessssessessesssssssessessesssssssessesssssssessessesssssssessees 479
L LA EoT T 110 T 0 479
DOMAIN MOTEI ... e 485
£ T S 490

xii

TABLE OF CONTENTS

Chapter 13: Database Patterns.........ccccunemmmmnssssnnnmssssssnmnssssssnsnssssssnsssssssssssssssnnnss 491
THE DAtA LAYETccvecererieciecire s s e e b e s b e s 491
Data MAPPET ... e e e ae 492

THE PrODIBIM ...t nne s 492
IMPIEMENTALIONcceveie s ——————— 493
CONSEAUEINCES ...vveuerrersersesseersessessessssessessessessssessesssssssessesssssssessessesssssssessesaesssnessessessensssesseses 513
10 LT 1 1§ TR 514
LT3N 5 (0] 1 TR 514
IMPIEMENTALION ... ——————— 516
CONSEUUEBINCESveurruersersesieissessesseses e s ssesss st s s s sse e st s s ae b st e s b b e b et e R s ae b e e e e Re b e e n e nRees 520
UNIE OF WOTK ..o 520
TRE PrODIBIM ...t e 521
L]0 L=T R T=T 1) LA 0] | RS 521
CONSEBAUEINCES ..evveueeuersersessesersersersessssessessessessssessessessssessesssssesessessesssssssessesaesssssssessessensnsesseres 528
I 4T 10 T [OOSR 528
LT3R5 (0] 1 TSR 528
IMPIEMENTALION ... —————————— 529
CONSEAUEINCESveueruersersessesissessessssessessessesssses e ssessese s e saesaesss st s saesae e s e saesae st s e ssesaestenessesaeses 531
Domain ODJECT FACIOIY......ccceveiriere e e 532
THE PrODIBIM ... s 532
IMPIEMENTALION ... e n e s ae e ae s 532
CONSEUUEBICESveveuersersesresisses e sse e st s e s e ss s st s srs e st s b b e e s e R b e e e e R s Re b e e e Re e Re e e e e e e R e 534
The 1dentity ODJECT........ccccveeerrcrerese e e s e e e nnene s 536
THE PrODIBIM ...t nnne s 536
IMPIEMENTALIONccveveeccreeer e r s 537
CONSEAUEINCES ..vveueruerserserseserersesssssssessessessessssessesssssssessesssssssessessesssssssessesassssssssessessessnsesseses 545

xiii

TABLE OF CONTENTS

The Selection Factory and Update Factory Patterns........c.ccovvvvvrerenensnsenenssessessesessssessessenes 545
LT3R5 (0]] 1 PR 545
IMPIEMENTALION ..o —————————— 546
CONSEUAUEBINCESveurruersersessesissessessesessesse s e sss st s e ssesae st st sae b e e s s be b e e et e R s ae b e e e eRe et e e n e ae e 551

What'’s Left of Data Mapper NOW? ... s ss s s s sssssssesse s 552

BT 1] 1134 OO 555

Part l1I: PractiCe.......ccouuemmmsnmmmssmsmsssnssssmsssssnssssmsssssnssssassssansnssnnsssansnssnnsnsannns 557
Chapter 14: Good (and Bad) PractiCeccussssessssesssssssssnssssssssnssssssssassssnsssansssans 559

50 0T ORI 560

BOrrowing @ WREEL..........cocciiiircr it 560

Lo T T N 563

GIVING YOUr COUE WINGS......coveeeerieerenesesesesre e sesesesse e e ses e se s sessssessssessssesessssessssssessssenns 564

B3] P21 0 10 LSS 565

VaAGEANT ... oo ———————————————————— 566

=] (1o 567

ContinUOUS INTEGIatioN........ccevrierierererrerrere e sere e s e re e sre e e e e sae e e e e e naennen 568

SUMIMANY ..ttt e R e e e R e e e e e e Re e R e e e e e Re e Re R e e e e e Re R e e e e e Renns 569

Chapter 15: PHP Standardscccuusemmmmmmmmmmmmsssssssssmsmmssssssssssssnsssssssssssssssssnsnnnes 571

WHY STANUAIAS?cceereeerree s s srnns e se e nensesrnnnanns 571

What Are PHP Standards RecommendationS?..........c.ccovereninennsennesesssesssesssssesssesessesssseens 572
L LT Y 2 T T (= O 573
WHO ArE PSRS TOI?....cvivieecicrisisisssse s e s sn s s 574

