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Introduction

When I first conceived of this book, object-oriented design in PHP was an esoteric topic.
The intervening years have not only seen the inexorable rise of PHP as an object-oriented
language but also the march of the framework. Frameworks are incredibly useful, of
course. They manage the guts and the glue of many (perhaps, these days, most) web
applications. What'’s more, they often exemplify precisely the principles of design that this
book explores.

There is, though, a danger for developers here, as there is in all useful APIs. This is
the fear that one might find oneself relegated to userland, forced to wait for remote gurus
to fix bugs or add features at their whim. It’s a short step from this standpoint to a kind
of exile in which one is left regarding the innards of a framework as advanced magic and
one’s own work as not much more than a minor adornment stuck up on top of a mighty
unknowable infrastructure.

Although I'm an inveterate reinventor of wheels, the thrust of my argument is not
that we should all throw away our frameworks and build MVC applications from scratch
(at least not always). It is rather that, as developers, we should understand the problems
that frameworks solve and the strategies they use to solve them. We should be able to
evaluate frameworks not only functionally but in terms of the design decisions their
creators have made and to judge the quality of their implementations. And yes, when
the conditions are right, we should go ahead and build our own spare and focused
applications and, over time, compile our own libraries of reusable code.

I hope this book goes some way toward helping PHP developers apply design-
oriented insights to their platforms and libraries and provides some of the conceptual
tools needed when it’s time to go it alone.
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CHAPTER 1

PHP: Design and
Management

In July 2004, PHP 5.0 was released. This version introduced a suite of radical
enhancements. Perhaps first among these was radically improved support for object-
oriented programming. This stimulated much interest in objects and design within the
PHP community. In fact, this was an intensification of a process that began when version
4 first made object-oriented programming with PHP a serious reality.
In this chapter, I look at some of the needs that coding with objects can address.
I very briefly summarize some aspects of the evolution of patterns and related practices.
I also outline the topics covered by this book. I will look at the following:

o The evolution of disaster: A project goes bad

e Design and PHP: How object-oriented design techniques took root in
the PHP community

o This book: Objects, Patterns, Practice

The Problem

The problem is that PHP is just too easy. It tempts you to try out your ideas and flatters
you with good results. You write much of your code straight into your web pages,
because PHP is designed to support that. You add utility functions (such as database
access code) to files that can be included from page to page, and before you know it, you
have a working web application.

You are well on the road to ruin. You don’t realize this, of course, because your site
looks fantastic. It performs well, your clients are happy, and your users are spending

money.

© Matt Zandstra 2021
M. Zandstra, PHP 8 Objects, Patterns, and Practice, https://doi.org/10.1007/978-1-4842-6791-2_1


https://doi.org/10.1007/978-1-4842-6791-2_1#DOI

CHAPTER 1 PHP: DESIGN AND MANAGEMENT

Trouble strikes when you go back to the code to begin a new phase. Now you have a
larger team, some more users, and a bigger budget. Yet, without warning, things begin to
go wrong. It’s as if your project has been poisoned.

Your new programmer is struggling to understand code that is second nature to you,
although perhaps a little byzantine in its twists and turns. She is taking longer than you
expected to reach full strength as a team member.

A simple change, estimated at a day, takes three days when you discover that you
must update 20 or more web pages as a result.

One of your coders saves his version of a file over major changes you made to the
same code some time earlier. The loss is not discovered for three days, by which time you
have amended your own local copy. It takes a day to sort out the mess, holding up a third
developer who was also working on the file.

Because of the application’s popularity, you need to shift the code to a new server.
The project has to be installed by hand, and you discover that file paths, database names,
and passwords are hard-coded into many source files. You halt work during the move
because you don’t want to overwrite the configuration changes the migration requires.
The estimated two hours becomes eight as it is revealed that someone did something
clever involving the Apache module ModRewrite, and the application now requires this
to operate properly.

You finally launch phase 2. All is well for a day and a half. The first bug report comes
in as you are about to leave the office. The client phones minutes later to complain. Her
report is similar to the first, but a little more scrutiny reveals that it is a different bug
causing similar behavior. You remember the simple change back at the start of the phase
that necessitated extensive modifications throughout the rest of the project.

You realize that not all of the required modifications are in place. This is either
because they were omitted to start with or because the files in question were overwritten
in merge collisions. You hurriedly make the modifications needed to fix the bugs. You're
in too much of a hurry to test the changes, but they are a simple matter of copy and
paste, so what can go wrong?

The next morning, you arrive at the office to find that a shopping basket module has
been down all night. The last-minute changes you made omitted a leading quotation
mark, rendering the code unusable. Of course, while you were asleep, potential
customers in other time zones were wide awake and ready to spend money at your store.
You fix the problem, mollify the client, and gather the team for another day’s firefighting.
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This everyday tale of coding folk may seem a little over the top, but I have seen all
these things happen over and over again. Many PHP projects start their life small and
evolve into monsters.

