= 1E

P
b

g%s FM.fm Pagei Friday, October 4, 2002 11:49 AM

A

The Linux Development Platform

Configuring, Using, and Maintaining a
Complete Programming Environment

ISBN 0130091L5-4

““ H |

911780130"091154 “

.

4 -~

%% 6%8 hp_perens_series.fm Page 1 Monday, September 23, 2002 10:03 AM

T

BRUCE PERENS’ OPEN SOURCE SERIES

* Implementing CIFS: The Common Internet File System
Christopher R. Hertel

+ Embedded Software Development with eCos
Anthony J. Massa

The Linux Development Platform: Configuring, Using,
and Maintaining a Complete Programming
Environment

Rafeeq Ur Rehman, Christopher Paul

&% FM.fm Page iii Friday, October 4, 2002 11:49 AM

A

The Linux Development Platform

Configuring, Using, and Maintaining a
Complete Programming Environment

Rafeeq Ur Rehman
%9 Christopher Paul

N
PRENTICE
HALL
PTR
Prentice Hall PTR

Upper Saddle River, New Jersey 07458
www.phptr.com

%%

-t

.

A2
»

é FM.fm Page iv Friday, October 4, 2002 11:49 AM

Library of Congress Cataloging-in-Publication Data

A CIP catalog record for this book can be obtained from the Library of Congress.

Editorial/production supervision: Mary Sudul
Cover design director: Jerry Votta

Cover design: DesignSource

Manufacturing manager: Alexis Heydt-Long
Acquisitions editor: Jill Harry

Editorial assistant: Kate Wolf

Marketing manager: Dan DePasquale

\ © 2003 Pearson Education, Inc.
P%NT[c¢ Publishing as Prentice Hall PTR

HALL — Upper Saddle River, New Jersey 07458

PTR
This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
<http://www.opencontent.org/openpub/>).

Prentice Hall books are widely used by corporations and government agencies for training, marketing,
and resale.

The publisher offers discounts on this book when ordered in bulk quantities. For more information,
contact Corporate Sales Department, Phone: 800-382-3419; FAX: 201-236-7141;

E-mail: corpsales @prenhall.com

Or write: Prentice Hall PTR, Corporate Sales Dept., One Lake Street, Upper Saddle River, NJ 07458.

Other product or company names mentioned herein are the trademarks or registered trademarks of their
respective owners.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-009115-4

Pearson Education LTD.

Pearson Education Australia PTY, Limited
Pearson Education Singapore, Pte. Ltd.
Pearson Education North Asia Ltd.

Pearson Education Canada, Ltd.

Pearson Educacion de Mexico, S.A. de C.V.
Pearson Education — Japan

Pearson Education Malaysia, Pte. Ltd.

%

N/ (%)
FM.fm Page v Friday, October 4, 2002 11:49 AM

A

To Asia, Afnan, and Faris for their love and support.
—Rafeeq Ur Rehman

To Cheryl, Rachel, and Sarah for the moral support and unending
encouragement to complete this project. I'd be lost without you.
—Christopher Paul

.
D

2
N

S FM.fm Page vi Friday, October 4, 2002 11:49 AM

A
2

A2
»

é RehmanPaulTOC.fm Page vii Friday, October 4, 2002 1:06 PM

A

CONTENTS

Acknowledgments xvii
Chapter 1 Introduction to Software Development 1
1.1 Life Cycle of a Software Development Project 2
1.1.1 Requirement Gathering 2
1.1.2 Writing Functional Specifications 4
1.1.3 Creating Architecture and Design Documents 4
1.1.4 Implementation and Coding 5
1.1.5 Testing 6
1.1.6 Software Releases 8
1.1.7 Documentation 8
1.1.8 Support and New Features 9
1.2 Components of a Development System 10
1.2.1 Hardware Platform 10
1.2.2 Operating System 11
1.2.3 Editors 11
1.2.4 Compilers and Assemblers 12
1.2.5 Debuggers 12
1.2.6 Version Control Systems 12
1.2.7 E-mail and Collaboration 13

vii

*@%

4~ 4

é RehmanPaulTOC.fm Page viii Friday, October 4, 2002 1:06 PM

A

viii Contents
1.2.8 X-Windows 13
1.3 Selection Criteria for Hardware Platform 13
1.4 Selection Criteria for Software Development Tools 14
1.5 Managing Development Process 14
1.5.1 Creating Deadlines 14
1.5.2 Managing the Development Team 15
1.5.3 Resolving Dependencies 15
1.6 Linux Development Platform Specifications (LDPS) and Linux
Standard Base (LSB) 15
1.6.1 Libraries 15
1.6.2 Current Contributors to LSB 16
1.7 References 16
Chapter 2 Working With Editors 17
2.1 What to Look for in an Editor 17
2.1.1 Extensibility 17
2.1.2 Understanding Syntax 18
2.1.3 Tag Support 18
2.1.4 Folding Code 18
2.2 Emacs 18
2.2.1 Using Emacs 19
2.2.2 Basic Emacs Concepts 20
2.2.3 Using Buffers and Windows 24
2.2.4 Language Modes 26
2.2.5 Using Tags 27
2.2.6 Compiling 30
2.2.77 Xemacs 32
2.3 Jed 32
2.3.1 Configuring Jed 33
2.3.2 Using Jed 34
2.3.3 Folding Code 35
24 VIM 37
2.4.1 VIM Concepts 38
2.4.2 Basic Editing 38
2.4.3 Using Tags with VIM 41
2.4.4 Folding Code 42
2.5 References and Resources 42

*@%

4~ 4

A

é RehmanPaulTOC.fm Page ix Friday, October 4, 2002 1:06 PM

Contents

Chapter 3 Compilers and Assemblers
3.1 Introduction to GNU C and C++ Compilers

3.1.1
3.1.2

Languages Supported by GCC
New Features in GCC 3.x

3.2 Installing GNU Compiler

3.2.1
322
323
324
3.25

Downloading

Building and Installing GCC

Environment Variables

Post-Installation Tasks

What Not to Do when Installing Development Tools

3.3 Compiling a Program

3.3.1
33.2
333
334
335
3.3.6
3.3.7
3.3.8

Simple Compilation

Default File Types

Compiling to Intermediate Levels
Compilation with Debug Support
Compilation with Optimization

Static and Dynamic Linking

Compiling Source Code for Other Languages
Summary of gcc Options

3.4 Linking a program
3.5 Assembling a Program
3.6 Handling Warning and Error messages
3.7 Include files
3.8 Creating Libraries
3.9 Standard Libraries
3.10 Compiling Pascal Programs

3.10.1
3.10.2

Using Free Pascal (fpc)
Using GNU Pascal

3.11 Compiling Fortran Programs
3.12 Other Compilers

3.12.1
3.12.2
3.12.3

Smalltalk
Oberon
Ruby

3.13 References and Resources

Chapter 4 Using GNU make
4.1 Introduction to GNU make

4.1.1

Basic Terminology

%%

43

44
44
46
48
48
48
54
56
58
58
59
60
61
63
64
65
66
70
91
91
92
92
92
93
94
95
96
96
98
98
98
98
98

101

102
103

-t

.

é RehmanPaulTOC.fm Page x Friday, October 4, 2002 1:06 PM E%) \

X Contents
4.1.2 Input Files 105
4.1.3 Typical Contents of a Makefile 106
4.1.4 Running make 108
4.1.5 Shell to Execute Commands 109
4.1.6 Include Files 109

4.2 The make Rules 110
4.2.1 Anatomy of a Rule 110
4.2.2 A Basic Makefile 111
4.2.3 Another Example of Makefile 113
4.2.4 Explicit Rules 118
4.2.5 Implicit Rules 118

4.3 Using Variables 119
4.3.1 Defining Variables 120
4.3.2 Types of Variables 120
4.3.3 Pre-Defined Variables 121
4.3.4 Automatic Variables 121

4.4 Working with Multiple Makefiles and Directories 122
4.4.1 Makefile in The Top Directory 123
4.4.2 Makefile in common-dir Directory 125
4.4.3 Makefile in the ftp-dir Directory 126
4.4.4 Makefile in the tftp-dir Directory 127
4.4.5 Makefile in the dns-dir Directory 127
4.4.6 Building Everything 128
4.4.7 Cleaning Everything 129
4.4.8 Making Individual Targets 129

4.5 Special Features of make 130
4.5.1 Running Commands in Parallel 130
4.5.2 Non-Stop Execution 130

4.6 Control Structures and Directives 131
4.6.1 The ifeq Directive 132
4.6.2 The ifneq Directive 132
4.6.3 The ifdef Directive 132
4.6.4 The ifndef Directive 133
4.6.5 The for Control Structure 133

4.7 Getting the Latest Version and Installation 133
4.7.1 Compilation 133

*@%

4 -~

é RehmanPaulTOC.fm Page xi Friday, October 4, 2002 1:06 PM

A

Contents xi
4.7.2 Installation 134
4.8 References and Resources 134
Chapter 5 Working with GNU Debugger 135
5.1 Introduction to GDB 136
5.2 Getting Started with GDB 136
5.2.1 Most Commonly Used gdb Commands 137
5.2.2 A Sample Session with gdb 138
5.2.3 Passing Command Line Arguments to the Program
Being Debugged 141
5.3 Controlling Execution 144
5.3.1 The step and finish Commands 144
5.4 Working with the Stack 146
5.5 Displaying Variables 151
5.5.1 Displaying Program Variables 151
5.5.2 Automatic Displaying Variables with Each Command 153
5.5.3 Displaying Environment Variables 154
5.5.4 Modifying Variables 155
5.6 Adding Break Points 156
5.6.1 Continuing from Break Point 158
5.6.2 Disabling Break Points 159
5.6.3 Enabling Break Points 159
5.6.4 Deleting Break Points 160
5.7 Debugging Optimized Code 160
5.8 Files and Shared Libraries 163
5.9 Using gdb With GNU Emacs 164
5.10 Debugging Running Processes 165
5.11 Installing GDB 168
5.11.1 Downloading and Building 168
5.11.2 Final Installation 168
5.12 Other Open Source Debuggers 169
5.12.1 The kdbg Debugger 169
5.12.2 The ddd Debugger 172
5.12.3 The xxgdb Debugger 173
5.13 References and Resources 174

*@%

4~ 4

é RehmanPaulTOC.fm Page xii Friday, October 4, 2002 1:06 PM

A

xii Contents
Chapter 6 Introduction to CVS 175
6.1 CVS Policies 176
6.2 Project Management and Communication 176
6.3 Installing and Managing CVS 176
6.3.1 Configuring CVS 177
6.3.2 Importing a Project into the Repository 179
6.4 Using the CVS Client 180
6.4.1 Local Repositories 181
6.4.2 Remote Repositories 182
6.4.3 Checking out a Project 182
6.4.4 Finding the Status of a Project 183
6.4.5 Finding Differences 184
6.4.6 Resolving Conflicts 185
6.4.7 Checking the Project Back In 186
6.4.8 Adding Files to a Project 186
6.4.9 Removing Files from a Project 187
6.4.10 Renaming Files within a Project 188
6.4.11 Removing your Working Copy 188
6.4.12 Tags and Releases 189
6.5 Introduction to jJCVS 190
6.5.1 System Requirements 190
6.5.2 Installation Instructions 190
6.5.3 Using jCVS 191
6.6 Using Emacs with CVS 196
6.6.1 Installing pcl-cvs 197
6.6.2 Using pcl-cvs 197
6.7 Secure remote access with CVS 199
6.7.1 Secure Shell Access 199
6.8 References and Resources 201
Chapter 7 Miscellaneous Tools 203
7.1 Using indent Utility 204
7.1.1 Getting Started with Indent 205
7.1.2 Selecting Coding Styles 206
7.1.3 Blank Lines and Comments 209
7.1.4 Formatting Braces 210
7.1.5 Formatting Declarations 211

.