Coding With STYIEccueeeecre e 575
PSR-1 Basic Coding Standard ... s s sessesnes 575
PSR-12 Extended Coding StYIE.........covreererierererernse s ses e sennes 579
Checking and FiXing YOUr COUEccoovererrenernnmnesesesese s e sss s e s e sssssssssnnes 586

LY N (0] o 1o 1T o OSSN 589
The Rules That Matter t0 US ... s 589

£ 1134 7 593

Xiv

TABLE OF CONTENTS

Chapter 16: PHP Using and Creating Components with Composerccccuusseennns 595
What IS COMPOSEI?.....ecueerecrirerere ettt ettt p et e ae e s e e e ne e nnn e 596
INSLAIlING COMPOSENveueiecrirerire st e e e e e 596
Installing a (Set 0f) PACKAGE(S) ..evreerreerimserererisiinerinsessssesessesessssesessesessssessesesssessssssessssesessesens 596

Installing a Package from the Command LiNE.........ccccveerrererrenrererssensessessesessessessessssessessenes 598
L= 0] PR 598
(=T U= S 600
Composer and AULOI0AA..........ccvvererererrerrereree s e s s e ss e e s ssesa s e s e saessesessesaesaesessenaesas 602
Creating YOUr OWN PACKAQEccveruererrerererersenersessesessersessesessessessesssssssessessessssessessesssssssensenaes 603
Adding Package INformationcccvverenininnn e 603
Platform PACKAQEScceveririiriir s s s e sa e s s sa e sae s sae s 604
Distribution Through Packagist...........ccccvvrvnninininin e s s ssssaessessenns 605
Keeping It PriVALE........cceircie ittt n e s s 609
£ 11134 7R 611

Chapter 17: Version Control with Gitcccussemmrnmssssnnnmsssssnnsnsssssssessssssssesssssnnns 613
Why Use Version CONTIOI?ccoveerenernenereresesesesesessese s sesese e sse s e ssssessssesessssesssnens 613
GELEING GIL ..o e nn 615
Using an Online Git REPOSITOrY......c.ccocvviirriniernsinrne s 616
Configuring @ Git SEIVEN ... e s 618

Creating the Remote REPOSITOrY.......cccvviirincnnrn s 619
Beginning @ PrOjECL........ccuciiriircr s e e 621
Cloning the REPOSITONYccccieiiiiniire e s s p s s 625
Updating and COmMMIttiNGcccvcviriniinnsn s snens 626
Adding and Removing Files and Dir€CtOriescoovvvvrrerinnsnsniess e s sessessessens 630
AdAINg @ Fil....c.cieeecer st 631
ReMOVING @ FIle ..o e s 631
Adding @ DIFECIOIYccvecerererc st r s s sb e s p e s 632
Removing DIr€CIOMIEScovcrrceiererir e s 633
TagQing @ REIBASE.......cccceereririe st r s e e e s s a e s s e e s ae e e e e nn e e ae e s 633
Branching @ PrOJECT.........cvviie et r s se e s e s e e s n e s s n e e 634
£ 1134 7 644

TABLE OF CONTENTS

Chapter 18: Testing with PHPURIt...........ccccimnnnmmmmmmnsnmnmmmssssnmmssssssssssssssssssssnns 645
Functional Tests and Unit TESES.......ccoecrrerrerrer e 646
TeStING DY HANM.........ooeeeeeeeee e 646
INtrodUCING PHPURNIL ... 650

Creating @ TESE CASEucvvrerrrrirerrese s sr s e 651
ASSErtion MEthods.........ccuuireriir e 654
TeSHING EXCEPLIONS......eviecererere et s s s sa e sa s ae s aese s s ae s a e e e aennen 655
RUNNING TEST SUIBSvvuereereeerereresesseresesessesessesassessessesassassessesaessssessesassssssssessesasssssensesaes 656
0] 5] 12T O 657
MOCKS N0 STUDScvreeerrecrincrerese e s s n e sre e nenns 660
Tests Succeed When They Fail ... s sessenens 664
WIItING WED TESTS.... e sr e 670
Refactoring a Web Application for TeSHINgc.ccvcevvvrrniennrnrre s sessessennes 670
SimPIE WED TESHING ..covevvecerererierirere s s s e s se e sse e sse s saesas e ssesaesassessesaesasssssensessens 673
INtroducing SEIENIUMcov i e e s 676
A NOLE OF CAULION ... ne e se e nne e 684
£ 10T 1117 o T 686