Because the presentation layer also contains application logic, duplication creeps in
early as database queries, authentication checks, form processing, and more are copied
from page to page. Every time a change is required to one of these blocks of code, it must
be made everywhere that the code is found, or bugs will surely follow.

Lack of documentation makes the code hard to read, and lack of testing allows
obscure bugs to go undiscovered until deployment. The changing nature of a client’s
business often means that code evolves away from its original purpose until it is
performing tasks for which it is fundamentally unsuited. Because such code has often
evolved as a seething, intermingled lump, it is hard, if not impossible, to switch out and
rewrite parts of it to suit the new purpose.

Now, none of this is bad news if you are a freelance PHP consultant. Assessing and
fixing a system like this can fund expensive espresso drinks and DVD box sets for six
months or more. More seriously, though, problems of this sort can mean the difference
between a business’s success and failure.

PHP and Other Languages

PHP’s phenomenal popularity meant that its boundaries were tested early and hard. As
you will see in the next chapter, PHP started life as a set of macros for managing personal
home pages. With the advent of PHP 3 and, to a greater extent, PHP 4, the language
rapidly became the successful power behind large enterprise websites. In many ways,
however, the legacy of PHP’s beginnings carried through into script design and project
management. In some quarters, PHP retained an unfair reputation as a hobbyist
language, best suited for presentation tasks.

About this time (around the turn of the millennium), new ideas were gaining
currency in other coding communities. An interest in object-oriented design galvanized
the Java community. Since Java is an object-oriented language, you may think that this
is aredundancy. Java provides a grain that is easier to work with than against, of course,
but using classes and objects does not in itself determine a particular design approach.

The concept of the design pattern as a way of describing a problem, together with the
essence of its solution, was first discussed in the 1970s. Perhaps aptly, the idea originated
in the field of architecture, not computer science, in a seminal work by Christopher
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Alexander: A Pattern Language (Oxford University Press, 1977). By the early 1990s,
object-oriented programmers were using the same technique to name and describe
problems of software design. The seminal book on design patterns, Design Patterns:
Elements of Reusable Object-Oriented Software (Addison-Wesley Professional, 1995), by
Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (henceforth referred
to in this book by their affectionate nickname, the Gang of Four), is still indispensable
today. The patterns it contains are a required first step for anyone starting out in this
field, which is why most of the patterns in this book are drawn from it.

The Java language itself deployed many core patterns in its API, but it wasn’t until the
late 1990s that design patterns seeped into the consciousness of the coding community
at large. Patterns quickly infected the computer sections of Main Street bookstores, and
the first flame wars began on mailing lists and in forums.

Whether you think that patterns are a powerful way of communicating craft
knowledge or largely hot air (and, given the title of this book, you can probably guess
where I stand on that issue), it is hard to deny that the emphasis on software design they
have encouraged is beneficial in itself.

Related topics also grew in prominence. Among them was Extreme Programming
(XP), championed by Kent Beck. XP is an approach to projects that encourages flexible,
design-oriented, highly focused planning and execution.

Prominent among XP’s principles is an insistence that testing is crucial to a project’s
success. Tests should be automated, run often, and preferably designed before their
target code is written.

XP also dictates that projects should be broken down into small (very small) iterations.
Both code and requirements should be scrutinized at all times. Architecture and design
should be a shared and constant issue, leading to the frequent revision of code.

If XP was the militant wing of the design movement, then the moderate tendency
is well represented by one of the best books about programming that I have ever read:
The Pragmatic Programmer: From Journeyman to Master by Andrew Hunt and David
Thomas (Addison-Wesley Professional, 1999).

XP was deemed a tad cultish by some, but it grew out of two decades of object-
oriented practice at the highest level, and its principles were widely cannibalized. In
particular, code revision, known as refactoring, was taken up as a powerful adjunct to
patterns. Refactoring has evolved since the 1980s, but it was codified in Martin Fowler’s
catalog of refactorings, Refactoring: Improving the Design of Existing Code (Addison-
Wesley Professional), which was published in 1999 and defined the field.



CHAPTER 1 PHP: DESIGN AND MANAGEMENT

Testing, too, became a hot issue with the rise to prominence of XP and patterns. The
importance of automated tests was further underlined by the release of the powerful JUnit
test platform, which became a key weapon in the Java programmer’s armory. A landmark
article on the subject, “Test Infected: Programmers Love Writing Tests” by Kent Beck and
Erich Gamma (http://junit.sourceforge.net/doc/testinfected/testing.htm),
gives an excellent introduction to the topic and remains hugely influential.

PHP 4 was released at about this time, bringing with it improvements in efficiency
and, crucially, enhanced support for objects. These enhancements made fully object-
oriented projects a possibility. Programmers embraced this feature, somewhat to the
surprise of Zend founders Zeev Suraski and Andi Gutmans, who had joined Rasmus
Lerdorf to manage PHP development. As you shall see in the next chapter, PHP’s object
support was by no means perfect. But with discipline and careful use of syntax, one
could really begin to think in objects and PHP at the same time.