4~ 4

A

é RehmanPaulTOC.fm Page xiii Friday, October 4, 2002 1:06 PM

Contents

7.1.6
7.1.7

Breaking Long Lines
Summary of Options

7.2 Using sed Utility
7.3 Using diff Utility

7.3.1

Other Forms of diff Utility

7.4 Using cscope and cbrowser

7.5 Generating C Function Prototypes from C Source Code
Using cproto

7.6 Using ltrace and strace Ultilities

7.7 Using GNU Binary Utilities

7.7.1
7.7.2
7.1.3
1.7.4
7.1.5
7.7.6
1.1.7
7.7.8
7.7.9

Using the ar Utility

Using the ranlib Utility
Using the nm Utility
Using the strip Utility
Using the objcopy Utility
Using the objdump Utility
Using the size Utility
Using the strings Utility
Using the addr2line Utility

7.8 Using the 1dd Utility
7.9 References and Resources

Chapter 8 Cross-Platform and Embedded Systems Development

8.1 Introduction to the Cross-Platform Development Process

8.1.1
8.1.2
8.1.3
8.14

Host Machine

Target Machine

Native and Cross Compilers

Cross Platform Development Cycle

8.2 What are Embedded Systems?

8.2.1
8.2.2
823
824

Embedded Systems and Moving Parts
Embedded Systems and Power Consumption
Embedded Operating Systems

Software Applications for Embedded Systems

8.3 How Development Systems Differ for Embedded Systems

8.3.1
83.2

Knowledge of Target System Hardware
Is the Target System Real-Time?

%%

xiii

212
213
215
215
218
219

222
223
226
226
228
228
231
231
232
236
237
237
238
238

239

240
240
240
241
241
243
244
245
245
246
246
246
247

-t

*@%

é RehmanPaulTOC.fm Page xiv Friday, October 4, 2002 1:06 PM

A

xiv Contents
8.3.3 Testing Methodology 247
8.4 Cross Compilations 247
8.4.1 Software Emulators 248
8.4.2 In-circuit emulators 249
8.4.3 Introduction to JTAG and BDM 249
8.5 Connecting to Target 250
8.5.1 Using gdbserver with GNU Debugger 250
8.5.2 Attaching to a Running Process Using gdbserver 255
8.5.3 Using Stubs with GNU Debugger 256
8.5.4 Debugging the Debug Session 256
8.6 Hardware Used for Cross Platform and Embedded Systems
Development 258
8.6.1 Arcom SBC-GX1 Board 258
8.6.2 Artesyn PM/PPC Mezzanine Card 260
8.7 References 261
Chapter 9 Platform Independent Development with Java 263
9.1 How Java Applications Work 264
9.1.1 Java Compiler 264
9.1.2 Java Virtual Machine 264
9.2 Kaffe 264
9.3 The Jboss Java Development System 266
9.4 Java2 SDK 267
9.4.1 Java2 SDK Standard Edition 267
9.4.2 Getting and Installing Java SDK from Sun 269
9.4.3 Creating jar Files 269
9.5 Building Java Applications 270
9.5.1 Creating Source Code File 270
9.5.2 Compiling Java Code 270
9.5.3 Running Java Applications 271
9.5.4 Using gcj to Build Java Applications 271
9.6 Building Applets 271
9.7 Testing Applets with Netscape 272
9.8 Jikes for Java 272
9.9 Miscellaneous 274
9.9.1 Embedded Java 274
9.9.2 Real Time Java 274

*@%

A2
»

A

é RehmanPaulTOC.fm Page xv Friday, October 4, 2002 1:06 PM

Contents

9.9.3 Wireless Applications
9.10 References

Appendix A Typical Hardware Requirements for a Linux
Development Workstation

Index

Xv

275
275

277
283

-t

*@%

2
N

S RehmanPaulTOC.fm Page xvi Friday, October 4, 2002 1:06 PM

A
2

N/ (%)
Preface.fm Page xvii Wednesday, October 16, 2002 10:46 AM

A

PREFACE

Setting up a complete development environment using open source tools has always
been a challenging task. Although all of the development tools are available in the open source,
no comprehensive development environment exists as of today. This book is an effort to enable
the reader to set up and use open source to create such an environment. Each chapter of the book
is dedicated to a particular component of the development environment.

Chapter 1 provides an introduction to the practical software development life cycle and
stages. The chapter also provides information about the documentation required for all serious
software development projects. Guidelines are provided about criteria for selecting hardware
and software platforms.

Chapter 2 is about using editors. Editors are essential components of any software devel-
opment system. Selection of a good editor saves time and money in the development life cycle.
This chapter provides information about commonly used editors like Emacs, Jed and vim (vi
Improved).

Chapter 3 is about the GNU set of compilers commonly known as GCC. The procedure
for installation and use of gcc with different languages is presented here.

Larger software projects contain hundreds or thousands of files. Compiling these files in
an orderly fashion and then building the final executable product is a challenging task. GNU
make is a tool used to build a project by compiling and linking source code files. Chapter 4 pro-
vides information on how to install and use this important tool.

Chapter 5 discusses debuggers. An introduction to commonly used debuggers is provided
in this chapter with an emphasis on the GNU debugger gdb.

Chapter 6 introduces CVS, which is the open source revision control system and is most
widely used in open source development. Setting up a CVS server is detailed in this chapter. You
will learn how to use remote the CVS server in a secure way.

There are tools other than compilers, debuggers and editors. These tools are discussed in
Chapter 7. These tools help in building good products.

xvii

%%

ﬁ

*@%

N/ (%)
S Preface.fm Page xviii Wednesday, October 16, 2002 10:46 AM

xviii Preface

Open source tools are also widely used in embedded and cross-platform development.
Chapter 8 provides information using open source tools in such environments. Remote debug-
ging is an important concept and it is explained in this chapter.

Chapter 9 is the last chapter of the book and it provides a basic introduction to open source
Java development.

There is one important thing that you must keep in mind while reading this book. It is not
a tutorial on any language or programming techniques. It is about development tools and how to
use these. You need other books to learn programming languages and techniques.

The book explains the installation procedures of different tools. By the time you read this
book, new versions of these tools may be available. The installation procedures will not vary
drastically in these versions and you can use the steps explained in this book. In fact, most of the
open source tools employ the same compiling and installation procedure that you will note in
this book. This process has been consistent and is expected to remain the same in future as well.

After reading this book, we are very much hopeful that the reader will be able to under-
stand different components of a development system. You will also be able to create such a sys-
tem from scratch using open source tools.

Rafeeq Ur Rehman
Christopher Paul

N/ (%)
Preface.fm Page xix Wednesday, October 16, 2002 10:46 AM

A

ABOUT THE CD

This book comes with a CD-ROM. The CD-ROM contains source code of all soft-
ware and utilities used in this book. You can compile and install these tools as explained in this
book. If you need latest versions of these tools, you can download these from the links provided
in the book.

xix

2
N

S Preface.fm Page xx Wednesday, October 16, 2002 10:46 AM

A
2

N/ (%)
Ack.fm Page xvii Friday, October 4, 2002 1:10 PM

A

ACKNOWLEDGMENTS

This is my third book and I have been very fortunate to get help from many people around
me in all of these projects. Professor Shahid Bokhari at the University of Engineering and Tech-
nology Lahore, Pakistan, provided valuable suggestions while I was creating table of contents
for this book. In fact he proposed a mini table of contents about what should be included in the
book to make it useful both for the developers and students of computer science and engineer-
ing. I am grateful for his continued support.

Mike Schoenborn, Amgad Fahmy, and Greg Ratcliff at Peco II Inc. continuously encour-
aged me during the time I was writing the manuscript and I am thankful to all of them. I am also
thankful to Victor Kean for providing his life experiences both in real social life and software
development.

I am also thankful to Jill Harry and Mary Sudul at Prentice Hall PTR for bearing with me
and pushing me to meet deadlines which really helped bring this book to the market in time.

Drew Streib did a great job in reviewing the manuscript and giving very useful suggestions
to improve it. Thanks Drew.

Jim Shappell at Arcom Control Systems provided x86 based board for testing embedded
development examples and remote debugging. Cole Creighton at Artesyn Communication Prod-
ucts provided PowerPC based board for cross-platform development testing purpose. I am
thankful to both of them for their help in developing the manuscript of this book.

xvii

ﬁ

*@%

N/ (%)
Ack.fm Page xviii Friday, October 4, 2002 1:10 PM

A

xviii Acknowledgments

Bruce Parens gave valuable suggestions about what to include in the book. He also agreed
to print the book under his Open Source Series. I was excited to get his approval and I am thank-
ful to him.

And I am thankful to the open source community all over the world for putting such a
huge effort to build these open source tools. This book exists only because of the open source
products and tools.

Above all, I am thankful to my father, who taught me how to read and write and work

hard.
Rafeeq Ur Rehman
September 25, 2002

ﬁ

é CHO1.fm Page 1 Friday, October 4, 2002 3:06 PM

A

CHAPTER 1

Introduction to
Software
Development

oftware development is a complicated process. It requires careful
Splanning and execution to meet the goals. Sometimes a developer
must react quickly and aggressively to meet everchanging market
demands. Maintaining software quality hinders fast-paced software devel-
opment, as many testing cycles are necessary to ensure quality products.

This chapter provides an introduction to the software development pro-
cess. As you will learn, there are many stages of any software develop-
ment project. A commercial software product is usually derived from
market demands. Sales and marketing people have first-hand knowledge
of their customers’ requirements. Based upon these market requirements,
senior software developers create an architecture for the products along
with functional and design specifications. Then the development process
starts. After the initial development phase, software testing begins, and
many times it is done in parallel with the development process. Documen-
tation is also part of the development process because a product cannot be
brought to market without manuals. Once development and testing are
done, the software is released and the support cycle begins. This phase
may include bug fixes and new releases.

After reading this chapter, you should understand how software develop-
ment is done and the components of a software development system. At

.

N/ (%)
CHO1.fm Page 2 Friday, October 4, 2002 3:06 PM

2 Chapter 1 ¢ Introduction to Software Development

the end of the chapter, you will find an introduction to Linux Standard
Base. This chapter is not specific to a particular hardware platform or
tools. You will start learning about components of an actual software
development platform in the next chapter.

1.1 Life Cycle of a Software Development Project

Software development is a complicated process comprising many stages. Each stage requires a
lot of paperwork and documentation in addition to the development and planning process. This
is in contrast to the common thinking of newcomers to the software industry who believe that
software development is just “writing code.” Each software development project has to go
through at least the following stages:

* Requirement gathering

* Writing functional specifications

* Creating architecture and design documents
¢ Implementation and coding

* Testing and quality assurance

* Software release

* Documentation

¢ Support and new features

Figure 1-1 shows a typical development process for a new product.

There may be many additional steps and stages depending upon the nature of the software
product. You may have to go through multiple cycles during the testing phase as software testers
find problems and bugs and developers fix them before a software product is officially released.
Let us go into some detail of these stages.

1.1.1 Requirement Gathering

Requirement gathering is usually the first part of any software product. This stage starts
when you are thinking about developing software. In this phase, you meet customers or prospec-
tive customers, analyzing market requirements and features that are in demand. You also find out
if there is a real need in the market for the software product you are trying to develop.