Chapter 19: Automated Build with PRiNgc.cucccnmmsammmmssnnmsssssmsssssmsssssssssssssssssssssns 687
LT 30 11 T OO 688
Getting and INStalling PRiNGcccvceverrirererr e s s s e sessesnessssessesaessssessessesnes 689
Composing the Build DOCUMEN........coviriirn e 689

TAFGBES et ————————————————————— 692
o (0] 0T TSRS OSS 695
L] L 3SR 704
TASKS weeieiiirie s 1
£ 11134 R 77

TABLE OF CONTENTS

Chapter 20: Vagrant........ccccuseemnmmmsssnnmmssssssmmssssssssmsssssssnsssssssssssssssnssssssssnsssssssnnnnss 719
LT3N 50 (0] 0] =T o TR 719
A LITHE SEIUP ..t e e 720

Choosing and Installing a Vagrant BOXcccueurrererenmrnsmsessssesesesessesesesessesesessesessssessens 721
Mounting Local Directories on the Vagrant BoX..........ccuccvenrnnennesnssssssssssssessssssesssesessesenns 723
o 01V 1o SO 725

Setting Up the WED SEIVEN ...t snens 727

Setting Up Mari@DBccouveiereerrnsesssesese s ss s e s s s sessssnsnssnnsnnes 728

Configuring @ HOSINAMEc.ccverirerierere st sere e se s sa e s s a e e s sae e s s snesassesnesnees 729
WEAPPING TEUD ot e s e e e e b 731
BT 1117 o OSSOSO 732

Chapter 21: Continuous Integration..........ccuccmssemmmsssnsmsssnnmssssnssssssssssssssssssssssanssssns 733

What Is Continuous INtegration?..........ccvevernirienensrerrere s s s s s sesses e sseees 733
Preparing @ ProjeCt fOr Cl ... sesse s s s ses e ssesasssssessesnes 735
Installing JEenkKins PIUG-iNSccccvirmrnenininerinsesssese s sesssse s sss s s sessssssssssssases 749
Setting Up the Git PUDIIC K@Ycccvcevrerersserni e ssnnes 750
LTSy U g0 T o (0] T O 751
Running the First BUild ..o s 756
Configuring the REPOIS.........coceeereecercrerere e 757
Triggering BUIlUS.........coi e e e e 760

£ 1T 1117 OO 763

Chapter 22: Objects, Patterns, Practice........cccussmmrssmmmssmsmsssnsssssnssssssnsssssnssssnnsssas 765

(00 T OSSR SPS S 765
0 10 T 766
Encapsulation and Delegation............ccuvevmenninernssssesssssess s ssssssessnnes 766
DT o1 0]] O 767
3T U= o1 1 768
ABSTNELICS.....ceceeeereee e 768

Xvii

TABLE OF CONTENTS

PALIBIMS. ... s 769
What Patterns Buy US........ccciiinienssinene e sss s ssesssss s s ssssssssssesnes 770
Patterns and Principles 0f DESIgN ... 771

[0 2T (T S 773
L] T PSSR 774
STANAArUS ... —————————————— 774
VErSiON CONTIOL.....ccoceeieiececerr e 775
AUtOMALE BUILoceeececeee e s 775
Continuous INTEGration ... 776
WRAL | IMISSEU......cereeerercserreserieesesese s s e se s se s se e e e s e nss e see e senssnsnnnnens 776

BT 111 T o OSSR 778

Appendix A: Bibliographyccccccsmmmmsssmmmmsssnmmmssssmmmsssssmmsssssmmssssssnssssnammnn. 781

BOOKS ...t s 781

ATHICIES ... s 782

R3] TP 782

Appendix B: A SIMPIe Parser......ccccuussssmmssssssssmssnnssssssnns 785
L= 3R T2 T TR 785
THE PAISENc.eeeecreeceeseesree e e e se e e e e se s s s e se e nesae e s e e se e nenae e nse e nennn e nnnnnns 797

111 - 817

Xviii

About the Author

Matt Zandstra has worked as a web programmer, consultant, and writer for over two
decades. He is the author of SAMS Teach Yourself PHP in 24 Hours (three editions)

and is a contributor to DHTML Unleashed. He has written articles for Linux Magazine,
Zend, IBM DeveloperWorks, and php|architect magazine, among others. Matt was a
senior developer/tech lead at Yahoo! and API tech lead at LoveCrafts. Matt works as a
consultant advising companies on their architectures and system management and also
develops systems primarily with PHP and Java. Matt also writes fiction.