Nevertheless, design disasters such as the one depicted at the start of this chapter
remained common. Design culture was some way off and almost nonexistent in
books about PHP. Online, however, the interest was clear. Leon Atkinson wrote a piece
about PHP and patterns for Zend in 2001, and Harry Fuecks launched his journal
atwww.phppatterns.com (now defunct) in 2002. Pattern-based framework projects
such as BinaryCloud began to emerge, as well as tools for automated testing and
documentation.

The release of the first PHP 5 beta in 2003 ensured the future of PHP as a language for
object-oriented programming. Zend Engine 2 provided greatly improved object support.
Equally important, it sent a signal that objects and object-oriented design were now
central to the PHP project.

Over the years, PHP 5 continued to evolve and improve, incorporating important
new features such as namespaces and closures. During this time, it secured its
reputation as the best choice for server-side web programming.

PHP 7, released in December 2015, represented a continuation of this trend. In
particular, it provided support for both parameter and return type declarations—two
features that many developers (together with previous editions of this book) had been
clamoring for over the years. There were many other features and improvements
including anonymous classes, improved memory usage, and boosted speed. Over the
years, the language grew steadily more robust, cleaner, and more fun to work with from
the perspective of an object-oriented coder.
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In December 2020, almost exactly five years after the release of PHP 7, PHP 8 is due
for release. While some of the implementation details may change (and have changed a
little during the writing of this book), the features are already available at the time of this
writing (August 2020). I cover many of them in detail here. They include improvements
to type declarations, streamlined property assignment, and many other new features.
The headline addition is, perhaps, support for attributes (often called annotations in
other languages).

About This Book

This book does not attempt to break new ground in the field of object-oriented design;
in that respect, it perches precariously on the shoulders of giants. Instead, I examine,
in the context of PHP, some well-established design principles and some key patterns
(particularly those inscribed in Design Patterns, the classic Gang of Four book). Finally,
I move beyond the strict limits of code to look at tools and techniques that can help to
ensure the success of a project. Aside from this introduction and a brief conclusion, the
book is divided into three main parts: objects, patterns, and practice.

Objects

I begin Part 1 with a quick look at the history of PHP and objects, charting their shift from
afterthought in PHP 3 to core feature in PHP 5.

You can still be an experienced and successful PHP programmer with little
or no knowledge of objects. For this reason, I start from first principles to explain
objects, classes, and inheritance. Even at this early stage, I look at some of the object
enhancements that PHP 5, PHP 7, and PHP 8 introduced.

The basics established, I delve deeper into our topic, examining PHP’s more
advanced object-oriented features. I also devote a chapter to the tools that PHP provides
to help you work with objects and classes.

It is not enough, however, to know how to declare a class, and to use it to instantiate
an object. You must first choose the right participants for your system and decide the
best ways for them to interact. These choices are much harder to describe and to learn
than the bald facts about object tools and syntax. I finish Part 1 with an introduction to
object-oriented design with PHP.



CHAPTER 1 PHP: DESIGN AND MANAGEMENT

Patterns

A pattern describes a problem in software design and provides the kernel of a solution.
“Solution” here does not mean the kind of cut-and-paste code that you might find in a
cookbook (excellent though cookbooks are as resources for the programmer). Instead,
a design pattern describes an approach that can be taken to solve a problem. A sample
implementation may be given, but it is less important than the concept that it serves to
illustrate.

Part 2 begins by defining design patterns and describing their structure. I also look at
some of the reasons behind their popularity.

Patterns tend to promote and follow certain core design principles. An
understanding of these can help in analyzing a pattern’s motivation and can usefully
be applied to all programming. I discuss some of these principles. I also examine the
Unified Modeling Language (UML), a platform-independent way of describing classes
and their interactions.

Although this book is not a pattern catalog, I examine some of the most famous and
useful patterns. I describe the problem that each pattern addresses, analyze the solution,
and present an implementation example in PHP.

Practice

Even a beautifully balanced architecture will fail if it is not managed correctly. In Part 3,
look at the tools available to help you create a framework that ensures the success of your
project. If the rest of the book is about the practice of design and programming, Part 3 is
about the practice of managing your code. The tools that I examine can form a support
structure for a project, helping to track bugs as they occur, promoting collaboration
among programmers, and providing ease of installation and clarity of code.

I have already discussed the power of the automated test. I kick off Part 3 with an
introductory chapter that gives an overview of problems and solutions in this area.

Many programmers are guilty of giving in to the impulse to do everything
themselves. Composer, together with Packagist, its main repository, offers access to
thousands of dependency managed packages that can be stitched into projects with
ease. I look at the trade-offs between implementing a feature yourself and deploying a
Composer package.

While I'm on the topic of Composer, Ilook at the installation mechanism that makes
the deployment of a package as simple as a single command.