In this stage, marketing and sales people or people who have direct contact with the cus-
tomers do most of the work. These people talk to these customers and try to understand what
they need. A comprehensive understanding of the customers’ needs and writing down features of
the proposed software product are the keys to success in this phase. This phase is actually a base
for the whole development effort. If the base is not laid correctly, the product will not find a
place in the market. If you develop a very good software product which is not required in the
market, it does not matter how well you build it. You can find many stories about software prod-
ucts that failed in the market because the customers did not require them. The marketing people

- al

N/
»

é CHO1.fm Page 3 Friday, October 4, 2002 3:06 PM

Life Cycle of a Software Development Project 3

Market research

Product
requirements

1l

Product architecture and
functional specifications

Product Design

1L

Coding and
implementation

quality assurance

i L Support

Software release /
@ @

Bug fixes New features

Customer

Figure 1-1 Typical processes for software development projects.

usually create a Marketing Requirement Document or MRD that contains formal data represen-
tation of market data gathered.

Spend some time doing market research and analysis. Consider your competitors’ prod-
ucts (if any), a process called competitive analysis. List the features required by the product. You
should also think about the economics of software creation at this point. Is there a market? Can [
make money? Will the revenue justify the cost of development?

%

ﬁ

QW2

N/ (%)
S CHO1.fm Page 4 Friday, October 4, 2002 3:06 PM

4 Chapter 1 ¢ Introduction to Software Development

1.1.2 Writing Functional Specifications

Functional specifications may consist of one or more documents. Functional specification
documents show the behavior or functionality of a software product on an abstract level. Assum-
ing the product is a black box, the functional specifications define its input/output behavior.
Functional specifications are based upon the product requirements documentation put forward
by people who have contact with the enduser of the product or the customers.

In larger products, functional specifications may consist of separate documents for each
feature of the product. For example, in a router product, you may have a functional specification
document for RIP (Routing Information Protocol), another for security features, and so on.

Functional specifications are important because developers use them to create design doc-
uments. The documentation people also use them when they create manuals for end users. If dif-
ferent groups are working in different physical places, functional specifications and architecture
documents (discussed next) are also a means to communicate among them. Keep in mind that
sometimes during the product development phase you may need to amend functional specifica-
tions keeping in view new marketing requirements.

1.1.3 Creating Architecture and Design Documents

When you have all of the requirements collected and arranged, it is the turn of the techni-
cal architecture team, consisting of highly qualified technical specialists, to create the architec-
ture of the product. The architecture defines different components of the product and how they
interact with each other. In many cases the architecture also defines the technologies used to
build the product. While creating the architecture documents of the project, the team also needs
to consider the timelines of the project. This refers to the target date when the product is required
to be on the market. Many excellent products fail because they are either too early or late to mar-
ket. The marketing and sales people usually decide a suitable time frame to bring the product to
market. Based on the timeline, the architecture team may drop some features of the product if it
is not possible to bring the full-featured product to market within the required time limits.

Once components of the product have been decided and their functionality defined, inter-
faces are designed for these components to work together. In most cases, no component works in
isolation; each one has to coordinate with other components of the product. Interfaces are the
rules and regulations that define how these components will interact with each other. There may
be major problems down the road if these interfaces are not designed properly and in a detailed
way. Different people will work on different components of any large software development
project and if they don’t fully understand how a particular component will communicate with
others, integration becomes a major problem.

For some products, new hardware is also required to make use of technology advance-
ments. The architects of the product also need to consider this aspect of the product.

After defining architecture, software components and their interfaces, the next phase of
development is the creation of design documents. At the architecture level, a component is
defined as a black box that provides certain functionality. At the design documents stage, you

4~ ~¢8

N/ (%)
CHOI.fm Page 5 Friday, October 4, 2002 3:06 PM

Life Cycle of a Software Development Project 5

have to define what is in that black box. Senior software developers usually create design docu-
ments and these documents define individual software components to the level of functions and
procedures. The design document is the last document completed before development of the
software begins. These design documents are passed on to software developers and they start
coding. Architecture documents and MRDs typically need to stay in sync, as sales and market-
ing will work from MRDs while engineering works from engineering documents.

1.1.4 Implementation and Coding

The software developers take the design documents and development tools (editors, com-
pilers, debuggers etc.) and start writing software. This is usually the longest phase in the product
life cycle. Each developer has to write his/her own code and collaborate with other developers to
make sure that different components can interoperate with each other. A revision control system
such as CVS (Concurrent Versions System) is needed in this phase. There are a few other open
source revision control systems as well as commercial options. The version control system pro-
vides a central repository to store individual files. A typical software project may contain any-
where from hundreds to thousands of files. In large and complex projects, someone also needs to
decide directory hierarchy so that files are stored in appropriate locations. During the develop-
ment cycle, multiple persons may modify files. If everyone is not following the rules, this may
easily break the whole compilation and building process. For example, duplicate definitions of
the same variables may cause problems. Similarly, if included files are not written properly, you
can easily cause the creation of loops. Other problems pop up when multiple files are included in
a single file with conflicting definitions of variables and functions.

Coding guidelines should also be defined by architects or senior software developers. For
example, if software is intended to be ported to some other platform as well, it should be written
on a standard like ANSI.

During the implementation process, developers must write enough comments inside the
code so that if anybody starts working on the code later on, he/she is able to understand what has
already been written. Writing good comments is very important as all other documents, no mat-
ter how good they are, will be lost eventually. Ten years after the initial work, you may find only
that information which is present inside the code in the form of comments.

Development tools also play an important role in this phase of the project. Good develop-
ment tools save a lot of time for the developers, as well as saving money in terms of improved
productivity. The most important development tools for time saving are editors and debuggers. A
good editor helps a developer to write code quickly. A good debugger helps make the written
code operational in a short period of time. Before starting the coding process, you should spend
some time choosing good development tools.

Review meetings during the development phase also prove helpful. Potential problems are
caught earlier in the development. These meeting are also helpful to keep track of whether the
product is on time or if more effort is needed complete it in the required time frame. Sometimes
you may also need to make some changes in the design of some components because of new

- al

N/ (%)
S CHO1.fm Page 6 Friday, October 4, 2002 3:06 PM

6 Chapter 1 ¢ Introduction to Software Development

requirements from the marketing and sales people. Review meetings are a great tool to convey
these new requirements. Again, architecture documents and MRDs are kept in sync with any
changes/problems encountered during development.

1.1.5 Testing

Testing is probably the most important phase for long-term support as well as for the repu-
tation of the company. If you don’t control the quality of the software, it will not be able to com-
pete with other products on the market. If software crashes at the customer site, your customer
loses productivity as well money and you lose credibility. Sometimes these losses are huge.
Unhappy customers will not buy your other products and will not refer other customers to you.
You can avoid this situation by doing extensive testing. This testing is referred to as Quality
Assurance, or QA, in most of the software world.

Usually testing starts as soon as the initial parts of the software are available. There are
multiple types of testing and these are explained in this section. Each of these has its own
importance.

1.1.5.1 Unit Testing

Unit testing is testing one part or one component of the product. The developer usually
does this when he/she has completed writing code for that part of the product. This makes sure
that the component is doing what it is intended to do. This also saves a lot of time for software
testers as well as developers by eliminating many cycles of software being passed back and forth
between the developer and the tester.

When a developer is confident that a particular part of the software is ready, he/she can
write test cases to test functionality of this part of the software. The component is then for-
warded to the software testing people who run test cases to make sure that the unit is working

properly.

1.1.5.2 Sanity Testing
Sanity testing is a very basic check to see if all software components compile with each
other without a problem. This is just to make sure that developers have not defined conflicting or
multiple functions or global variable definitions.

1.1.5.3 Regression or Stress Testing

Regression or stress testing is a process done in some projects to carry out a test for a
longer period of time. This type of testing is used to determine behavior of a product when used
continuously over a period of time. It can reveal some bugs in software related to memory leak-
age. In some cases developers allocate memory but forget to release it. This problem is known as
memory leakage. When a test is conducted for many days or weeks, this problem results in allo-
cation of all of the available memory until no memory is left. This is the point where your soft-
ware starts showing abnormal behavior.

4~ ~¢8

N/ (%)
S CHO1.fm Page 7 Friday, October 4, 2002 3:06 PM

Life Cycle of a Software Development Project 7

Another potential problem in long-term operation is counter overflow. This occurs when
you increment a counter but forget to decrement, it resulting in an overflow when the product is
used for longer periods.

The regression testing may be started as soon as some components are ready. This testing
process requires a very long period of time by its very nature. The process should be continued
as more components of the product are integrated. The integration process and communication
through interfaces may create new bugs in the code.

1.1.5.4 Functional Testing

Functional testing is carried out to make sure that the software is doing exactly what it is
supposed to do. This type of testing is a must before any software is released to customers. Func-
tional testing is done by people whose primary job is software testing, not the developers them-
selves. In small software projects where a company can’t afford dedicated testers, other
developers may do functional testing also. The key point to keep in mind is that the person who
wrote a software component should not be the person who tested it. A developer will tend to test
the software the way he/she has written it. He/she may easily miss any problems in the software.

The software testers need to prepare a testing plan for each component of the software. A
testing plan consists of test cases that are run on the software. The software tester can prepare
these test cases using functional specifications documents. The tester may also get help from the
developer to create test cases. Each test case should include methodology used for testing and
expected results.

In addition to test cases, the tester may also need to create a certain infrastructure or envi-
ronment to test the functionality of a piece of code. For example, you may simulate a network to
test routing algorithms that may be part of a routing product.

The next important job of the tester is to create a service request if an anomaly is found.
The tester should include as much information in the service request as possible. Typical infor-
mation included in reporting bugs includes:

* Test case description

* How the test was carried out

* Expected results

* Results obtained

« If a particular environment was created for testing, a description of that environment

The service request should be forwarded to the developer so that the developer may cor-
rect the problem. Many software packages are available in the market to track bugs and fix prob-
lems in software. There are many web-based tools as well. For a list of freely available open
source projects, go to http://www.osdn.org or http://www.sourceforge.net and search for “bug
track”. OSDN (Open Source Developers Network) hosts many open source software develop-
ment projects. You can find software packages that work with CVS also. CVS is explained in
Chapter 6 of this book.

4~ ~¢8

N/ (%)
S CHO1.fm Page 8 Friday, October 4, 2002 3:06 PM

8 Chapter 1 ¢ Introduction to Software Development

1.1.6 Software Releases

Before you start selling any software product, it is officially released. This means that you
create a state of the software in your repository, make sure that it has been tested for functional-
ity and freeze the code. A version number is assigned to released software. After releasing the
software, development may continue but it will not make any change in the released software.
The development is usually carried on in a new branch and it may contain new features of the
product. The released software is updated only if a bug fixed version is released.

Usually companies assign incremental version numbers following some scheme when the
next release of the software is sent to market. The change in version number depends on whether
the new software contains a major change to the previous version or it contains bug fixes and
enhancement to existing functionality. Releases are also important because they are typically
compiled versions of a particular version of the code, and thus provide a stable set of binaries for
testing.

1.1.6.1 Branches
In almost all serious software development projects, a revision or version control system is
used. This version control system keeps a record of changes in source code files and is usually
built in a tree-like structure. When software is released, the state of each file that is part of the
release should be recorded. Future developments are made by creating branches to this state.
Sometimes special branches may also be created that are solely used for bug fixing. CVS is dis-
cussed in detail in Chapter 6.