Xix

About the Technical Reviewer

Paul Tregoing has worked in ops and development in a
variety of environments for nearly 20 years. He worked at
Yahoo! for 5 years as a senior developer on the frontpage
team; there he generated his first PHP using Perl. Other
employers include Bloomberg, Schlumberger, and the
British Antarctic Survey, where he became intimate with
thousands of penguins.

He now works as a freelance engineer for various clients,

small and large, building multitiered web apps using PHP,

JavaScript, and many other technologies. Paul is a voracious
consumer of science fiction and fantasy and harbors
not-so-secret ambitions to try his hand at writing in the near future. He lives in
Cambridge, United Kingdom, with his wife and children.

Acknowledgments

As always, I have benefited from the support of many people while working on this
edition. But as always, I must also look back to the book’s origins. I tried out some of this
book’s underlying concepts in a talk in Brighton, back when we were all first marveling
at the shiny possibilities of PHP 5. Thanks to Andy Budd, who hosted the talk, and to the
vibrant Brighton developer community. Thanks also to Jessey White-Cinis, who was at
that meeting and who put me in touch with Martin Streicher at Apress.

Once again, this time around, the Apress team has provided enormous support,
feedback, and encouragement. I am lucky to have benefited from such professionalism.

I'm very lucky to have had my friend and colleague, Paul Tregoing, working on this
edition as Technical Reviewer. The fact that PHP itself was under active development
throughout the writing of this book demanded extra vigilance. Code examples that were
perfectly valid in early drafts were rendered incorrect by the language’s fast evolution.
Once again, this edition has greatly benefited from Paul’s knowledge, insight, and
attention to detail—many thanks Paul!

Thanks and love to my wife, Louise. The production of this book has coincided with
three pandemic lockdowns, so thanks are also due to our children, Holly and Jake, for
many much-needed distractions—often provided during Zoom meetings conducted in
my office space (the corner of the kitchen table).

Thanks to Steven Metsker for his kind permission to reimplement in PHP a
simplified version of the parser API he presented in his book, Building Parsers with Java
(Addison-Wesley Professional, 2001).

I write to music, and, in previous editions of this book, I remembered the great
DJ, John Peel, champion of the underground and the eclectic. The soundtrack for this
edition was largely provided by BBC Radio 3’s contemporary music show, Late Junction,
played on a loop. Thanks to them for keeping things weird.

xxiii

Introduction

When I first conceived of this book, object-oriented design in PHP was an esoteric topic.
The intervening years have not only seen the inexorable rise of PHP as an object-oriented
language but also the march of the framework. Frameworks are incredibly useful, of
course. They manage the guts and the glue of many (perhaps, these days, most) web
applications. What'’s more, they often exemplify precisely the principles of design that this
book explores.

There is, though, a danger for developers here, as there is in all useful APIs. This is
the fear that one might find oneself relegated to userland, forced to wait for remote gurus
to fix bugs or add features at their whim. It’s a short step from this standpoint to a kind
of exile in which one is left regarding the innards of a framework as advanced magic and
one’s own work as not much more than a minor adornment stuck up on top of a mighty
unknowable infrastructure.

Although I'm an inveterate reinventor of wheels, the thrust of my argument is not
that we should all throw away our frameworks and build MVC applications from scratch
(at least not always). It is rather that, as developers, we should understand the problems
that frameworks solve and the strategies they use to solve them. We should be able to
evaluate frameworks not only functionally but in terms of the design decisions their
creators have made and to judge the quality of their implementations. And yes, when
the conditions are right, we should go ahead and build our own spare and focused
applications and, over time, compile our own libraries of reusable code.

I hope this book goes some way toward helping PHP developers apply design-
oriented insights to their platforms and libraries and provides some of the conceptual
tools needed when it’s time to go it alone.

PART |

Objects

CHAPTER 1

PHP: Design and
Management

In July 2004, PHP 5.0 was released. This version introduced a suite of radical
enhancements. Perhaps first among these was radically improved support for object-
oriented programming. This stimulated much interest in objects and design within the
PHP community. In fact, this was an intensification of a process that began when version
4 first made object-oriented programming with PHP a serious reality.
In this chapter, I look at some of the needs that coding with objects can address.
I very briefly summarize some aspects of the evolution of patterns and related practices.
I also outline the topics covered by this book. I will look at the following:

o The evolution of disaster: A project goes bad

e Design and PHP: How object-oriented design techniques took root in
the PHP community

o This book: Objects, Patterns, Practice

The Problem

The problem is that PHP is just too easy. It tempts you to try out your ideas and flatters
you with good results. You write much of your code straight into your web pages,
because PHP is designed to support that. You add utility functions (such as database
access code) to files that can be included from page to page, and before you know it, you
have a working web application.

You are well on the road to ruin. You don’t realize this, of course, because your site
looks fantastic. It performs well, your clients are happy, and your users are spending

money.

© Matt Zandstra 2021
M. Zandstra, PHP 8 Objects, Patterns, and Practice, https://doi.org/10.1007/978-1-4842-6791-2_1

https://doi.org/10.1007/978-1-4842-6791-2_1#DOI

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

Trouble strikes when you go back to the code to begin a new phase. Now you have a
larger team, some more users, and a bigger budget. Yet, without warning, things begin to
go wrong. It’s as if your project has been poisoned.

Your new programmer is struggling to understand code that is second nature to you,
although perhaps a little byzantine in its twists and turns. She is taking longer than you
expected to reach full strength as a team member.

A simple change, estimated at a day, takes three days when you discover that you
must update 20 or more web pages as a result.

One of your coders saves his version of a file over major changes you made to the
same code some time earlier. The loss is not discovered for three days, by which time you
have amended your own local copy. It takes a day to sort out the mess, holding up a third
developer who was also working on the file.

Because of the application’s popularity, you need to shift the code to a new server.
The project has to be installed by hand, and you discover that file paths, database names,
and passwords are hard-coded into many source files. You halt work during the move
because you don’t want to overwrite the configuration changes the migration requires.
The estimated two hours becomes eight as it is revealed that someone did something
clever involving the Apache module ModRewrite, and the application now requires this
to operate properly.

You finally launch phase 2. All is well for a day and a half. The first bug report comes
in as you are about to leave the office. The client phones minutes later to complain. Her
report is similar to the first, but a little more scrutiny reveals that it is a different bug
causing similar behavior. You remember the simple change back at the start of the phase
that necessitated extensive modifications throughout the rest of the project.

You realize that not all of the required modifications are in place. This is either
because they were omitted to start with or because the files in question were overwritten
in merge collisions. You hurriedly make the modifications needed to fix the bugs. You're
in too much of a hurry to test the changes, but they are a simple matter of copy and
paste, so what can go wrong?

The next morning, you arrive at the office to find that a shopping basket module has
been down all night. The last-minute changes you made omitted a leading quotation
mark, rendering the code unusable. Of course, while you were asleep, potential
customers in other time zones were wide awake and ready to spend money at your store.
You fix the problem, mollify the client, and gather the team for another day’s firefighting.

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

This everyday tale of coding folk may seem a little over the top, but I have seen all
these things happen over and over again. Many PHP projects start their life small and
evolve into monsters.

Because the presentation layer also contains application logic, duplication creeps in
early as database queries, authentication checks, form processing, and more are copied
from page to page. Every time a change is required to one of these blocks of code, it must
be made everywhere that the code is found, or bugs will surely follow.

Lack of documentation makes the code hard to read, and lack of testing allows
obscure bugs to go undiscovered until deployment. The changing nature of a client’s
business often means that code evolves away from its original purpose until it is
performing tasks for which it is fundamentally unsuited. Because such code has often
evolved as a seething, intermingled lump, it is hard, if not impossible, to switch out and
rewrite parts of it to suit the new purpose.

Now, none of this is bad news if you are a freelance PHP consultant. Assessing and
fixing a system like this can fund expensive espresso drinks and DVD box sets for six
months or more. More seriously, though, problems of this sort can mean the difference
between a business’s success and failure.