1.1.6.2 Release Notes
Every software version contains release notes. These release notes are prepared by people
releasing the software version with the help of developers. Release notes show what happened in
this software version. Typically the information includes:

* Bug fixes

* New functionality

* Detail of new features added to the software

* Any bugs that are not yet fixed

* Future enhancements

« If a user needs a change in the configuration process, it is also mentioned in the release
notes

Typically a user should be given enough information to understand the new release
enhancements and decide whether an upgrade is required or not.

1.1.7 Documentation

There are three broad categories of documentation related to software development pro-
cesses.

4~ ~¢8

N/ (%)
S CHO1.fm Page 9 Friday, October 4, 2002 3:06 PM

Life Cycle of a Software Development Project 9

1. Technical documentation developed during the development process. This includes
architecture, functional and design documents.

2. Technical documentation prepared for technical support staff. This includes technical
manuals that support staff use to provide customer support.

3. End-user manuals and guides. This is the documentation for the end user to assist the
user getting started with the product and using it.

All three types of documents are necessary for different aspects of product support. Tech-
nical documents are necessary for future development, bug fixes, and adding new features. Tech-
nical documentation for technical support staff contains information that is too complicated for
the end user to understand and use. The support staff needs this information in addition to user
manuals to better support customers. Finally each product must contain user manuals.

Technical writers usually develop user manuals which are based on functional specifica-
tions. In the timelines of most software development projects, functional specifications are pre-
pared before code development starts. So the technical writers can start writing user manuals
while developers are writing code. By the time the product is ready, most of the work on user
manuals has already been completed.

1.1.8 Support and New Features

Your customers need support when you start selling a product. This is true regardless of
the size of the product, and even for products that are not software related. Most common sup-
port requests from customers are related to one of the following:

* The customer needs help in installation and getting started.

* The customer finds a bug and you need to release a patch or update to the whole
product.

* The product does not fulfill customer requirements and a new feature is required by the
customer.

In addition to that, you may also want to add new features to the product for the next
release because competitor products have other features. Better support will increase your cus-
tomer loyalty and will create referral business for you.

You may adopt two strategies to add new features. You may provide an upgrade to the cur-
rent release as a patch, or wait until you have compiled and developed a list of new features and
make a new version. Both of these strategies are useful depending how urgent the requirement
for new features is.

N/ (%)
CHO1.fm Page 10 Friday, October 4, 2002 3:06 PM

A

10 Chapter 1 ¢ Introduction to Software Development

1.2 Components of a Development System

Like any other system, a development system is composed of many components that work
together to provide services to the developer for the software development task. Depending upon
the requirements of a project, different types of components can be chosen. Many commercial
companies also sell comprehensive development tools. On Linux systems, all of the develop-
ment tools are available and you can choose some of these depending upon your level of exper-
tise with these tools and your requirements. Typically each development platform consists of the
following components:

* Hardware platform

* Operating system

* Editors

* Compilers and assemblers

* Debuggers

* Version control system

* Collaboration and bug tracking

Let us take a closer look on these components and what role they play in the development
cycle.

1.2.1 Hardware Platform

This is the tangible part of the development system. A hardware platform is the choice of
your hardware, PC or workstation, for the development system. You can choose a particular
hardware platform depending upon different factors as listed below:

Cost Depending upon budget, you may chose different types of hardware.
Usually UNIX workstations are costly to buy and maintain. On the
other hand, PC-based workstations are cheap and the maintenance
cost is also low.

Performance Usually UNIX workstations have high performance and stability as
compared to PC-based solutions.

Tools You also need to keep in mind availability of development tools on a
particular platform.

Development Type If the target system is the same as the host system on which develop-
ment is done, the development is relatively easy and native tools are
cheap as well, compared to cross-platform development tools.

Depending upon these factors, you may make a choice from the available hardware plat-
forms for development.

*@%

4~ 4

N/ (%)
CHOI.fm Page 11 Friday, October 4, 2002 3:06 PM

A

Components of a Development System 1

If hardware is part of the final product, selection of hardware platform also depends upon
customer/market requirement.

1.2.2 Operating System

Choice of a particular operating system may be made depending upon:

* Cost

* Availability of development tools
¢ Hardware platform

* Native or cross compiling

Some operating systems are cheaper than others. Linux is an excellent choice, as far as
cost is concerned. Linux is also a very good operating system as it has all of the development
tools available. Now you can install Linux on high-end workstations from Sun Microsystems,
HP, and IBM as well as commodity PC hardware available everywhere. It provides stability and
most of the people are familiar with development tools. You can also use the operating system
for cross-platform development using GNU tools.

1.2.3 Editors

Editors play an important role in the development work. Easy-to-use and feature rich edi-
tors, like Emacs, increase developers’ productivity. You should look at a few things while select-
ing editors. These features include:

 Understanding syntax of language

¢ Collapsing of context

* Support of tags

* Opening multiple files

* Eagsy editing for generally used editing functions like cut, copy, paste, search, replace
and so on

¢ Multiple windows

* Support of user defined functions and macros

If you look at the open source community, you can find a lot of good editors available to
developers. The most commonly used editors are Jed, Emacs and Xemacs. However, many other
variants of these editors are also available. You can also use X-Windows-based editors available
on Linux platform. A lot of people also edit in vi or vim, both of these have been very popular
historically.

ﬁ

*@%

N/ (%)
CHO1.fm Page 12 Friday, October 4, 2002 3:06 PM

A

12 Chapter 1 ¢ Introduction to Software Development

1.2.4 Compilers and Assemblers

Compilers and assemblers are the core development tools because they convert source
code to executable form. Quality of compilers does affect the output code. For example, some
compilers can do much better code optimization compared to others. If you are doing some
cross-platform development, then your compiler should support code generation for the target
machine as well.

GNU compilers collection, more commonly called GCC, is a comprehensive set of com-
pilers for commonly used languages including the following:

e C

e C++

e Java

* Fortran

In addition to GCC, you can find a lot of other open source compilers available for Linux.
Some of these are introduced in Chapter 3.

GNU utilities set, also known as binutils, includes GNU assembler and other utilities that
can be used for many tasks. GNU assembler is used whenever you compile a program using
GNU compiler.

1.2.5 Debuggers

Debuggers are the also an important part of all development systems. You can’t write a
program that is free of bugs. Debugging is a continuous part of software development and you
need good tools for this purpose. GNU debugger, more commonly known as GDB, is a common
debugger. Many other debuggers are also built on this debugger. The GNU debugger and some
other debuggers will be introduced later in this book.

1.2.6 Version Control Systems

The revision control system is a must for any serious development effort where multiple
developers work on a software product. The most popular version control system on Linux is
known as Concurrent Versions System or CVS. CVS allows many people to work on files at the
same time and provides a central repository to store files. Developers can check out files from
this repository, make changes and check the files back into the repository. CVS also works with
editors like GNU Emacs.

When multiple developers are modifying the same file at the same time, conflict may
occur between different changes made by multiple developers. When a conflict is detected in the
files being checked in, CVS provides a mechanism to merge the files appropriately.

CVS can be used over secure links as well. This is required when developers are not phys-
ically located at the same place. A server on the Internet can be used to provide secure access to
the central software repository.

%%

ﬁ

*@%

N/ (%)
CHO1.fm Page 13 Friday, October 4, 2002 3:06 PM

A

Selection Criteria for Hardware Platform 13

There are other version control systems as well which are popular in the software develop-
ment community. Examples are Aegis, PRCS, RCS and SCCS.

1.2.7 E-mail and Collaboration

In any software development project, collaboration among developers, designers and
architects as well as marketing people is a must. The objective can be achieved in many ways.
Probably e-mail is the most efficient and cheapest way. Some collaboration tools provide more
functionality than just e-mailing.

1.2.8 X-Windows

X-Windows is much more than just a GUI interface on Linux, but for development pur-
poses, it provides a very good user interface. This is especially useful for editors like Emacs.

1.2.9 Miscellaneous Tools

Many miscellaneous tools are also important during the development process. Some of
these tools are listed below:

* The make utility

* The ar program

* The ranlib utility
* The hexdump utility

Information about these tools is provided later in this book.

1.3 Selection Criteria for Hardware Platform

The development process needs computers, networks, storage, printing and other hardware com-
ponents. However the important hardware decision is the selection of PCs and workstations for
developers. There is no hard and fast rule about how to select a particular hardware platform. It
depends upon the requirements of a development project. Some factors that you may keep in
mind are as follows:

* Cost of the hardware.

* Availability of desired operating system on the hardware. For example, you can’t run
HP-UX on PCs.

* Availability of development tools.

* Maintenance cost.

ﬁ

*@%

N/ (%)
CHO1.fm Page 14 Friday, October 4, 2002 3:06 PM

14 Chapter 1 ¢ Introduction to Software Development

There may be other factors as well and you are the best person to judge what you need.
However, keep in mind that reliability of hardware is one major factor that people usually over-
look. If you buy cheap systems that decrease productivity of developers, you lose a lot of money.

1.4 Selection Criteria for Software Development Tools

After selecting the hardware, software development tools are the next major initial expense in
terms of money and time to set these up. Selection of software development tools depends upon
the choice of hardware and operating system. In many cases GNU tools are very well suited.
Selection of development tools also has a major effect on the productivity of the whole develop-
ment team.

1.5 Managing Development Process

In large software development projects, management of the development process is a big task
and a dedicated person may be needed to take care of this aspect of the project. A development
manager usually acts as a binding and coordinating force among different parties with conflict-
ing interests. These parties include:

* Marketing and sales people who put forward requirements, change requirements and
come up with new requirements, usually when much of the work is already done!

* Architecture and design people.

* Software developers who always think that they always have less amount of time.
* Release management people.

* Software testers.

* Documentation writers.

* Senior managers who often push to complete the project earlier than the deadline.

Coordinating all of these parties is not an easy task. The manager has to convince senior
management that a new feature needs that much time for development. At the same time he has
to push developers to meet the deadlines. Some of the important tasks of software management
in a real-life project are as follows.

1.5.1 Creating Deadlines

The manager usually coordinates with the software developers to set reasonable dead-
lines for certain features. These deadlines must conform to the product delivery time lines.
The manager may have to arrange additional resources to complete feature development in the
allotted time.

Project management software can help a manager to set and meet deadlines and track
completion of different components.

- al

N/ (%)
CHO1.fm Page 15 Friday, October 4, 2002 3:06 PM

A

Linux Development Platform Specifications (LDPS) and Linux Standard Base (LSB) 15

1.5.2 Managing the Development Team

The manager has to keep track of how development among different parts of the software
is going on. If part of the product is behind schedule, she has to re-arrange resources to get it
back on track.. She may also need to hire new people to finish the development of a particular
component on schedule.

1.5.3 Resolving Dependencies

Usually software components are dependent on one another. If the development of one
component is lagging behind, it may affect development of other components. The develop-
ment manager needs to keep an eye on these dependencies and how these may affect the over-
all progress of the project. Well-known project management methods are usually helpful for
this task.

1.6 Linux Development Platform Specifications (LDPS) and Linux
Standard Base (LSB)

Linux Development Platform Specifications or LDPS was an effort to design a common specifi-
cation so that programs developed on one Linux distribution could be easily ported to other dis-
tributions. The specifications define components and packages that must be present on Linux
development workstations. The latest version of the specifications at the time of writing this
book is available at http://www.freestandards.org/ldps/1.1/ldps-1.1.html web site.

Linux Standard Base or LSB (http://www.linuxbase.org) is the new forum to standardize
Linux distributions. LSB specifications 1.1.0 is available at the time of writing this book. LSB
compliant applications can run on any LSB compliant distribution without any modification or
recompilation process. Specifications are detailed and the latest version can be found at http://
www.linuxbase.org/spec/.