PHP and Other Languages

PHP’s phenomenal popularity meant that its boundaries were tested early and hard. As
you will see in the next chapter, PHP started life as a set of macros for managing personal
home pages. With the advent of PHP 3 and, to a greater extent, PHP 4, the language
rapidly became the successful power behind large enterprise websites. In many ways,
however, the legacy of PHP’s beginnings carried through into script design and project
management. In some quarters, PHP retained an unfair reputation as a hobbyist
language, best suited for presentation tasks.

About this time (around the turn of the millennium), new ideas were gaining
currency in other coding communities. An interest in object-oriented design galvanized
the Java community. Since Java is an object-oriented language, you may think that this
is aredundancy. Java provides a grain that is easier to work with than against, of course,
but using classes and objects does not in itself determine a particular design approach.

The concept of the design pattern as a way of describing a problem, together with the
essence of its solution, was first discussed in the 1970s. Perhaps aptly, the idea originated
in the field of architecture, not computer science, in a seminal work by Christopher

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

Alexander: A Pattern Language (Oxford University Press, 1977). By the early 1990s,
object-oriented programmers were using the same technique to name and describe
problems of software design. The seminal book on design patterns, Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley Professional, 1995), by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (henceforth referred
to in this book by their affectionate nickname, the Gang of Four), is still indispensable
today. The patterns it contains are a required first step for anyone starting out in this
field, which is why most of the patterns in this book are drawn from it.

The Java language itself deployed many core patterns in its API, but it wasn’t until the
late 1990s that design patterns seeped into the consciousness of the coding community
at large. Patterns quickly infected the computer sections of Main Street bookstores, and
the first flame wars began on mailing lists and in forums.

Whether you think that patterns are a powerful way of communicating craft
knowledge or largely hot air (and, given the title of this book, you can probably guess
where I stand on that issue), it is hard to deny that the emphasis on software design they
have encouraged is beneficial in itself.

Related topics also grew in prominence. Among them was Extreme Programming
(XP), championed by Kent Beck. XP is an approach to projects that encourages flexible,
design-oriented, highly focused planning and execution.

Prominent among XP’s principles is an insistence that testing is crucial to a project’s
success. Tests should be automated, run often, and preferably designed before their
target code is written.

XP also dictates that projects should be broken down into small (very small) iterations.
Both code and requirements should be scrutinized at all times. Architecture and design
should be a shared and constant issue, leading to the frequent revision of code.

If XP was the militant wing of the design movement, then the moderate tendency
is well represented by one of the best books about programming that I have ever read:
The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt and David
Thomas (Addison-Wesley Professional, 1999).

XP was deemed a tad cultish by some, but it grew out of two decades of object-
oriented practice at the highest level, and its principles were widely cannibalized. In
particular, code revision, known as refactoring, was taken up as a powerful adjunct to
patterns. Refactoring has evolved since the 1980s, but it was codified in Martin Fowler’s
catalog of refactorings, Refactoring: Improving the Design of Existing Code (Addison-
Wesley Professional), which was published in 1999 and defined the field.

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

Testing, too, became a hot issue with the rise to prominence of XP and patterns. The
importance of automated tests was further underlined by the release of the powerful JUnit
test platform, which became a key weapon in the Java programmer’s armory. A landmark
article on the subject, “Test Infected: Programmers Love Writing Tests” by Kent Beck and
Erich Gamma (http://junit.sourceforge.net/doc/testinfected/testing.htm),
gives an excellent introduction to the topic and remains hugely influential.

PHP 4 was released at about this time, bringing with it improvements in efficiency
and, crucially, enhanced support for objects. These enhancements made fully object-
oriented projects a possibility. Programmers embraced this feature, somewhat to the
surprise of Zend founders Zeev Suraski and Andi Gutmans, who had joined Rasmus
Lerdorf to manage PHP development. As you shall see in the next chapter, PHP’s object
support was by no means perfect. But with discipline and careful use of syntax, one
could really begin to think in objects and PHP at the same time.

Nevertheless, design disasters such as the one depicted at the start of this chapter
remained common. Design culture was some way off and almost nonexistent in
books about PHP. Online, however, the interest was clear. Leon Atkinson wrote a piece
about PHP and patterns for Zend in 2001, and Harry Fuecks launched his journal
atwww.phppatterns.com (now defunct) in 2002. Pattern-based framework projects
such as BinaryCloud began to emerge, as well as tools for automated testing and
documentation.