1.6.1 Libraries

The following libraries will be available on LSB compliant systems. While developing
applications for Linux, the developer can assume presence of these libraries on target machines,
provided the target is LSB compliant.

* 1ibX11
* 1ibXt

* libGL

* libXext
* libICE
* 1ibSM
* libdl

e liberypt

ﬁ

*@%

N/ (%)
CHOI.fm Page 16 Friday, October 4, 2002 3:06 PM

A

Chapter 1 e Introduction to Software Development

16
e libz
e libncurses
1.6.2 Current Contributors to LSB
Major Linux vendors include:
e Caldera Inc.
e MandrakeSoft
¢ Red Hat Software
* The Debian Project
e TurboLinux Inc.
* SuSE
¢ VA Linux
References
1. LDPS web site at http://www.freestandards.org/ldps/
2. CVS web site at http://www.gnu.org/software/cvs/
3. Aegis at web site http://aegis.sourceforge.net/index.html
4. PRCS at its web site http://prcs.sourceforge.net/
5. GNU Software at http://www.gnu.org
6. Linux Standard Base at http://www.linuxbase.org
7. Open Source Developers Network at http://www.osdn.org

ﬁ

*

*@%

é CHO2.fm Page 17 Monday, October 7, 2002 8:09 PM

A

CHAPTER 2

Working With
Editors

ne of the most fundamental tools required for application develop-

ment on any platform is a text editor; and the Linux operating sys-
tem offers programmers a wide variety to choose from. These editors
offer a wide variety of functionality from simple editing features to syntax
highlighting and reading e-mail.

In this chapter, we will focus on a couple of editors that offer features that
will be of interest to developers, Jed, vim, and Emacs. All of these editors
offer extended features beyond simple text editing.

2.1 What to Look for in an Editor

While editors like pico or even ed may be useful for editing system files or writing quick notes,
programming editors have certain functions that permit the programmer to focus on the act of
creating code and helps to manage the process and keep an eye on syntax.

2.1.1 Extensibility

One useful feature of programming editors is the ability to extend the out-of-the-box func-
tionality with custom programming.

Emacs utilizes a full-featured Lisp language called Elisp to provide users with the ability
to add just about any functionality they might require to the editor. The original Lisp language
was written in the late 1950s as part of MIT’s research into artificial intelligence. Elisp is derived
from the original Lisp and provides surprising flexibility in extending Emacs for those who take
the time to learn it.

17

ﬁ

*@%

N/ (%)
CHO2.fm Page 18 Monday, October 7, 2002 8:09 PM

A

18 Chapter 2 « Working With Editors

Jed extensibility is based on the s-lang libraries (www.s-lang.org) that were developed by
John E. Davis as a generic macro language that would become the basis for a number of differ-
ent programs. S-lang programs resemble C in syntax and layout.

2.1.2 Understanding Syntax

By understanding the syntax of the programming, the editor can perform a number of
functions that make it easier for the programmer to move through the code, locate bugs more
quickly and perform other common functions.

Such functions include jumping to the beginning of a stanza in the code, highlighting that
stanza, automatic indenting, highlighting syntax, and quickly inserting comments and comment-
ing on entire sections of code.

2.1.3 Tag Support

The ctags and etags utilities that come with Linux are able to build a list of the various
functions, classes, fragments, data blocks and other information within the various files that
make up the application. Not all information is available for all languages. For example, while
only subroutines are supported for the Perl language, support for the C/C++ languages includes:

* macros (names defined/undefined by #define / #undef)
e enumerators (enumerated values)

* function definitions, prototypes, and declarations

e class, enum, struct, and union names

* namespaces

* typedefs

e variables (definitions and declarations)

e class, struct, and union members

Both Emacs and vim provide the ability for the editor to understand standard tag files and
help the programmer quickly locate and edit the portion of code that he/she is working on.
Emacs uses the output from efags, while vi uses ctags.

2.1.4 Folding Code

Folding code refers to the ability of the editor to hide portions of code while they are not
needed. For example, all of the functions or subroutines in the code can be folded so that only
the names of the functions are seen until the programmer unfolds that routine to work on it.

2.2 Emacs

Emacs is a lisp-based editor that has been around in one form or another since the late 1970s;
despite its long history, it remains one of the most up-to-date and widely used editing environ-

%%

ﬁ

*@%

CHO2.fm Page 19 Monday, October 7, 2002 8:09 PM

Emacs 19

ments today. From within the editor a user can read and send mail, perform research on the Inter-
net, and even send out for coffee to RFC2324 compliant coffee makers.

Configuration of Emacs is accomplished via the .emacs file that can be created in each
user’s SHOME directory. If the configuration does not exist, Emacs will use its built-in
defaults. This file consists of a series of elisp expressions that the editor evaluates when the
application runs.

2.2.1 Using Emacs

Navigating and using Emacs may appear confusing and counter-intuitive for those just learning
how to use the editor, however the time taken to master this editor can prove well-spent when
one considers the time savings that such an integrated and flexible development environment can
provide.

If Emacs is started from within X-Windows, it will automatically open a new window in
the desktop. To prevent this behavior, you can use the —nw option from the command line. Alter-
nately, you can tell Emacs how large to make the window by specifying the size of the window,
in characters, that you wish to create. Examples are:

$ emacs -nw main.c
$ emacs —-geometry 80x24 main.c &

Figure 2-1 shows the initial Emacs screen if it is invoked without an initial file name.

Buffers Files Tools Edit Search Hule Help

Belcome to GHU Emacs, one component of a Linux-hased GHU system.
The menu bar and scroll bar are sufficient for basic editing with the mouse.

Useful Files menu items:

Exit Emacs {or type Control-x followed by Control-c)

Recover Session recover files you were editing before a crash
Important Help menu i1tems:

Emacs Tutorial Learn—-by-dolng tutorial for using Emacs efficilently.
(NonjWarranty GHU Emacs comes with ABSOLUTELY NO WARRANTY

Copulng Conditlons Conditions for redistributing and changing Emacs.
Getting MNew Versions How to obtain the latest wversion of Emacs.

GNU Emacs 20.7.1 (1386-redhat-linux-gnu, X toolkit)
of Fri Mar 16 Z001 on porky.devel.redhat.com
Copyright (C) 1999 Free Software Foundation, Inc.

-1 :-— d (Lisp Interaction)--L1--All-———————————————————————————]|
WFor information about the GHU Project and its goals, type C-h C-p.

Figure 2-1 The initial Emacs screen.

N/ (%)
CHO2.fm Page 20 Monday, October 7, 2002 8:09 PM

20 Chapter 2 « Working With Editors

For a complete tutorial in using Emacs, from within the application itself, type aH-t!,
This tutorial covers many of the functions that are available within Emacs and takes you step-by-
step through them.

2.2.2 Basic Emacs Concepts

Emacs uses several keyboard keys to enter commands into the application. The primary
one is the Meta key. The Meta key is signified by M-. The Meta key is generally the ALT key
on the keyboard, although it may be the ESC key in certain circumstances. If the ALT key does
not work, try the ESC key. What works will depend on if you are logged in locally, accessing the
console directly or using X-Windows. The ALT key is used in the same manner as the CTRL key.
When using the ESC key, press and release the ESC key and then press the next indicated key.
In all cases, typing ~U may be used in place of the Meta key. Just type and release AU and then
type the rest of the key sequence as you would for the ESC key.

Entering text into the buffer is accomplished in the default mode simply by typing on the
keyboard. To abort a command that’s currently running or asking for input, type 4G. This will
return you to the current buffer.

Simple commands can be repeated by prefacing them with the key sequence ESC #. By
pressing the escape key and typing any number, the next command that is issued will be repeated
that number of times. For example, typing ESC 75= is the same as pressing the equal key 75
times.

To exit Emacs, use the command sequence AXAC.

Moving around
In additional to the basic functionality provided by the arrow keys on the keyboard, the
key combinations shown in Table 2-1 may be used to move the pointer one character at a time in
a given direction.

Table 2-1 Simple Movement Commands.

Arrow Key Alternate Combination
Left Arrow ~F
Right Arrow "B
Up Arrow P
Down Arrow AN
1. The caret symbol denotes a control character. To enter the key combination ~H-t, press and hold the CTRL key,

and then press the ‘H’ key. Release both keys and then press the ‘t’ key.

- al

é CHO2.fm Page 21 Monday, October 7, 2002 8:09 PM

Emacs 21

Movement can also be accomplished a word or a page at a time. This is accomplished by
referring to Table 2-2.

Table 2-2 Movement Commands

Action Command
M-b Word Left
M-f Word Right
A Beginning of Line
“E End of Line

M-c or Page-Up Page Up

AV or Page-Down Page Down

M-< Beginning of Buffer

M-> End of Buffer

Deleting

Just as there are several ways to move around in the buffer, there are several ways to
quickly delete unwanted information. The <BACKSPACE> key or “H can be used to delete the
character before the pointer. By using ~D you can delete the character at the pointer.

In addition, there are ways to delete words, lines and portions of lines. There are also
methods for blocking text and deleting entire sections of the buffer. For more information on
working with blocks of text, see Cutting and Pasting below.

Table 2-3 shows the various commands used to perform these functions.

Table 2-3 Movement Commands

Action Command

<BACKSPACE> or "H Delete character to the left

D Delete character to the right

M-DEL Delete word to the left

M-d Delete from pointer to end of current word

ANANK Delete current line excluding the EOL character

K Delete from pointer to end of line

"Xu Undo previous command — may be used multiple times

- al

é CHO2.fm Page 22 Monday, October 7, 2002 8:09 PM

22 Chapter 2 « Working With Editors

File Operations
Editing within Emacs is done through a series of buffers. Each buffer may be edited sepa-
rately and the changes saved back to the disk. Files may also be opened into new or existing
buffers as shown in Table 2-4.

Table 2-4 File Commands

Action Command

AX AF Open File

X k Close File

AXi Insert File

AX NS Save File

X w Save File As

X Db Change Buffer
Search and Replace

There are two search and replace functions within Emacs. The first one simply does a sim-
ple search (case insensitive by default) for the character string provided by the user. The second,
more complex search function does a search and replace on regular expressions. See Table 2-5
for a list of these commands.

Table 2-5 Search and Replace Commands

Action Command
S ENTER Search
S Continue Forward Search
"R ENTER Search Backwards
"R Continue Backwards Search
M-% Search & Replace
M-X query-replace-regexp Regular Expression (regex) Search & Replace
M-X occur Find occurrences of a string in the current buffer

- al

N/ (%)
S CHO2.fm Page 23 Monday, October 7, 2002 8:09 PM

Emacs 23

By typing ~S <ENTER> you will be prompted to enter the string to search for. With the
search string still active, typing S again to search for the next occurrence of that string in the
current buffer.

Typing M-% (usually accomplished by ESC-% rather than ALT-% under Linux) will bring
up the same search function, but when you press RETURN after entering the search key, you will
be prompted for a replacement string. Type in the string that you wish to replace the search key
with and press RETURN. If the search string is found in the current buffer, you will be presented
with the options shown in Table 2-6.

Table 2-6 Search and Replace Options

Action Command
y or SPACE Replace the string at the pointer with the replacement string and search for the next
occurrence.
n or DEL Leave the string at the pointer as is and search for the next occurrence.

! Replace globally from the pointer forward in the buffer.

Replace the string at the pointer and then exit search and replace mode.

A Move point back to previous match.

u Undo the previous replacement.

q or ENTER Exit search and replace mode.

? Display help.

The more complex search and replace feature is available by default, only from the prompt
and is not bound to a particular key combination. To access this feature, you need to type in the
name of the mode, which in this case is “query-match-regex”. The complete key sequence
for this is:

M-X query-replace-regex <RETURN>

This command brings up a similar series of prompts that allows you to search for regular
expressions in the current buffer and, using the same options shown in Table 2-5, replace them.

Emacs has an auto-completion option that you can use instead of typing the entire com-
mand shown above. By typing:

M-X que<ESC>

Emacs will search through its listing of modes and complete as much of the request as it
can. If there is a conflict and there are one or more modes that begin with the phrase that you

4~ ~¢8

N/ (%)
CHO2.fm Page 24 Monday, October 7, 2002 8:09 PM

24 Chapter 2 « Working With Editors

have typed in, pressing the <SPACEBAR> will cycle through the names. You can press
<RETURN> to select the one currently displayed.

Emacs supports the use of parenthetical statements in regex search and replace commands.
A portion of the search string may be used as part of the replacement string. The contents of the
first set of parenthesis in the search string may be referenced as \1 in the replacement string. The
second set would be referred to by \2.

For example:

Original string:The Dodo and the Griffin
Search string:\([Ttlh\)e \([a-zA-Z]*\)
Replacement string:\lose \2s

New string:Those Dodos and those Griffins

Cutting and Pasting

Sections of the buffer may be marked and certain commands may be applied to those
regions. These commands include copying, cutting and pasting text. To select a region of text,
move the pointer to the beginning of the sections that you wish to select and press "<SPACE-
BAR>. When the pointer is moved, the text from the marked point to the current pointer position
will be highlighted. Once the region is selected, issue the cut or copy command. To deselect the
text without issuing the copy or paste command, simply press ~<SPACEBAR> again.

Table 2-7 shows a list of the various selection commands.

Table 2-7 Cut and Paste Commands

Action Command
A<SPACEBAR> Begin selection
W Cut
M-W Copy
Y Paste

2.2.3 Using Buffers and Windows

As mentioned, Emacs has multiple buffers that can be opened and edited simultaneously.
To navigate between buffers, press 4Xb and type the name of the buffer that you wish to switch
to. Buffers may be opened and closed by using the File Commands listed earlier in this chapter.
To see a list of buffers, use *X”B.

As shown in Figure 2-2, each window may be split into two windows by using the 4X2
command. This will create a horizontal divide in the middle of the current window. The same
file will be present in each pane, but they may be scrolled separately. To move between win-
dows, press *Xo. Windows may be split multiple times. To close all other buffer, use #X1. The
current buffer may be closed with #X0.

%%

CHO2.fm Page 25 Monday, October 7, 2002 8:09 PM

Emacs 25

See Table 2-8 for a complete list of window commands and Figure 2-2 for an example of
using multiple buffers. These buffers are ‘main.c’ and ‘temp.c’.

Table 2-8 Window Commands

Action Command
AXb Switch to buffer
AXAB List buffers
X2 Split current window
rXo Move to other window
X0 Delete current window
X1 Delete all over windows

Buffers Files Tools Edit Search Hule C Help
void main [int argc, char skargw) Ax{{{ Main Function =/

while { $a '= 10) /%{{{ Inner Loop 1 */
i

Ta++;
ERVE RS BT

while { $a '= 0) /*{{{ Inner Loop Z #/
i

$a-—;

(C)—L1--Top————————————————— = —————————————————————— |

——:—— temp.c

Minclude <stdio.h>

int main ()

printf('Hello Worldsn');

——:-— main.c (C)——L1—-All-——————————————————— ——— ———————————— —— —— ————|
Mmain.c has auto save data; consider M-x recover-file

Figure 2-2 Using multiple buffers in Emacs.

N/ (%)
S CHO2.fm Page 26 Monday, October 7, 2002 8:09 PM

26 Chapter 2 « Working With Editors

2.2.4 Language Modes

Emacs recognizes a number of different programming language files based on their exten-
sions. When you load a recognized source code file, Emacs will assume certain defaults and
enter the appropriate mode for editing that file.

For example, when you load a file with a .c extension for editing, Emacs sets the appropri-
ate mode and enables commands used to automatically and manually indent code, quickly move
though functions and insert comments.

When a language mode is on, Emacs can automatically indent code as you type. To turn
this mode on, type *C”*A. The same command is used to turn this mode back off.

With this mode active, auto-indenting takes place when certain characters are entered from
the keyboard. These characters are the semi-colon, curly braces, and under certain circum-
stances, the comma and colon.

For example, if auto-indent (or technically c-toggle-auto-state) is on and the following
code is typed into the buffer:

void main (int argc, char **argv) { while (
it will be formatted by Emacs as follows:

void main (int argc, char **argv)
{
while (
Table 2-9 shows some of the common C-mode commands.

Table 2-9 C-mode Commands

Action Command
ESC ; Insert comment
ESC A Go to top of function
ESC"E Go to bottom of function
ESC "H Mark function
{ Insert bracket and return
} Return and insert bracket
ACrA Toggle Auto-indent mode
A\ Auto-indent selected region

N/ (%)
S CHO2.fm Page 27 Monday, October 7, 2002 8:09 PM

Emacs 27

2.2.5 Using Tags

As an application grows in size, it also grows in complexity. As the number of subroutines,
variables, functions and files increases, it becomes much more difficult to keep track of every
piece and to quickly find the portion of code that one needs to work on. To address this issue,
Emacs has the ability to read a file that contains a table of tags that reference various parts of an
application.

These tags are stored in a TAGS file that is created by the etags command. Once this file
is built, Emacs can read this table and use it to quickly locate a specific portion of code, regard-
less of whether it is in a currently open file or not.

From the command line the etags command is issued with a list of file names to be read:

$ etags *.[ch]

This command will read all files in the current directory that have a .c or .h extension
and build a tags table file in the current directory. The output file is, by default, called TAGS.

To build a single TAGS table for a project that has source code spread through any number
of subdirectories, the following command may be used:

$ find . -name *.[ch] | xargs etags -

Just be aware if there are too many files, then this command may need to be run several
times with varying arguments in order to build a complete table. To do this, you must use the
—append option to the etags command as shown:

S £find . -name *.c | xargs etags -
$ find . -name *.h | xargs etags --append -

Any of these commands may be issued from within Emacs itself by using the M-! com-
mand to issue a shell command. Simply type ESC ! <command name> and press return.

Once you have built a TAGS table, it must first be read into Emacs before you can use it to
search. To accomplish this, type M-x visit-tags-table, specify the location of the TAGS
file to be read in, and then the name of the TAGS file. The default value for the location is the
current working directory, and the default tags file name is “TAGS”.

Once the TAGS file has been read in, you may issue search commands against the table.
There are several commands that can be used. The one most commonly used is ESC . which
searches for a tag that matches the search parameter. The default search parameter is the word at
the current pointer position. For example, if the pointer were on the character string
search_function, the default search string that Emacs presents would be
search_function.

If you are not sure of the name of the function that you are looking for, you can type the
first few characters of the function name and press the TAB key. This invokes the completion
function of Emacs and, if the function is unique, it will display that function name. If the func-
tion name is not unique, Emacs will complete as much of the function name as it can and then
prompt you for the rest. Pressing TAB again after Emacs has completed as much of the function

4~ ~¢8

g%s CHO2.fm Page 28 Monday, October 7, 2002 8:09 PM

28 Chapter 2 « Working With Editors

name as it can and will display the matching functions in a new buffer. If, for example, you
wanted to edit the close_£iles function, Figure 2-3 shows the results of typing ESC .
Cc<TAB><TAB>.

If Emacs finds a function that matches your search string, it will replace the current buffer
with the contents of the first file in which it found the search string and the pointer will be posi-
tioned at the first line of that function. In the above example, completing the file name and press-
ing ENTER results in the file exit . c being opened and the pointer being positioned on the first
line of the close_files function. This is shown in Figure 2-4.

Alternatively, you can initiate the search with the command ESC x find-tag-
other-window and rather than replacing the current buffer with the found function, a new
buffer will be opened instead. Remember that Emacs has a completion function, so after typing
the first few characters of a function, you can press the TAB key and Emacs will fill in the rest
of the command if it is unique. If you are sure that a command is unique, pressing the ENTER
key will execute that command.

Rather than searching for functions by name, you can also search all of the files referenced
in the tags file for a regular expression. To accomplish this, type ESC x tags-search and
Emacs will prompt you for a regular expression to search for. If it finds a match, the first occur-
rence of the string found will be displayed in the current buffer. You can search for the next
occurrence of the string by issuing the ESC , command.

wffers Files Tools Edit Search Hule Hinibuf Help

S% Given the mask, find the first available signal that should be serviced, */

static int
next_signal (struct task_struct #tsk, sigset_t #mask)

unsigned long i, %=, *m, x:

—1-:#%-F1 =zignal.c L= 50—~ 4= —
In thiz buffer, type FET to select the completion near point,

Pozzible completionz are:
calc_load call_usermodehel per
can_schedule cap_bzet
cap_emulate_setxuid cap_zet_all
cap_set_pg cazcade_timers
check_free_space check_resource
child_reaper cloze_files
collect_=zig
—11:———F1 *¥Completions : Com =t ion izt : i Qp——————————————————————
Find tag: (default int) o

Figure 2-3 Emacs tags-search function.

g%s CHO2.fm Page 29 Monday, October 7, 2002 8:09 PM

Emacs 29

uffers Files Tools Edit Search Mule C Help
A% e dont want people slaying init */
p—rexit_signal = SIGCHLD:
p—rzelf_exec_id++:
p—*p_opptt = reaper:
if (p—rpdeath_signal) send_sig{p-rpdeath_signal, p. 0):

T
read_unlock(&tasklist_lock):
T
Biatic inline woid close_files(struct files_struct * files)
int i, j
=

unzigned long set:
i =j % __MWFOBITS:
if (i »= Files—rmax_fdset |1 i »= Files—rmax_fds)

break:
set = files—ropen_fds—>fds_bits[j++]:
LCI=-L177

Mark =set

Figure 2-4 Finding the function.

Instead of searching for a specific regular expression, the command ESC tags-apro-
pos will create a new buffer entitled *Tags List* that contains a listing of all of the tags that
match that regular expression. By moving the pointer around this buffer, you can place it on the
function that you are looking for and use the ESC . command to open that function in the cur-
rent buffer. A list of TAGS commands is shown in Table 2-10.

Table 2-10 Emacs commands related to TAGS

Action Command
M-x visit-tags-table Load a tags file into Emacs
M-. Search for a function
M-x find-tag-other-window Search for a function and load the file in a new buffer
M-x tags-search Search for a regular expression in the files represented by the current
tag list
M-, Repeat regular expression search
M-x tags-apropos Load a list of all tags into a new buffer

- al

g%s CHO2.fm Page 30 Monday, October 7, 2002 8:09 PM

30 Chapter 2 « Working With Editors

2.2.6 Compiling

Emacs has the facility to call external compilers, parse their output and display the results
in a buffer. As the results are displayed, the programmer can then move forward and backward
through any error or warnings. As each error or warning is displayed, the appropriate line in the
code is displayed and may be edited.

To invoke the compiler from Emacs, type M-X compile; in response, Emacs will ask
you for the command to use to compile the program for application. You can either specify
make or the command line compiler with all the options. The default is to invoke make with the
—k option in order to continue as far into the make as it can when encountering errors.

For example, assume that the following (broken) bit of code is in a buffer entitled ‘main.c’.