The release of the first PHP 5 beta in 2003 ensured the future of PHP as a language for
object-oriented programming. Zend Engine 2 provided greatly improved object support.
Equally important, it sent a signal that objects and object-oriented design were now
central to the PHP project.

Over the years, PHP 5 continued to evolve and improve, incorporating important
new features such as namespaces and closures. During this time, it secured its
reputation as the best choice for server-side web programming.

PHP 7, released in December 2015, represented a continuation of this trend. In
particular, it provided support for both parameter and return type declarations—two
features that many developers (together with previous editions of this book) had been
clamoring for over the years. There were many other features and improvements
including anonymous classes, improved memory usage, and boosted speed. Over the
years, the language grew steadily more robust, cleaner, and more fun to work with from
the perspective of an object-oriented coder.

http://junit.sourceforge.net/doc/testinfected/testing.htm
http://www.phppatterns.com/

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

In December 2020, almost exactly five years after the release of PHP 7, PHP 8 is due
for release. While some of the implementation details may change (and have changed a
little during the writing of this book), the features are already available at the time of this
writing (August 2020). I cover many of them in detail here. They include improvements
to type declarations, streamlined property assignment, and many other new features.
The headline addition is, perhaps, support for attributes (often called annotations in
other languages).

About This Book

This book does not attempt to break new ground in the field of object-oriented design;
in that respect, it perches precariously on the shoulders of giants. Instead, I examine,
in the context of PHP, some well-established design principles and some key patterns
(particularly those inscribed in Design Patterns, the classic Gang of Four book). Finally,
I move beyond the strict limits of code to look at tools and techniques that can help to
ensure the success of a project. Aside from this introduction and a brief conclusion, the
book is divided into three main parts: objects, patterns, and practice.

Objects

I begin Part 1 with a quick look at the history of PHP and objects, charting their shift from
afterthought in PHP 3 to core feature in PHP 5.

You can still be an experienced and successful PHP programmer with little
or no knowledge of objects. For this reason, I start from first principles to explain
objects, classes, and inheritance. Even at this early stage, I look at some of the object
enhancements that PHP 5, PHP 7, and PHP 8 introduced.

The basics established, I delve deeper into our topic, examining PHP’s more
advanced object-oriented features. I also devote a chapter to the tools that PHP provides
to help you work with objects and classes.

It is not enough, however, to know how to declare a class, and to use it to instantiate
an object. You must first choose the right participants for your system and decide the
best ways for them to interact. These choices are much harder to describe and to learn
than the bald facts about object tools and syntax. I finish Part 1 with an introduction to
object-oriented design with PHP.

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

Patterns

A pattern describes a problem in software design and provides the kernel of a solution.
“Solution” here does not mean the kind of cut-and-paste code that you might find in a
cookbook (excellent though cookbooks are as resources for the programmer). Instead,
a design pattern describes an approach that can be taken to solve a problem. A sample
implementation may be given, but it is less important than the concept that it serves to
illustrate.

Part 2 begins by defining design patterns and describing their structure. I also look at
some of the reasons behind their popularity.

Patterns tend to promote and follow certain core design principles. An
understanding of these can help in analyzing a pattern’s motivation and can usefully
be applied to all programming. I discuss some of these principles. I also examine the
Unified Modeling Language (UML), a platform-independent way of describing classes
and their interactions.

Although this book is not a pattern catalog, I examine some of the most famous and
useful patterns. I describe the problem that each pattern addresses, analyze the solution,
and present an implementation example in PHP.

Practice

Even a beautifully balanced architecture will fail if it is not managed correctly. In Part 3,
look at the tools available to help you create a framework that ensures the success of your
project. If the rest of the book is about the practice of design and programming, Part 3 is
about the practice of managing your code. The tools that I examine can form a support
structure for a project, helping to track bugs as they occur, promoting collaboration
among programmers, and providing ease of installation and clarity of code.

I have already discussed the power of the automated test. I kick off Part 3 with an
introductory chapter that gives an overview of problems and solutions in this area.

Many programmers are guilty of giving in to the impulse to do everything
themselves. Composer, together with Packagist, its main repository, offers access to
thousands of dependency managed packages that can be stitched into projects with
ease. I look at the trade-offs between implementing a feature yourself and deploying a
Composer package.

While I'm on the topic of Composer, Ilook at the installation mechanism that makes
the deployment of a package as simple as a single command.