#include <stdio.h>
int main ()
{

printf (*Hello World\n’);
}

The compiler may be invoked by typing:

M-X compile
Compile command: gecc —-o main main.c

If the buffer being compiled has not been saved, the editor will prompt you to save it. The
results of the compilation will appear in the *compilation* buffer as seen in Figure 2-5.

wffers Files Tools Edit Search Hule C Help
iinclude <stdio,h

int main ()

printfi'Hello Worldsn'):

-1-:1——F1 main.c (C)--L1--Al1

cd ™/

qocc -0 main main,c

main,c: In function ‘main':

main,c:h: character constant too long

main,c:5: warning: passing arg 1 of printf' makes pointer from integer without®
a cast

Compilation exited abrormally with code 1 at Sun Jun 30 15:5E:30

—-11:%%-F1 *compilation#
(Mo files rneed sawing)

Figure 2-5 The results of M-X compile.

g%s CHO2.fm Page 31 Monday, October 7, 2002 8:09 PM

Emacs 31

The main.c buffer is still the active buffer, but it is linked to the *compilation* buffer. As
indicated by Figure 2-6, typing AX-" the first error in the bottom buffer is highlighted and the
pointer in the top buffer is positioned in the line of code that caused the error. Repeating that
command moves the pointer forward in the code to the next error.

Buffers Files Tools Edit Search Hule C Help
#include <stdio.h>

int main ()

i
! printf('Hello Worldwn');

——:—— main.c (C1——L5

main.c:5: character constant too long

main.c:5: warning: passing arg 1 of “printf' makes pointer from integer without™
a cast

Compilation exited abnormally with code 1 at Sun Jun 30 16:51:21

—1 sk skcompilations
WFarsing error messages...done.

{Compilation:exit [1])--L4--Bot

Figure 2-6 Using the built-in functions to debug code.

While navigating through the *compilation* buffer, typing ~C~C will move the code in
the window to the line referenced by the error message. Table 2-11 lists the commands used to
aid in debugging compiled code.

Table 2-11 Compiling with Emacs

Action Command
M-X compile Compile a file or an entire project
X Find the next error
ACAC Examine source code that created the error

N/
S CHO2.fm Page 32 Monday, October 7, 2002 8:09 PM

32 Chapter 2 » Working With Editors

2.2.7 Xemacs

Xemacs is a project that was spawned from the original source tree of the Emacs project.
In many ways it still resembles its ancestor, but when it is run it includes additional features that
make use of the X-Window interface. These include toolbars, font faces, image embedding and
editing, and similar features.

As you can see in Figure 2-7, the Xemacs interface has taken many commonly used func-
tions and created a tool bar across the top of the display that makes them accessible to the
mouse. In addition, most of the user interface is customizable.

|File Edit Hule Apps DOptions Buffers Tools Lisp-Interaction Help

MECIEEREEEEEER]
|

Saue Frint Cut Copy Mews

L

XEmacs 21.1 (patch 14) "Cuvahoga Wallew" (linux, Mule) of Thu Mar 22 2001 on poe
Trky

Copyright (C) 1985_19938 Free Software Foundation, Inc.

Copyright (C) 1990-1994 Licid, Inc.

Copyright (C) 1993-199%7 Sun Microsystems., Inc. All Rights Reserved.
Copyright (C) 19941996 Board of Trustees, University of Tllineis
Copyright (C) 1995_199¢ Ben Wing

WBlan o mm mmmn mm rrddl ADOATTIMEATY WA TWATDDAMMW - deran o £ T A sz Frns Faa11 At i1

IS08-————— XEmacs: %scratch¥ [Lisp Interaction)————Top———m———— e |
Loading cus—-face...dene

Figure 2-7 The Xemacs interface.

2.3 Jed

Jed was designed as a small, lightweight editor. It has many of the functions required by applica-
tion programmers and can be set up with one of several different key bindings to aid people tran-
sitioning from other editors.

The main Jed configuration file is in JEDROOT/lib/jed.rc (/ust/share/jed/lib/jed.rc if the
RedHat RPM was used to install the application). This file contains the default values for all
users, but it is only read if the user does not have a local configuration file present in the home
directory.

&

N/ (%)
S CHO2.fm Page 33 Monday, October 7, 2002 8:09 PM

Jed 33

2.3.1 Configuring Jed

Individual users may change their default setting by copying JEDROOT/lib/jed.rc to .jedrc
in their home directory:

$ cp /usr/share/jed/lib/jed.rc ~/.jedrc

This file may be edited to change the initial values and behavior of Jed. Lines beginning
with a percent symbol (%) are comments and are ignored when the file is read. Other than condi-
tional statements, all entries must end in a semi-colon (;).

One of the first options that a user may wish to change is the emulation mode of the editor.
By default Jed uses Emacs-like key bindings for entering commands. Some other emulation
modes available are IDE, CUA and even WordStar. To select a new emulation, edit the .jedrc in
the user’s home directory, comment out the current emulation and uncomment the one that you
wish to use.

Below, the user has changed the application to use the IDE mode instead of the default.
These key bindings resemble those used by in Borland’s IDE.

f (BATCH == 0)

o0 -
o0

Emacs-like bindings
EDT emulation
Borland IDE

= evalfile("emacs") ;
= evalfile("edt") ;
= evalfile ("ide");

oP
0P

o°
o0

= evalfile ("brief"); % Brief Keybindings
% = evalfile("wordstar"); % Wordstar (use ide instead)
% = evalfile ("cua"); % CUA-like key bindings
}

You will also notice that there is a conditional statement in the example above. This is
because Jed may also be run in batch mode for processing files unattended. Statements within
this block will only be processed if the application is run in interactive mode, not when run in
batch mode. While having the statements outside of this block would not effect the application
when run in batch mode, having them separated speeds up the load time of the application when
they are not needed.

There are many other configuration options available in the .jedrc file that control how the
program operates. Some of them are generic to all modes and others are used in only one mode.
For example, the variable CASE_SEARCH may be set to force case sensitivity in searches, or
C_BRA_NEWLINE may be set to force a newline character to be inserted prior to a curly-bracket
when in C-mode.

Jed also has the capability of calling a compiler directly and examining the output. The
standard compiler is assumed to be gcc. If you are using a different compiler, you will need to
set the Compile_Default_Compiler variable in the .jedrc file.

4~ ~¢8

g%s CHO2.fm Page 34 Monday, October 7, 2002 8:09 PM

34 Chapter 2 « Working With Editors

2.3.2 Using Jed

Jed is called from the command line with an argument telling it which file you would like
to edit. If Jed is called without an argument, it will prompt you for the name of the file before
you may do any editing. This behavior may be changed by modifying the
Startup_With_File variable in .jedrc to have a value of 0.

Jed may be called with one or more command line arguments. A —n argument forces Jed
to ignore the users’ local .jedrc file as well as the jedrc file. There is also an X version of Jed
that allows you to use the mouse to select text and options from the menu. To start Jed, simply
type:

$ jed <filename>
or

S xjed <filename>

Figure 2-8 shows the initial text-based Jed display when no command-line argument is
given. The menu across the top is accessed by pressing the F-10 key. This scratch buffer will dis-
appear when you begin to type and if a filename is given on the command line you will be taken
immediately to that buffer to begin editing.

The basic editing features of Jed will be dependent upon the emulation mode that is
selected. In this section, it is assumed that you will be using the Emacs emulation mode.

This is a scratch buffer. It iz HOT saved when you exit.

To access the menus, press F10 or ESC-n and the use the arrow
keys to navigate,

Latest version infornation is available on the web fron
http://space.nit,.edu/~davis/ jed.htnl and wuww,.s-lang.org.

Other sources of JED information include the usenet newsgroups
conp.editors and alt,lang,s-lang. To subscribe to the jed-users
nailing list, see httpi:/fuwu,onelist,conf/subscribes jed-users,

Copyright {(C) 1994, 2000 John E. Davis
Email comments or suggestions to davisBspace.nit.edu.

——————— {Jed 0.99.12} Enacs: #scratch= £} 1716 5:24pn

Figure 2-8 The Jed text interface.

N/ E%}
S CHO2.fm Page 35 Monday, October 7, 2002 8:09 PM

Jed 35

2.3.3 Folding Code

The ability to fold buffers in order to view only the parts of a file that are necessary at the
time is quite useful when trying to understand program flow and how the application is put
together at a very high level.

In order for folding to be used, special markers must be put in the file at the appropriate
points. There are two markers, one to denote the beginning of a section to be folded and one to
denote the end. In plain text files, these markers must be in the leftmost column; but when an
application language that is recognized by Jed is used, they may be inserted in comments.

The opening marker is three left curly braces “{{{” and the closing is three of the right
“}1}}” To insert marker into a C-language program, place the markers directly after the /* that
begins the comment:

/*{{{ Deep magic begins here. */

{
x = n[il;
a = ((a<<1l9)”(a>>13)) + n[(i+128)&255];
n[i] = y = n[x&255] + a + b;
r[i] = d = n[(y>>8)&255] + x;
}
/*Yyy o*/

When the file is folded up, the above section of code will appear as follows:
/*{{{ Deep magic begins here. */...

The ellipsis at the end of the line indicates that this line may be unfolded.

Figure 2-9 shows a section of Perl code with the fold markers in place. The comments are
placed before and after each section of code and a description of the code included in that fold
has been added. Figure 2-10 shows the same file folded.

ey ==> ile dit earch uffers MW ndows 5 sten elp

#i{{ Read in source,conf configuration file and parse it
{SO0URCE. ".#source,conf™} || "Can not open input file':
{Bzource = <SOURCE::

(SOURCE S £

ddef's= (/" 4define/, Bzourcel:

{Bdefs)
(Fjunk,. $var. $vald = eSS, $_, 30;
$DEF{#var: = #val;:

K
#3337

#{f{ Print out the HTML HEADER
EADER: £
“CHTHL>%n<HERD><TITLE>#DEFftitle¥<{/TITLE>\n</HEAD>%n":
"<BODY BACKGROUHD=“"$bgiDEF{backgroundi:">\n"
"{center>sn";
"“{table cellpadding=%DEF{cellpadding3} border=#DEF{border3>\n":

Figure 2-9 The file with the folding markers in place.

QW2

4~ 4

A2
»

é CHO2.fm Page 36 Monday, October 7, 2002 8:09 PM

36 Chapter 2 » Working With Editors

F10 key ==> ile dit earch uffers W ndows S stenm elo
| Ausrdhindeerl

#{{{ Static Varisble Definitionsf, .

#{i{ Fead in =ource,conf configuration file and parse it,..
#iif Print out the HTML HERDER. ..

#{ff Main body of the app...

#{f{{ Print out the HTHML FOOTER,..

{makepage £

olding buffer,,,done

Figure 2-10 The same file folded.

The entire program can be folded and unfolded at once, or individual sections of the file
may be unfolded. Several sections from different parts of the program may be unfolded at once.

Jed treats each folded section as a subroutine and it can be edited as such. By moving the
pointer to a folded section and pressing ~C> only that section of the program is displayed for
editing.

In order to use the folding mode, it must be activated from within Jed. In order to do this,
type M-X folding-mode <RETURN>. This will turn the folding mode on and immediately
fold up the current buffer.

See Table 2-12 for a list of the available commands in this mode.

Table 2-12 Folding Mode Commands

Action Command
ACAW Fold current buffer
AChNO Unfold current buffer
ACAX Fold current marked section
ACAS Unfold current marked section
ACAF Fold highlighted section
AC> Edit folded section
rC< Exit current section being edited

%

N/ (%)
S CHO2.fm Page 37 Monday, October 7, 2002 8:09 PM

Vim 37

24 VIM

VIM stands for Vi IMproved and was developed by Bram Moolenaar. It is based on the function-
ality of the original, non-open source vi editor. While most open source software is also free-
ware, VIM is distributed as Charityware. In exchange for using the program, the authors request
that users consider donating to the Kibaale Children’s Center (KCC), a charity providing food,
health care and education for the children in the area. For further information regarding this
donation program and the KCC, within VIM, type :help ifcc or visit http://www.vim.org/
ifcc.

2.4.1 Using VIM

VIM is available in both text-based and graphical modes. The graphical version, shown in Fig-
ure 2-11, has the same functionality as the text-based version, but also provides easy access to
many functions through pull-down menus and a button bar. To start the text-based version, use
the command vim. The graphical version is started by typing gvim. For example, to start VIM
and edit the file main.c, type the following:

$ vim main.c

Or, for the graphical version, type:

$ gvim main.c

File Edit Tools Syntax Buffers Window Help

e DE AEBRRAB SESA TEHD ? R

VIM — Vi IMprowved

wergicn 6.0z ALPHA
by Bram Moclenaar et al.
Vim ig open scurce and freely distrikbutable

Help poor children in Uganda!
type :help iccf<Enter> for informaticn

type :g<Enter> to exit
type :help<Enter> or <Fl> £for on—line help
type :help versicnS<Enters for version info

t ttt tt tttttt 1ttt ttttt ottt

Q,0-1 a1l

Figure 2-11 gvim.

N/ (%)
CHO2.fm Page 38 Monday, October 7, 2002 8:09 PM

38 Chapter 2 » Working With Editors

241 VIM Concepts

There are two basic modes within VIM that determine VIM’s behavior. These two modes
are Normal and Insert. In Normal mode, the editor expects the user to enter commands that per-
form a number of functions. In Insert mode, the editor inserts typed characters into the current
document.

The editor starts in Normal mode. To return to that mode from Insert mode, press the
ESC key.

2.4.2 Basic Editing

As previously noted, VIM is based on the vi editor and anyone familiar with vi’s editing
keys will immediately be at home with VIM.

VIM uses two methods of entering commands into the application. Simple commands
such as those used for navigation and entering Insert mode are one- or two-letter commands that
are case sensitive and are not echoed to the screen as they are typed. More complex commands
such as those used to perform searches and utilize the tags created by the ctags program are
entered and echoed into the last line of the application screen. A colon, slash or question mark
character is used to activate the last line mode and enter the command. The character used will
depend upon which command is being issued.

Most simple commands can be preceded by a number. When this occurs, the command
entered is treated as if it had been entered that many times. For example, the command to delete
a line in a buffer is dd. If this command preceded by the number 15, as in 15dd, the next 15
lines in the buffer will be deleted.

To exit VIM, type :q if the text has not been changed, :q! to abandon all changes made
to the file, or :wqg! to save all changes and exit.

For help on any function, type:help <name> where <name> is the name of the func-
tion. Typing

:help tutor

will bring up information about VIMs built in tutor file. This file will walk you through the
basics of using VIM.

Navigation
If the terminal that is being used is set up correctly, the arrow keys on the keyboard will
often work for simple navigation commands that move the cursor around the screen. If the termi-
nal type is not properly configured, alternate keys may be used to navigate through the text.
The “h”, “5”, “k”, and “1” keys can be used in place of the left, down, up and right arrow
keys respectively. Additionally, the cursor may be moved one word, sentence or paragraph at a
time by using the keys listed in Table 2-13.

- al

é CHO2.fm Page 39 Monday, October 7, 2002 8:09 PM

Vim 39

Table 2-13 Navigating VIM

Action Command
Hjkl Left, down, up, right
\% Move one word forward
E Move one word backward
) Move to previous, next sentence
{} Move to previous, next paragraph

It is also possible to scroll the text on the screen without moving the cursor from its current
position. Table 2-14 lists some of the more common commands.

Table 2-14 Folding Mode Commands

Action Command
AF "B Scroll one screen forward, backward
AU ~D Scroll one half screen up, down
AE AY Scroll one line up, down
Insert Mode

There are numerous ways to enter Insert mode depending on where in the buffer you
wish to insert text and how much of the text you wish to change. For example, it is possible to
insert text at the beginning of the current line, at the end of the line, to change only the letter
or word at the cursor, or to change text from the cursor to the end of the line. All of these com-
mands are accomplished by simple one- and two-letter commands. When you press the “i”
key, VIM enters Insert mode and starts inserting the next typed characters at the current cursor
position. If “a” (append) is used to enter Insert mode, the insertion point is the character fol-
lowing the cursor.

Pressing “I” will insert characters at the beginning of the line, and “A” will append char-
acters to the end of the current line. The “0” character opens the line after the current one for
inserting text, and the “O” key creates a new line above the current one and positions the cursor
to enter new text.

Table 2-15 lists these commands.

é CHO2.fm Page 40 Monday, October 7, 2002 8:09 PM

40 Chapter 2 « Working With Editors

Table 2-15 Entering Insert mode

Action Command
ia Begin inserting characters at the cursor, after the cursor
I A Begin inserting characters at the beginning, end of the line
o O Open a new line after, before the current line

In addition to simply entering text into the buffer, vim can change text already in the docu-
ment. Table 2-16 lists the commands for changing text and their function.

Table 2-16 Commands to change text

Action Command
cwW Change from the current cursor position to the end of the word
cc Change the current line
r Replace the letter at the cursor
R Replace from cursor on

Also of note are the deletion commands. They are entered from Normal mode and may be
used to delete a character, a word or a line at a time. These commands are listed in Table 2-17.

Table 2-17 Deletion commands

Action Command
x X Delete the character at, before the cursor
dw Delete from the cursor to the end of the current word
dd Delete the current line
D Delete from cursor to end of the current line

Automatic Indentation
There are several indenting options available with VIM. They are autoindent,
smartindent and cindent. The first, autoindent, simply copies the indentention from
the previous line and uses that as the default for all new lines entered into the buffer. Smartin-
dent and cindent are similar, but cindent is stricter in the way that it handles the format-
ting and may not be suitable for programming languages other than C.

- al

N/ (%)
S CHO2.fm Page 41 Monday, October 7, 2002 8:09 PM

Vim 41

To turn any of these indent modes on, with the application in Normal mode, type :set
<indent mode>. To turn off an indent mode, simply preface the mode name with the word
“no”. For example, to turn on cindent, type:

:set cindent
To turn cindent back off, type:

:set nocindent

2.4.3 Using Tags with VIM

The ctags program can be used to build a tags file that is readable by VIM and can be
used to quickly navigate among multiple source code files. Building the tags file is done in the
same way as described earlier in the chapter for Jed, but you must us the ctags program
instead of etags.

S ctags *.[ch]

This builds the rags file in the current directory.

To build a tags file for an entire project that spans many subdirectories, from the main
project directory, issue the ctags command with the —R option to recurse the directories.

S ctags -R

From within VIM, if you need to jump to a particular function that is in the current file,
place the cursor on the appropriate function and press 41. This command uses the tags file to
locate the function and reads that file into the buffer.

To open a file and locate a function that is not present in the current buffer, type:
:tag <tagname>

where <tagname> is the name of the function that you are looking for. This will load the
file into the buffer and position the cursor at that appropriate tag.

To list the tags that you have jumped to in this editing session, type :tags. The output
from this command is shown below.

:tags

TO tag FROM line 1in file/text
1 1 main 1 ./arch/alpha/boot/tools/mkbb.c
2 1 perror 116 ./arch/alpha/boot/tools/mkbb.c

>

By pressing the number listed in the left column, you can return to previously accessed tags.
In large projects, it would not be uncommon for one function to be referenced in several
places. In the event that multiple tags are created with the same name, you can select from the
list of similar tags by using the :tselect command. To select from a list functions, type
:tselect <tagname>. When the tselect command completes, you will be presented

4~ ~¢8

N/ (%)
CHO2.fm Page 42 Monday, October 7, 2002 8:09 PM

A

42 Chapter 2 « Working With Editors

with a list of matching functions from which to choose. When you type in the appropriate num-
ber from the left-hand column, that function will be opened in the buffer.

2.4.4 Folding Code

VIM can use several methods for folding code. The most useful of these for application
programming is the indent method. The variable foldmethod determines how the folding will
take place. To indent set the mode by typing:

:set foldmethod=indent

This command can also be set as a default by entering it in the ~/.vimrc configuration file.

When this option is set and a file is opened, VIM will parse the file looking for initial tab
sequences in order to determine the various indent levels and fold the file automatically. In order
to open or unfold a section, use zo and to close or refold a section, use zc.

The commands zm and zx can also be used to increase and decrease the amount of folding
currently being done to a file. By issuing the zr command, the amount of folding being done is
reduced by one shiftwidth level. That is to say, one level of tabbing is revealed in the code. The
zm command reverses this and folds up one level of indentation every time that it is used.

2.5 References and Resources

1. Learning GNU Emacs, Second Edition, Debra Cameron, Bill Rosenblatt & Eric Ray-
mond, O’Reilly & Associates, Inc., ISBN:1-56592-152-6.

2. GNU Emacs home page, http://www.gnu.org/software/emacs/emacs.html

3. Jed home page, http://space.mit.edu/~davis/jed/

4. GNU Emacs Lisp Reference Manual, http://www.gnu.org/manual/elisp-manual-21-2.8/
html_chapter/elisp.html

5. Coffee.el, a fanciful elisp program to have Emacs make coffee, http://www.chez.com/
emarsden/downloads/coffee.el

6. Xemacs home page. http://www.xemacs.org/

7. VIM Home page. http://www.vim.org

ﬁ

*@%

é CHO3.fm Page 43 Monday, October 7, 2002 8:33 PM

A

CHAPTER 3

Compilers and
Assemblers

11 development systems are essentially a combination of many
Atools. Compilers, assemblers and debuggers are integral parts of
these development tools. Fortunately Linux has a large number of tools
available for software developers. These tools have a very rich set of fea-
tures that we shall discuss in this and coming chapters. The basic reason
for including this chapter is to enable a reader to use compilers and
assembler in a development environment in a productive way. However
this chapter is not a tutorial on any language or programming technique.
Examples of code listings presented in this chapter are very simple and
are intended to demonstrate the function of development tools.

GNU C compiler, most commonly known as GCC, is the most important
part of this discussion. This compiler can be used to compile programs
written in the following languages:

* ANSIC

* Objective C

o C++

* Java

* Fortran

* Pascal, after converting Pascal code to C

GCC recently added the capability to generate object code from Java
source code. Work has also been done on Ada support.

43

.

4~ 4

N/ (%)
CHO3.fm Page 44 Monday, October 7, 2002 8:33 PM

A

44

3.1

The GNU compiler, most commonly known as GCC, is not a single program. It is a large set of
programs, libraries and other utilities that work together to build source code into executable
form. A user, however, mostly interacts with gcc command. The gcc program acts as sort of a
front end for compilers and other utilities. This section is an introduction to the compiler and its

Chapter 3 « Compilers and Assemblers

GNU assembler is often needed in projects where you want to have tight
control over a particular part of code and want to write it in assembly lan-
guage. Most of the time people also write boot code for embedded sys-
tems in assembly language. The compiler uses assembler during the
compilation process to generate object code.

In addition to the most common compilers, we shall also discuss the use
of some less common languages in the Linux environment. These lan-
guages include the following:

e Oberon
e Smalltalk
e Ada

The compilation process is completed in different stages. These stages
are:

* Preprocessing

* Compiling to generate assembly language code
* Assembling to generate object code

* Linking to generate executable code

The GNU compiler takes help from many programs during this process
and can be used to g